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Image simulation plays a central role in the development and practice of high-

resolution electron microscopy, including transmission electron microscopy of

frozen-hydrated specimens (cryo-EM). Simulating images with contrast that

matches the contrast observed in experimental images remains challenging,

especially for amorphous samples. Current state-of-the-art simulators apply post

hoc scaling to approximate empirical solvent contrast, attenuated image

intensity due to specimen thickness and amplitude contrast. This practice fails

for images that require spatially variable scaling, e.g. simulations of a crowded or

cellular environment. Modeling both the signal and the noise accurately is

necessary to simulate images of biological specimens with contrast that is correct

on an absolute scale. The ‘frozen plasmon’ method is introduced to explicitly

model spatially variable inelastic scattering processes in cryo-EM specimens.

This approach produces amplitude contrast that depends on the atomic

composition of the specimen, reproduces the total inelastic mean free path as

observed experimentally and allows for the incorporation of radiation damage

in the simulation. These improvements are quantified using the matched filter

concept to compare simulation and experiment. The frozen plasmon method, in

combination with a new mathematical formulation for accurately sampling the

tabulated atomic scattering potentials onto a Cartesian grid, is implemented in

the open-source software package cisTEM.

1. Introduction

The quantitative understanding of image contrast is an

important goal in cryo-EM to enable accurate measurement of

sample densities, optimize image processing strategies for

high-resolution reconstruction of macromolecular structures

and refine models of image formation. The experiments

presented in this paper address a simple question: is it possible

to simulate images of biological macromolecules embedded in

amorphous ice with the correct contrast? To answer this

question, we examine several definitions of contrast that share

the common goal of describing how well the ‘signal’ stands out

from the ‘noise’, defining signal-to-noise ratios. The key to

using these metrics is defining how the variances of the signal

and noise are affected by different sources of error, including

numerical errors, specimen motion during imaging, radiation

damage and the dependence of amplitude contrast on atomic

species. We begin by defining sources of noise.

The power (variance) of the noise in cryo-EM images

outweighs the power of the signal, often by a factor of 20 or

more. The dominant source of noise in cryo-EM is ‘shot’ noise,

arising from the stochastic nature of detecting an electron at a

given location and time due to low-dose imaging conditions. A

detailed analysis by Baxter et al. (2009) demonstrated the need

to also consider structural noise, defined as any contrast

arising from sources other than the final object of interest:
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carbon film, crystalline ice, radiation-damaged particles,

unwanted macromolecular conformers, the supporting amor-

phous ice, etc. Unlike shot noise, structural noise is affected by

objective lens aberrations, which give rise to the contrast

transfer function (CTF). Baxter et al. modeled both the

structural noise and the shot noise as additive white Gaussian

noise, which fails to capture the artifacts and challenges

commonly encountered during image processing, as

previously demonstrated by Scheres et al. (2007).

An improvement in how the structural noise is simulated,

particularly that arising from the supporting amorphous ice,

can be found in TEM Simulator (Rullgård et al., 2011) and

InSilicoTEM (Vulović et al., 2013). They implement multislice

wave propagation as described originally by Cowley &

Moodie (1957), resulting in noise that is affected by the CTF.

The result of a multislice simulation is a probability distribu-

tion defined by the squared complex modulus of the electron

wavefunction at the detector  detector(x,y). The simulated

image is then formed by drawing from a Poisson distribution

unique to every pixel while incorporating the influence of the

detector quantum efficiency (DQE).

Most of the information transferred from the specimen to

the image in high-resolution cryo-EM is captured in phase

contrast arising from interference between the unscattered

wave and the wave representing electrons elastically scattered

by the specimen; ignoring higher-order interactions between

scattered waves is known as linear image formation theory. A

secondary form of contrast, amplitude contrast, is present due

to electrons lost because they scatter outside the objective lens

aperture or loss of electrons from the elastic image due to

inelastic scattering. The latter source of amplitude contrast is

enhanced using an energy filter (Yonekura et al., 2006). Unlike

phase contrast, amplitude contrast cannot be explained by

linear image formation theory (Erickson, 1973) and is

accounted for post hoc via a phase shift term added to the CTF

applied to the simulated image (Erickson & Klug, 1971). This

treatment is also common practice in solving the inverse

problem of image reconstruction, which seeks to answer the

question ‘what is the probability of the model given the

observed data’. However, in forward modeling, which asks

‘what is the probability of observing some data given a

particular model’, it is desirable to account for the fact that

amplitude losses depend on both atom type and local mass

thickness. For example, elastic scattering outside the objective

lens aperture is more probable for heavy atoms, like gold, than

light atoms like carbon. This heavy/light atom trend is inverted

for amplitude contrast arising from inelastic losses, as the ratio

of inelastic:elastic scattering probability is higher for light

atoms (Egerton, 1976; Reimer & Ross-Messemer, 1989) such

that they produce greater amplitude losses in energy-filtered

images than heavy atoms. To understand how this affects a

simulated image, we first discuss how amplitude contrast is

currently accounted for in multislice simulations.

