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In single-particle imaging (SPI) experiments, diffraction patterns of identical

particles are recorded. The particles are injected into the X-ray free-electron

laser (XFEL) beam in random orientations. The crucial step of the data

processing of SPI is finding the orientations of the recorded diffraction patterns

in reciprocal space and reconstructing the 3D intensity distribution. Here, two

orientation methods are compared: the expansion maximization compression

(EMC) algorithm and the correlation maximization (CM) algorithm. To

investigate the efficiency, reliability and accuracy of the methods at various

XFEL pulse fluences, simulated diffraction patterns of biological molecules are

used.

1. Introduction

The short and intense pulses of X-ray free-electron lasers

(XFELs) make diffraction experiments on single particles

possible (Neutze et al., 2000; Huldt et al., 2003). In a single-

particle imaging (SPI) experiment, identical particles are

injected into the X-ray beam with random orientations and

diffraction patterns can be recorded in a 2D detector before

the particle is destroyed by radiation damage. Individual

diffraction patterns of small particles or molecules are noisy

and contain insufficient information to solve the structure of

the particle. Therefore, to assemble a single set of consistent

diffraction data, thousands or millions of diffraction patterns

must be recorded (Poudyal et al., 2020).

To solve the structure of the particle starting from the raw

detector images, three major steps are necessary:

(i) Converting the raw detector data to diffraction patterns

of single particles. The XFEL pulse can hit no or multiple

particles, so first, detector images with scattering data on single

particles are selected. Then, detector noise is removed and the

detector data is converted into photon counts. Background

noise, recorded in no-hit images, should be also removed.

(ii) Finding the relative orientations of the diffraction

patterns in reciprocal space and assembling a consistent 3D

diffraction intensity distribution. The diffraction patterns are

very noisy and contain only a low number of photons. In most

cases, the particles are randomly oriented and no independent

orientation data are available.

(iii) Solving the phase problem to obtain the electron

density of the particle. Unlike in conventional crystallography,

finding the unknown phases is facilitated by oversampling the

reciprocal space (Miao et al., 1999).

In this article, we concentrate on the second (orientation

step) although its effect on the third (phase-recovery step) is
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also addressed. The diffraction image measured by a 2D

detector corresponds to a spherical section (part of the surface

of the Ewald sphere) in reciprocal space. The center of the

section is always at the origin (q = 0), but the orientation of the

spherical section (fixed to the orientation of the particle) is

unknown. For a small particle, the measured diffraction

patterns are extremely noisy. Most of the pixels of a megapixel

pattern are empty, only a few hundred or about a thousand

pixels have one or a few photon counts.

Several methods have been developed to find the unknown

orientations of the diffraction patterns. Many of these

methods are related to orientation methods developed for

cryo-EM (van Heel, 1987; van Heel et al., 2000; Penczek et al.,

1994; Radermacher, 1994; Sigworth, 1998; Sigworth et al.,

2010). Cryo-EM records the absorption of the particles that is

proportional to the 2D projection of the electron density.

According to the central-slice theorem, the Fourier transform

of the measured projections are central slices (planes through

the origin) in the 3D reciprocal space. Orienting these central

slices is a task similar to the SPI orientation problem.

However, there are important differences. In SPI, the

diffraction images are not flat, they are parts of the Ewald

sphere. On the other hand, in cryo-EM, the common center of

the real-space projections is not known. Therefore, not only

the three orientation angles but also two additional shift

parameters should be found for each image. Because of these

differences, while the SPI orientation methods may use

approaches similar to those of cryo-EM, the details of the

algorithms can be quite different.

One group of methods to orient the diffraction patterns in

SPI relies on the information in the common intersection

curves of the patterns (Huldt et al., 2003; Shneerson et al.,

2008; Bortel & Tegze, 2011; Yefanov & Vartanyants, 2013;

Zhou et al., 2014). Other methods find the possible orienta-

tions of the patterns by comparing them with a 3D intensity

model updated by every iteration (Loh & Elser, 2009; Tegze &

Bortel, 2012; Flamant et al., 2016; Nakano et al., 2017, 2018).

Another group of methods uses the manifold embedding

technique to find the similarities between diffraction patterns

and order them in the orientation space (Fung et al., 2009;

Giannakis et al., 2012; Kassemeyer et al., 2013; Winter et al.,

2016). Donatelli et al. (2017) proposed a method to find the

orientations and the phases simultaneously. Correlation-based

approaches aim to solve the structure without determining the

relative orientations of the individual diffraction patterns

(Kam, 1977; Saldin et al., 2009, 2011; Elser, 2011; Donatelli et

al., 2015; von Ardenne et al., 2018).

In this study, we consider two methods for orientating the

measured diffraction patterns and reconstructing the 3D

scattering intensity distribution: the expansion maximization

compression (EMC) algorithm (Loh & Elser, 2009; Loh et al.,

2010) and the correlation maximization (CM) algorithm

(Tegze & Bortel, 2012, 2013, 2016, 2018). We compare the

efficiency, reliability and accuracy of these methods using

simulated measurements on biological molecules at various

XFEL pulse fluences. We study the performance of the

methods first in a simplified 1D orientation problem. For the

full 3D orientation problem, a more detailed comparison of

the methods is presented. We compare the results with two

references: the ideal noiseless model intensity distribution and

the one reconstructed from the noisy diffraction patterns using

their true orientations. Finally, we reconstruct the electron

densities by solving the phase problem and compare them with

the original atomic structure.

2. The EMC and CM algorithms

The EMC algorithm was developed by Loh & Elser (2009) and

is based on Bayesian information theory. Similar algorithms

have been applied in cryo-EM (Sigworth, 1998; Sigworth et al.,

2010). The name of the EMC algorithm is from the initials of

its main steps: expansion, expectation maximization and

compression. In the expansion step, a 3D intensity model is

expanded into a set of 2D spherical slices corresponding to all

possible orientations of the measured diffraction patterns. The

central part of the method is expectation maximization:

calculating the probabilities that an experimental image was

measured in a given orientation with the actual 3D intensity

model as condition. Then, in the compression step, these

probabilities are used as weights to construct an improved 3D

model (Fig. 1). Starting from a random distribution, after

several iterations, the 3D intensity distribution converges to a

solution and the probabilities will peak around the true
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Figure 1
A flowchart of the modified EMC method. The expectation-maximization
step is inside the blue box.



orientations. A detailed description of the algorithm is found

in Loh & Elser (2009). The algorithm is implemented in the

computer program package Dragonfly (Ayyer et al., 2016).

However, in this study, we did not use this package. To speed

up the calculation, we slightly modified the EMC algorithm

and wrote a more efficient computer code. The most time-

consuming step of the EMC algorithm is the calculation of the

probabilities of all possible orientations for all measured

diffraction patterns. We introduced polar coordinates and

used fast Fourier transform (FFT) and the correlation

theorem (Weisstein, 2021) to increase computational effi-

ciency. Details of the modification are described in the

Appendix. This modification of the EMC algorithm not only

decreases the computing time but also improves its time

scaling with the complexity of the particle from R6 to R5 (for

the definition of R see Table 1).

The CM algorithm is a simplified version of the EMC

algorithm, developed by the present authors (Tegze & Bortel,

2012). A similar approach was suggested earlier for cryo-EM

(Penczek et al., 1994). In the CM method, the time-consuming

expectation-maximization step is replaced by a search for the

orientation with the highest correlation (Fig. 2). This is prac-

tically equivalent to setting the largest weight among the

possible orientations of a diffraction pattern to one and all the

others to zero in the EMC method.

Since only the central parts of the algorithms are different

(see Figs. 1 and 2), both algorithms were implemented in a

common framework. The computer program was written in

Matlab with parts in C and CUDA for parallel computing on

graphics processing units. The calculations were executed on a

single workstation (2 � Intel Xeon Gold 6146 computing

processor unit) reinforced with a group of graphics processors

(8 � Nvidia Geforce RTX 2080 Ti).

3. Simulation of diffraction patterns

The success of the orientation process depends on the

experimental parameters: XFEL wavelength, pulse length and

fluence, size and composition of the particle, detector effi-

ciency, noise, size, distance and pixel size, number of

successfully recorded images of a single particle, background

noise, etc. Since we wanted to study how the orientation

methods perform at different XFEL pulse fluences, all other

parameters were fixed at realistic values (listed in Table 1).