The multislice formalism is essential for thick specimens

where the projection approximation fails, as it incorporates

important effects like multiple scattering of electrons and the

curvature of the Ewald Sphere. Increasingly thick samples are

also less transparent to electrons, and all simulators we are

aware of apply an implicit ‘energy filter’ to remove inelasti-

cally scattered electrons from the final image. To account for

inelastic losses, a single thickness parameter is used to

attenuate the image intensity according to

I

I0

¼ exp
�Thickness

�

� �
; ð1Þ

where I0 is the unattenuated image intensity and � is the

inelastic mean free path for single scattering – the average

distance an electron passes through the specimen before being

scattered inelastically at least once. It is clear that these single

filters cannot work for specimens with variable mass thickness

(e.g. at the edge of a cell) or for variable atomic composition

(e.g. the increased phosphorus concentration in the nucleus).

Even purified single-particle samples with a limited subset of

atomic species have two very different environments that need

to be simulated: the molecule and the solvent. We will refer to

how well the molecule stands out from the solvent as the

‘solvent signal-to-noise-ratio’ SNRsolvent as quantified by

Yonekura et al. (2006) where I is the mean image intensity and

�solvent is the standard deviation in the solvent region:

SNRsolvent �
j�IIprotein �

�IIsolventj

�solvent

: ð2Þ

Typically, the solvent is modeled by a single value given by the

mean inner potential for aqueous water and added on top of

the simulated molecules in projection. This approach, which

we will refer to as ‘the continuum model’, is equivalent to

using an infinite time average of a collection of moving water

atoms. One shortcoming of the continuum model is the failure

to account for the hydration radius of a molecule, which

should be zero inside a particle, higher than the bulk solvent

immediately outside the particle envelope and gradually

falling off with distance (Shang & Sigworth, 2012). Ignoring

the fact that molecules displace the solvent has been shown to

produce SNRsolvent that fails even visual inspection at expo-

sures of 100 e� Å�2 (Vulović et al., 2013).

We now know that the infinite time average used in the

continuum model does not adequately describe reality; even

though the solvent is frozen low-density amorphous ice

(LDA), it is not static during the imaging process. McMullan

and Henderson quantified the motion of water molecules in

LDA during imaging, estimating an RMSD of �1 Å/e� Å�2

(McMullan et al., 2015). Importantly, this motion results in a

blurring of the solvent contrast over time, which can be

thought of as low pass filtering, and so �solvent decreases with

increasing exposure. The net result is that SNRsolvent is a

function of the total exposure in an image, gradually

increasing as the solvent becomes more blurred. Of note, the

increase of SNRsolvent with exposure is further amplified in

experimental images by mass loss, which also decreases �solvent

and increases the numerator in Equation (2) by reducing
�IIsolvent. A more sophisticated version of our solvent model may

implement this mass loss in future work.
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While SNRsolvent is useful for its simplicity, a more detailed

analysis requires another metric to quantify how well simu-

lated images recapitulate experimental images. For this, we

propose using the matched filter, which is the statistically

optimal realization of a cross-correlation detector. With image

statistics characteristic of cryo-EM data, the output of the

matched filter can be simply defined as the ratio of the cross-

correlation coefficient (CCC) to the standard deviation of the

CCC when only noise is present (�n) (Rickgauer et al., 2017)

including any sources of structural noise as defined above.

SNRmf ¼
CCC

�n

: ð3Þ

The upper bound on the SNRmf is given by the ratio of the

power of the input signal to the power of the noise in the

image (McDonough, 1995). This means, for example, that a

larger molecule will generally have a higher SNRmf, while any

disagreement between the signal in the image and the simu-

lated template reduces the SNRmf from this maximal value. As

such, the relative accuracy to which the simulated molecular

density matches experimental data can be determined by

searching images using a matched filter. To evaluate Equation

(3), we use the cross-correlation tools and relevant prepro-

cessing available in cisTEM (Grant et al., 2018; Lucas et al.,

2021).

The shortcomings of the continuum model stem from a

disregard for the changes in the sample during imaging. Both

radiation damage to the molecule of interest and sample

motion are the result of energy being transferred to the

specimen via inelastic scattering. For frozen amorphous

samples, inelastic scattering is generally attributed to plas-

mons, i.e. collective excitation of valence electrons by the

electric field of the imaging electrons. However, the extent to

which these are bulk plasmons, which are strongly delocalized,

or more localized single-electron excitations remains unclear

(Egerton, 2011). Independent of the exact form of the plas-

mons, their net effect is an alteration of the system’s Hamil-

tonian during imaging, such that the product of a traditional

multislice simulation,  detector(x,y), is no longer valid. Just as

the original multislice method introduced a division of the

specimen potential into thin spatial slices to ensure the small-

angle approximation is valid, we suggest dividing the simu-

lated exposure into small temporal slices, where the specimen

does not change too much. While we refer to time here, what is

most practical from the point of view of the microscopist is

exposure measured in e� Å�2. Therefore, the time step in our

simulator is specified as the desired exposure per movie frame.

Exposure-rate-dependent phenomena like detector DQE and

beam coherence are parameterized by an exposure rate with

the exposure time implicitly set by the software according to

the user-supplied exposure per frame divided by the exposure

rate.

2. Theory

There are three main components in modeling the image

formation process in high-resolution transmission electron

microscopy (HRTEM) of which cryo-EM is a subset: (1) the

relativistic electron wavefunction and its modulation by the

sample; (2) the exposure-dependent Coulomb potential of the

specimen; (3) the microscope, including apertures, detector,

lens optics and aberrations.

In this work, we are concerned primarily with how the

Coulomb potential changes due to energy being deposited in

the specimen during imaging and will provide only a summary

of the other two components. The interested reader is referred

to, in increasing order of completeness, the treatments by

Vulović et al. (2013), Kirkland (2006), Reimer & Kohl (2003)

and Hawkes & Kasper (2018).

Unlike photons, electrons have a spin quantum number and

so their interaction with matter is governed by solutions to the

Dirac equation. Given reasonable approximations (Hawkes &

Kasper, 2018), a relativistically corrected version of the

Schrödinger wave equation, called the Klein–Gordon equa-

tion, is used in practice. Analytical solutions to this equation

are intractable for all but the simplest systems, so we turn to

multislice wave propagation (Ishizuka & Uyeda, 1977), which

produces an approximate numerical solution to this equation.

The first step in a multislice simulation is the calculation of the

specimen’s projected Coulomb potential Vðr; tÞ; the time

dependence will be subsequently omitted assuming a quasi-

stationary solution for exposure to a single electron. The

potential is divided into thin slices along the imaging axis,

which can be approximated by two-dimensional scattering

potentials through which the electron wavefunction is

sequentially propagated. This subdivision ensures the poten-

tial varies slowly in the direction of the electron wave

propagation, such that the small-angle approximation remains

valid and scattered spherical wavefronts may be approximated

locally by a parabola (Fresnel diffraction). In the limit of

infinitely thin slices, this results in an exact numerical solution

to the Klein–Gordon equation (Goodman & Moodie, 1974).

Multislice simulations can model both elastic and inelastic

scattering processes, provided that the respective Coulomb

potentials can be calculated. In analogy to the optical potential

in light microscopy, inelastic scattering is incorporated into the

wave theory via a complex term in the specimen potential VðrÞ

as introduced by Slater (1937).

VðrÞ ¼ VðrÞelastic þ iVðrÞinelastic: ð4Þ

The isolated atom superposition approximation states that the

specimen potential V(r) may be represented as the sum of the

individual atomic potentials ’(r)i. We introduce a scaling

factor � to compensate for the contribution of bonds among

those atoms to maintain the correct total scattering cross

section:

VðrÞ ’ �
X

’ðrÞi: ð5Þ

The elastic atomic potential can be calculated using relativistic

Hartree–Fock wavefunctions (Doyle & Turner, 1968). The

solutions for isolated atoms, having isotropic distributions, are

commonly parameterized by a sum of four or five Gaussian

functions (Peng et al., 1996). Typically, the potential is

recorded indirectly as these fits are tabulated as elastic elec-
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tron scattering factors f ðeÞð�Þ, defined as the Fourier transform

of the elastic potential (Peng, 1999):

f ðeÞð�Þ ¼
2�m0e

h2
Ff’ðrÞg; ð6Þ

where � is the scattering angle, e is the electron charge, m0 is

the rest mass, h is the Planck constant and F denotes the

Fourier transform operator. An important relation we will

return to later relates the spectral distribution of the scattering

factor to the differential scattering cross section – the prob-

ability density of an electron being scattered through a solid

angle �:

d�

d�
¼ f ðeÞð�Þ
�� ��2: ð7Þ

Though it is straightforward to calculate from first principles,

VðrÞinelastic is more problematic given the varied mechanisms

with which an incident electron may transfer energy to the

specimen: ionization, excitation, dissociative attachment,

vibrational and rotational excitations, bremsstrahlung, etc.

(Plante & Cucinotta, 2009). An example where VðrÞinelastic is

well defined is for radiation-insensitive crystalline specimens,

where thermal diffuse scattering (TDS) caused by phonon

excitation is the primary contributor to the complex potential

(Peng et al., 1996). One model used to calculate the TDS

potential treats the time-averaged atomic displacement

through Debye–Waller factors and improves the accuracy of

dynamic RHEED calculations (Dudarev et al., 1995). This

time-averaged approach is analogous to how the solvent

calculation, specimen motion, radiation damage and align-

ment errors are accounted for in HRTEM simulations of

biological specimens by B-factors, which are related to

Debye–Waller factors by a factor of 4.

While this time-averaged approach preserves the total

intensity of the projected interaction potential (Kirkland,

2016), it is well known that the image contrast produced in this

way is systematically wrong, often by a factor of three or more.

The error, known as the Stobbs factor (Hÿtch & Stobbs, 1994),

becomes worse with increasing strength of the electron

specimen interaction which, in turn, depends on the average

mass thickness in the specimen. Stobbs et al. proposed two

likely causes for the observed contrast mismatch between

simulation and observation: (a) existing simulators do not fully

account for radiation damage to the specimen and/or (b) they

fail to model the inelastic scattering with sufficient accuracy.

As recently shown empirically, these are related phenomena

(Peet et al., 2019).

Van Dyck et al. demonstrated that the Stobbs factor could

be largely corrected by the ‘frozen phonon’ method (Van

Dyck, 2009, 2015). The approach is conceptually simple: a

series of simulations are carried out where each atom is

displaced randomly, drawing from a probability distribution

based on empirical TDS values. The intensities in the image

plane as calculated from these individual simulations are then

averaged together. Here we propose a similar idea, applied to

radiation-sensitive frozen-hydrated specimens, where plas-

mons are the primary form of inelastic scattering. The frozen

plasmon method presents several computational and theore-

tical challenges: (1) the number of solvent atoms, O(109),

greatly outweighs those of the macromolecules we wish to

simulate images for, O(105), requiring careful algorithmic

design to make the computations tractable. (2) The solvent

and macromolecules have very different elastic and inelastic

total scattering cross-sections, as well as different average

mass densities [�0.94 g cm�3 for low-density amorphous ice

and �1.38 g cm�3 on average for proteins (Fischer et al.,

2004)], meaning that the amplitude contrast and inelastic

losses cannot be applied ad hoc to the final simulated image

and must be considered on a per-atom basis. (3) The preceding

points also place a requirement on the accuracy of the

calculation of each atomic scattering potential, which can no

longer simply be rescaled and so must be correct from the

start.

The scattering factor for plasmons in low-density amor-

phous ice is needed to achieve the appropriate contrast, which

depends on the appropriate spectral distribution. To obtain an

expression ’ðinelasticÞðrÞi, we start from the double differential

scattering cross-section for plasmons (Ferrell, 1956; Egerton,

2009). The essential form is Lorentzian

d2�

d�dE
/

1

�2
þ �2

E

; ð8Þ

with the angular dependence � and the energy dependence

captured in the characteristic angle,

�E ¼
�Epl

2E
: ð9Þ

!pl ¼ �Epl is the energy lost to the plasmon and E the kinetic

energy of the incoming electron. To calculate a scattering

factor for plasmons, we first form an empirical probability

distribution for plasmons arising from singly scattered elec-

trons in amorphous ice, derived from EELS data published by

Du & Jacobsen (2018). We then numerically integrate Equa-

tion (8) over energies in the low-loss spectrum (7.5–100 eV)

for each angle. The low-energy cutoff was chosen to coincide

with typical energy slit widths for Gatan energy filters (15–

20 eV), which fails to exclude �3% of plasmons, whereas the

higher energy cutoff excludes �1% of plasmons.

We then combine this spectrum with empirical measure-

ments of the ratio of inelastic to elastic total scattering cross

sections, which are inversely proportional to the atomic

molecular weight (Reimer & Ross-Messemer, 1989). As we

calculate the elastic potential during simulation, we separately

accumulate an inelastic potential scaled per atom by these

total probabilities. During wavefunction propagation, this

inelastic potential is given the correct Lorentzian form, taken

to be the square root of the values above.

Plasmons scatter strongly at low angles and are generally

referred to as being delocalized. This is reflected in Fig. 1

where the inelastic scattering factor we derived for plasmons is

compared with the elastic scattering factor for a glutamine

molecule. While plasmon scattering dominates at low resolu-

tion compared with elastic scattering, it still contributes

significantly at high angles as can be seen by the orange hash
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marks in Fig. 1 that demarcate bins of 20% total inelastic

scattering probability out to the Nyquist frequency, 2 Å�1 in

this example. The precise nature of inelastic scattering in

amorphous materials is not well understood, such that the

relationship between this high-resolution information and the

underlying specimen structure is not defined.

3. Results

3.1. Accurate representation of molecular density

For isolated neutral atoms, the scattering potential, defined

as the Fourier transform of the parameterized scattering

factors, can be written as

’ðrÞ ¼
h2

2�m0e

X
i

ai

4�

bi þ B

� �3=2

� exp
�4�2 x� x0ð Þ

2
þ ðy� y0Þ

2
þ z� z0ð Þ

2
� �

bi þ B

( )
; ð10Þ

where ai and bi are the fit coefficients, B is the Debye–Waller

factor, and the other symbols have the same meaning as

elsewhere. This atomic potential is sharply peaked about the

atom coordinates (r ¼ hx0; y0; z0i) in real space, requiring a

high sampling rate when discretizing to maintain the total

projected potential. This high sampling rate effectively

produces a numerical integration of Equation (10). To allow

for coarser sampling, and hence improve the computational

efficiency of our simulator, we analytically integrate the

expression from Equation (10):

’voxðrÞ ¼
h2

2�m0e

X
i

ai

4�

bi þ B

� �3=2

�
Y

j

Z 1
0

dxj exp
�4�2ðxj � xj 0Þ

2

bi þ B

" #
; ð11Þ

resulting in

’voxðrÞ ¼
h2

2�m0e

X
i

ai

Y
j

erf
2�ðxj � xj 0Þ

2

ðbi þ BÞ
1=2

" #
; ð12Þ

Here erf is the standard error function, and the vox subscript

indicates the value is over a discrete voxel, and xj indicates the

x, y and z coordinates. Though the potential in each voxel is

marginally more costly to calculate (to evaluate the limits of

integration, the error function must be evaluated six times per

voxel, compared with a single exponential), this is more than

compensated by the reduced number of voxels needed. For

example, simulating at 0.5 Å voxel pitch is 125� less compu-

tationally expensive than simulating at 0.1 Å voxel pitch.

Though the voxel pitch is the same in the z-dimension, the slab

thickness is a free parameter which also affects computational

efficiency. A simple test to determine the maximum allowable

thickness, as suggested by Kirkland (2006), is to search for the

point where the results of the simulation become dependent

on slab thickness. Our simulations begin to show a depen-

dence on slab thickness around 7 Å (data not shown) and,

therefore, we typically use 5 Å. Even more important than

computational speed, using Equation (12) in our simulations

also means the sampled potential still has the correct magni-

tude and is not simply proportional to the continuous poten-

tial, as discussed in the following section.

3.2. Compensating for the isolated atom superposition
approximation

While the integral formulation of the scattering potential in

Equation (12) preserves the calculated potential of all the

individual atomic contributions, there is still a systematic

underestimation of the scattering potential due to bonding

interactions. This is generally estimated to be between 5–10%

of the total potential (Peng et al., 2010), and ignoring this

difference is referred to as the isolated atom superposition

approximation. Given that we want to obtain images that are

quantitative on an absolute scale, we sought to measure and

calibrate this error. To approximate the redistribution of the

scattering potential due to bonding in a biological specimen,

we use the available data for amorphous carbon, comparing

with results from electron holography as follows. The average

phase shift in a material depends on the mean inner potential

of the material (V0), the thickness (t) and an interaction

constant CE (Reimer & Kohl, 2003),

CE ¼
2�

�E

E0 þ E

2E0 þ E
; ð13Þ

where E0 and E are the rest energy and kinetic energy of the

imaging electron with wavelength �. Additionally, surface

boundary effects are also known to be important in cryo-EM
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Figure 1
Elastic scattering factor for a glutamine molecule (black line) versus the
inelastic scattering factor for a plasmon pseudo-particle (grey line).
Orange markers indicate the right edge of bins compromising 20% of the
band-limited scattering probability for the inelastic plasmon scattering
factor as calculated from the squared norm of the scattering factor.



imaging, so we compared our calculated phase shift �’ with

empirical results obtained using electron holography, which

measures both the mean inner potential of carbon (V0 =

9.04 eV for 1.75 g cm�3 density) and an additional thickness-

independent surface-induced phase shift ’add (0.497 radians)

(Wanner et al., 2006):

�’ ¼ CEV0t þ ’add: ð14Þ

Considering the principle of a Zernike phase plate, we simu-

lated an amorphous carbon sheet that should produce a phase

shift of �/2 radians [Fig. 2(a)] with a density of 1.75 g cm�3 and

348.6 Å thickness per Equation (14). Our simulation

suggested that the average phase shift is �3.8% too small. To

correct this error, we introduce a constant scaling factor

[Equation (5)] of 1.038 to the isolated atomic potentials. The

simulated phase plate also serves as a sanity check to show

that the calculation of the elastic scattering potential is

consistent across different pixel sizes [Fig. 2(b)].

3.3. Modeling the bulk solvent

Simulating the bulk solvent is computationally demanding

due to the sheer number of water molecules in a biological

sample. We elected to calculate a coarse-grained model for

water, where each water molecule is represented as a single

isotropic scattering center. We based the elastic scattering

factor for our pseudo-waters on the elastic scattering factor

tabulated for oxygen but scaled by the ratio of the total elastic

scattering cross-section of oxygen:water, which we know from

experiment (Plante & Cucinotta, 2009). These pseudo-mole-

cules are seeded randomly at the proper density for low-

density amorphous ice (�0.94 g cm�3). A movie is then

simulated, where each time step (movie frame) is defined by a

user-specified exposure, and the specimen is held constant

within that time.

Amplitude losses due to inelastic scattering are incorpo-

rated into the multislice formalism via a complex scattering

potential, commonly defined as linearly proportional to the

real (elastic) potential, for example as in InSilicoTEM. A

detailed analysis of why this proportional model is inadequate

is found by Dudarev and coworkers (Peng et al., 1996). Rather

than using a linearly proportional model, we derive the

complex scattering potential from the bulk solvent elastic

potential rescaled to have a power spectral density (PSD)

based on our plasmon scattering factor as defined in the

theory section.

Referring to Fig. 3, we observe the expected functional form

for the attenuation due to inelastic scattering.

3.4. Amplitude contrast

Before leaving the discussion of bulk properties of amor-

phous samples, we now examine the other form of amplitude

contrast arising from electrons being scattered outside the

objective lens aperture. This is incorporated in the simulation

by applying an aperture function directly to the complex

wavefunction prior to image formation, which results in an

attenuation of the expected number of electrons at the

detector. This is demonstrated in Fig. 4 for a series of aperture

diameters and a simulated amorphous specimen with density

and thickness as used previously for the ‘phase plate’, with

atomic potentials for carbon (orange circles), phosphorous

(gray x’s) or gold atoms (blue squares). The smallest aperture
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Figure 2
(a) Phase plate simulated from an amorphous layer of carbon atoms
348.6 Å thick with a density of 1.75 g cm�3. (b) Mean phase shift for the
simulated phase plate as a function of pixel sampling rate during
simulation. Black line plotted at �/2 radians for visual reference.

Figure 3
Coarse-grained all-atom solvent model in combination with the inelastic
scattering factor for plasmons we derived produces amplitude losses via
the complex potential that do not need to be scaled post hoc. The slope is
a readout for the inelastic (single-scatter) mean free path in our simulated
solvent.



used (0.01 mm) excludes all but the

unscattered beam, and so is a measure

of the total transmittance of the simu-

lated layer.

3.5. Accurate representation of solvent
noise

In the preceding sections, we assessed

the behavior of large collections of a

single type of atom. A more rigorous

demonstration that the contrast being

simulated is correct on an absolute scale

is to compare groups of atoms with

different scattering properties: the

solvent and the solute. To do so, we use

Equation (2) as a metric to quantify the

SNRsolvent calculated by both the conti-

nuum model and the frozen plasmon

method, as compared with experiment.

In Fig. 5(e) we show selected time

points from a movie simulated using the

continuum model (top row), experi-

mental data (EMPIAR-10061; Barte-

saghi et al., 2014) in the middle row and

the coarse-grained all-atom model calculated using the frozen

plasmon method in the bottom row. As can be seen visually,

the SNRsolvent is stronger for the continuum model, because

the potential only has a DC component. This dependence on

the PSD is also emphasized when comparing Figs. 5(a) and

5(b) that have the same average intensity in the solvent region,

but very different SNRsolvent values. To quantify this effect, we

calculated SNRsolvent as in Equation (2), defining the solvent

region by the white portion of the mask in Fig. 5(c) and the

protein as the central black region. The results are plotted in

Fig. 5(d) where the final SNRsolvent is about a factor of two too

strong using the continuum model, while our model closely

matches that of experimental data.

3.6. Modeling the solvent envelope

Having shown that we can simulate images with realistic

SNRsolvent by using the integrated form of the scattering

potential in conjunction with the frozen plasmon method, we

now turn our attention from accurately simulating the solvent

and inelastic losses to examining more nuanced components

of the forward model by comparison with experimental images

using the matched filter, with the output (SNRmf) defined in

Equation (3).

As a baseline, we calculate a ‘perfect’ model in vacuo, with

the projected scattering potential of the rotavirus double-layer

particle (DLP, PDB entry 3gzu; Chen et al., 2009) shown in Fig.

6(a). We used this model to search a single early frame from 18

DLP movies, each with cumulative exposure of 1.5 e� Å�2,

e.g. Fig. 6(b). At this low exposure, we assume there to be no

significant radiation damage. The average SNRmf from 180

DLPs in these 18 movie frames is 10.4.
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Figure 4
Scattering outside the objective lens aperture generates amplitude loss that varies based on atomic
species. The smallest value calculated here (0.01 mm) is a proxy for scattered versus not scattered
electrons. A simulated amorphous carbon layer (as in Fig. 1) scatters a total of �6.2% incident
electrons elastically. Replacing the carbon atoms with gold atoms, �99.5% of electrons are
scattered.

Figure 5
Comparison of the continuum and coarse-grained all-atom solvent model
with the experimental data. (a) j detectorj

2 with a constant potential added
for the solvent. (b) j detectorj

2 with coarse-grained all-atom water model.
The average intensity in (a) and (b) in the solvent region is identical
within numerical precision. (c) Mask used in calculating SNRsolvent

[Equation (2) main text] where the white region was used for the solvent,
and the central black region for the protein. (d) Plot of SNRsolvent as a
function of accumulated exposure for experimental data (blue line,
square marker), coarse-grained all-atom solvent model (gray, x marker)
and constant solvent potential (orange diamond marker). (e) Images used
in calculating the plot in (d) with the same color/marker scheme, and the
total exposure is indicated along the bottom. Experimental data taken
from EMPIAR 10061, beta-galactosidase. Scale bar 100 Å.



Biological macromolecules do not exist in a vacuum; they

reside in a low-resolution ‘hole’ in the solvent, which impacts

subsequent analysis as discussed in detail by Shang &

Sigworth (2012). We incorporate their hydration radius model

into the simulator by tracking the smallest distance to any

non-solvent molecule and weighting any nearby solvent with a

probability distribution defined by normalizing Equation (1)

from their paper. We note that the parameter ‘r3’ in Table 1 of

Shang and Sigworth should be �3.0, not 1.7. Additionally, we

use the average of the coefficients they report for polar and

non-polar residues, as the simulator currently only implements

isotropic potentials for neutral atoms.

When simulating isolated macromolecules to use for

comparison with experimental images, we weight the average

water potential by this probability distribution, with an

exponential decay starting at 4 Å into the bulk solvent. This

exponential decay is added because our knowledge of the

sample rapidly decays to zero beyond the particle of interest.

This produces an effect similar to the ad hoc model suggested

previously by Henderson & Mcmullan (2013). When simu-

lating images, the probability distribution is applied to indi-

vidual pseudo-water molecules as described next.

To illustrate the effect of applying the solvent envelope

discussed in previous sections, we plot the rotationally aver-

aged PSD of ðmodelin vacuoÞ=ðmodelhydratedÞ in Fig. 6(c). We

observe that the spectral damping has little effect at low

resolution (<20 Å) and is relatively constant at higher reso-

lution (>10 Å). To quantify the effect, we include the SNRmf

overlaid with the projected density in Fig. 6(c).

3.7. Modeling other imaging effects that shape the signal
distribution

Subsequent panels in Fig. 6 show the rotationally averaged

PSD of ðmodelprevious rowÞ=ðmodelprevious rowþnew effectÞ. The

detector MTF reproduces the model applied, which we

derived from the work by Ruskin et al. (2013). We chose this

parameterization of the detector MTF because it also incor-

porates the coincidence-loss due to electron counting errors

via depression of the DC component of the Fourier transform

of j detectorðx; yÞj2.

To account for blurring due to residual intra-frame

specimen motion, we applied a Fourier space damping

envelope, which for uniform motion is trivially a sinc function:

sincð�qdiÞ; ð15Þ

where di (Å) is the real space displacement vector and q(Å�1)

is the spatial frequency vector [for experimental observation

of this sinc function, we refer the reader to the work by Frank

(1969)]. Less trivial is determining the intra-frame specimen

motion for which we only know a lower bound, estimated as

the average of the displacements between the two neighboring

frames. In Fig. 6(e) the modulation along the direction of

motion is plotted (this would drop off to no modulation in the

perpendicular direction). Lastly, we include the per-atom B-

factors from the PDB file and plot the effective envelope in

Fig. 6( f). Rather than trying to link these B-factors to any

specific physical phenomena, we suggest they simply account

for uncertainty in the modeled atomic coordinates that arise

from a variety of factors.

By accounting for the solvent envelope, detector MTF,

residual intra-frame motion and atomic model building

uncertainty, we were able to increase the average SNRmf from

10.4 to 12.14. Since the SNRmf is expected to increase with the

square root of the particle mass (Rickgauer et al., 2017), this

effectively reduces the mass limit of detection by �1.3�. We

found that applying additional positive or negative B-factors

only made the average score worse, indicating the model is

reasonably accurate.

3.8. Assessing the radiation damage model

Having developed a model that maximizes agreement with

images lacking substantial radiation damage, we focus on

radiation damage, long known to be the limiting factor in cryo-

EM (Hayward & Glaeser, 1979). By studying movies recorded

in the TEM, an analytical function modeling the effects of

radiation damage on the coherent SNRimage reconstruction as a

Fourier space filter – �(q) – was described by Grant &

Grigorieff (2015). Given that radiation damage is specimen-
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Figure 6
(a) Projection of simulated rotavirus DLP, using PDB entry 3gzu, with the
average peak SNRmf from 180 DLPs overlaid in white. (b) Example
image from movie frame two, with only 1.5 e� Å�2 cumulative exposure.
(c) Ratio of the rotationally averaged power spectrum of a simulation
with solvent embedding to the base simulation as in (a). (d) Ratio of the
rotationally averaged power spectrum of a simulation with solvent
embedding and detector MTF to the previous simulation as in (c). (e)
Ratio of the rotationally averaged power spectrum of a simulation with
solvent embedding, detector MTF and residual intra-frame motion blur to
the previous simulation as in (d). ( f ) Ratio of the rotationally averaged
power spectrum of a simulation with solvent embedding, detector MTF,
residual intra-frame motion blur and PDB B-factors to the previous
simulation as in (e). Scale bar 500 Å.



dependent, the analytical model of Grant and Grigorieff will

only strictly apply to the rotavirus VP6 capsid protein, and not

to nucleic acids, for example. Alternatively, radiation damage

may be modeled along with other blurring factors, for

example, uncorrected motion blur, using exposure-dependent

B-factors (Bartesaghi et al., 2018; Scheres, 2014).

To quantify the accuracy in modeling radiation damage

using the analytical model, �(q), we combine it with Equation

(15) since the blurring due to residual intra-frame motion will

be worse initially when the highest-resolution information is

still present:

1

N � 1

XN

i¼2

sincðq � diÞ�ðqÞi: ð16Þ

Here we model what is observed in the images as the average

over N movie frames 2 � N such that the accumulated

exposure ranged from 10 to 100 e� Å�2. A representative

image is shown in Fig. 7(a). We then measured the average

SNRmf of the DLPs plotted in Fig. 7(b) with no exposure

filtering (solid black line), exposure filtering applied to the

image (dashed black line), exposure filtering applied to the

simulated molecule (solid blue line) and exposure filtering

applied to both data and model (dashed blue line). We found

the largest increase in SNRmf using a total exposure of

50 e� Å�2 when applying the exposure filter to both the image

and during simulation of the reference.

4. Discussion

Our simulator implements the most thorough forward model

for calculating the interaction between high-energy electrons

and radiation-sensitive biological samples demonstrated to

date. The improvements described here result from an

approximate description of the changes in the specimen due to

deposition of energy via inelastic scattering during imaging,

incorporating a model for the solvent and its motion, as well as

radiation damage. This added accuracy in simulating the

molecular density produces more realistic image simulations

for algorithmic development, but just as importantly, it

provides a means to investigate the behavior of complex

biological specimens in atomic detail using matched filtering

via 2D template matching.

Since the output of the matched filter is sensitive to the PSD

of the signal, we can quantify the accuracy of our image

formation/damage model by measuring the change in SNRmf.

We found that modeling the water envelope, detector MTF,

residual intra-frame motion blur and atomic modeling uncer-

tainty resulted in a higher SNRmf than could be obtained by

optimizing a single B-factor. This analysis is limited by the fact

that we cannot strictly disentangle changes to the signal from

different envelopes that could be mutually compensatory,

though this may not be too severe a problem given the

differences in the envelopes shown in Fig. 6(a). More careful

consideration of the impact of different spatial frequencies on

SNRmf may prove useful in addressing this limitation in future

work. In particular, we know high-spatial frequency signal

strongly affects the SNRmf, but it is unclear how blurring

effects not considered in detail here, e.g. axial coma, coher-

ence of the electron beam or other higher-order aberrations

may impact the contribution of high-spatial frequency to the

SNRmf

We show that modeling the time dependency motion of the

solvent is required to produce contrast that agrees well with

experimental images. Our explicit solvent model, while coarse-

grained, allows us to accurately reproduce attenuation due to

inelastic losses and spatially variable amplitude contrast, and

based only on the atomic species and local mass thickness in

the simulated specimen. In principle, any configuration of

atoms can be simulated by supplying an appropriate atomic

coordinate file to the simulator. In practice, variable solvent

thickness, protein fragments and other sources of structural
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Figure 7
(a) Example image with a total exposure of�91 e� Å�2. Rotavirus DLPs
from the data set used in this analysis, kindly shared by Dr Tim Grant. (b)
Average SNR values as a function of total exposure. Solid black line:
simple averaging of movie frames, no exposure filtering. Dashed black
line: image summed from exposure weighted movie frames. Solid blue
line: reference simulated with cumulative exposure filter as would
normally be applied to a movie. Dashed blue line: both image and
reference exposure filtered. Red square: maximum SNR attainable using
a single B-factor to represent all envelopes. Scale bar 500 Å.



noise, like regions of hexagonal ice could be included directly

in the simulator, however, we leave this for future work.

A core idea in this work is to include recent empirical

observations and measurements into the forward model. It

may be possible to further improve the modeling of the

molecular envelope by considering small-angle X-ray scat-

tering data to complement the molecular dynamics informa-

tion used here. It may also be important in the future to extend

our model to include polar or charged atoms, which would

change the character of the molecular solvent envelope.

Modeling charged atoms would also enable us to include salts,

which we expect to scatter strongly given their relatively high

atomic numbers, as well as altering the local structure of the

water molecules. This local ordering, however, would add yet

another layer of computational complexity as it would require

an anisotropic scattering factor and motion model. We note

this directional modeling would also be required to model

lipids accurately.

Another aspect of modeling charged atoms that may prove

useful in the future is the ability to model atom- or residue-

specific radiation damage. For example, acidic amino acid side

chains seem to disappear rapidly in cryo-EM reconstructions

made with increasing exposure (Barad et al., 2015; Bartesaghi

et al., 2014). The disappearance of negatively charged

chemical groups is likely to also be partially related to contrast

inversion observed with negatively charged atoms (Yonekura

et al., 2018). Modeling charged atoms may require considering

the immediate chemical environment of a residue, which

would present considerable computational and theoretical

challenges. To predict how much we expect the SNRmf to

improve with added exposure will require a more complete

understanding of how object features with a given spatial

frequency contribute to SNRmf as well as how those features

degrade over time.

Modeling the solvent presents computational challenges

due to the sheer number of atoms we need to represent, which

required a simplification to treat all solvent molecules as

identical pseudo-waters. Even with these simplifications, we

show a considerable improvement in matching SNRsolvent to

experimental data and expect this to improve the ability of

models (artificial neural networks especially) trained on

simulated data to generalize more readily to experimental

data.

In addition to modeling the solvent molecules as identical

pseudo-waters, we addressed this computational cost via

multi-threading in C++. Even so, the bulk of the calculation is

spent on calculating the solvent and the Fourier transforms

used during wavefunction propagation. To simulate more

complex solvent models, or tilted samples, which will have a

substantially larger number of slices to propagate, a GPU

implementation may be beneficial for future work.

5. Conclusions

Here we have presented an accurate forward model describing

sources of signal attenuation and show how modeling the

spectral characteristics of that attenuation improves the

output of the matched filter (SNRmf as used in template

matching for the detection of molecules in cryo-EM images).

The SNRmf is in turn directly related to the mass limit for

detection; any improvement in our forward model results in

being able to detect smaller particles, which will expand the

capacity of template matching in visual proteomics. The

increased SNRmf due to modeling radiation damage is

encouraging but should likely be modeled more accurately for

template matching. We also suggest that our model for

inelastic scattering could be improved by direct comparison to

experiment using the matched filter, by incorporating atom-

type specific loss in template generation.

Taken together, these results suggest that other modifica-

tions to the template that result in a better match to the

experimental data can further improve the SNRmf; for

example, some amino acid side chains are affected more

strongly by radiation damage than others, e.g. aspartate and

the disulfide bond of cystine. These details could be incorpo-

rated into a new atom-specific damage model in future work.
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