Although low-resolution experimental single-particle images

are available (Reddy et al., 2017; Ayyer et al., 2019), we

decided to use simulated scattering patterns at near-atomic

resolution. Two test molecules were used: lysozyme, a small

protein molecule which has a well known structure (Protein

Data Bank; PDB entry 3lzt; Walsh et al., 1998), and the much

larger multiprotein-complex RNA polymerase II (PDB entry

1wcm; Armache et al., 2005). Many thousands (20 000 for

lysozyme and 100 000 for RNA polymerase II) of diffraction

patterns of the molecules in random orientations were calcu-

lated [as described in Tegze & Bortel (2012)]. Parameters of

the simulations are shown in Table 1. Poisson noise was

introduced for several values of XFEL pulse fluence I0 in the

range of 5 � 1026–1028 photons m�2 for lysozyme and 1024–

1026 photons m�2 for RNA polymerase II. For simplicity, the

diffraction patterns were generated on the polar grid and

detector or background noise (which would have to be

removed before further processing) was not added. The XFEL
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Table 1
Parameters of the test molecules, the simulations and the orientation
processes.

Name of the molecule Lysozyme RNA polymerase II

Weight (kDa) 14 509
Largest diameter D (Å) 51 167
X-ray wavelength � (Å) 1 1.91
Range of scattering angle
#min–#max (�)

1–30 1–30

Pattern pixel size
(polar � azimuthal), �# � �’ (�)

1 � 2 0.25 � 0.5

Resolution d (Å) 1.9 3.7
Complexity R = D/d 26 45
Number of patterns Ndata 20 000 100 000
Number of grid points in the

(�, �) orientation subspace NR

5292 5292

Number of orientations NRN’ 952 560 3 810 240
Number of grid points (voxels)

in the reciprocal space
613 = 226 981 2393 = 13 651 919

Computation time per iteration
(CM/EMC) (s)

18/47 311/746

Figure 2
A flowchart of the CM method. The CM step (replacing the expectation-
maximization step of the EMC method) is inside the red box.



pulse was supposed to be short enough that atomic displace-

ments due to electrostatic forces (Jurek et al., 2004) are

negligible before the pulse ends.

4. Comparison of the efficiency and accuracy of the
orientation algorithms

4.1. Orientation problem in one dimension

It is always useful to study a difficult problem first in lower

dimensions. The simplest 1D version of the orientation

problem of SPI is the following: random sample rotation is

allowed only about the incident XFEL beam direction. The

scattered radiation is ‘measured’ only in a circle with a fixed

scattering angle. For further simplicity, only rotations of

integer multiple �’ are allowed, where �’ is the azimuthal

size of the detector pixel. For this study, simulated 1D scat-

tering patterns of the lysozyme molecule were used. Scattering

intensities of W0(’m), where ’m = m�’, were calculated in

steps of �’ ¼ 2� for X-ray wavelength � = 1 Å at scattering

angle # ¼ 15�: After applying random rotations (their angle

saved for later use) about the incident X-ray beam direction,

the intensities were multiplied by the solid angle of the

detector pixel (for compatibility with the 3D orientation

problem, �# ¼ 1� was chosen) and Poisson noise was intro-

duced. We generated Ndata = 20 000 randomly rotated

‘measurements’, Kim ¼ Kið’mÞ; where m ¼ 1 . . . N’ and

i ¼ 1 . . . Ndata, for each incident X-ray fluence value. To test

the accuracy of the results of the orientation methods, an ideal

intensity distribution WT(’m) was calculated by averaging all

‘measured’ noisy intensities rotated back by the true rotation

angles saved earlier.

Both the EMC and the CM method were tested for this

simple 1D model. Since both the ‘measured’ and the model

intensities are periodic 1D functions of the rotation angle ’,

there is no need for the compression and expansion steps.

After convergence (i.e. when no further change was observed

between iterations) we compared the resulting intensity

distribution W(’m) with WT(’m) and with the noiseless model

intensity distribution W0(’m). The W distribution was recon-

structed in a random orientation relative to WT and W0. The

Pearson correlation (Rodgers & Nicewander, 1988) was

calculated for all possible relative rotations between W and

WT (or W and W0), and the maximum was taken as a measure

of the accuracy of the result. These Cmax{W, WT} and Cmax{W,

W0} values are plotted as a function of the incident XFEL

fluence I0 in Fig. 3. For this simple 1D test case and relatively

large Ndata, Cmax{W, WT} and Cmax{W, W0} are not much

different. As expected, the more sophisticated EMC method

performs better than the CM method. It can solve the orien-

tation problem for an order of magnitude less photons than

the simpler CM algorithm. The lowest XFEL intensities I0 that

can be solved by the EMC and CM methods are 4 � 1025 and

4 � 1026 photons m�2, corresponding to an average of 4.46

and 44.6 photons in the ‘measured’ 1D diffraction patterns,

respectively. However, when both methods can find the solu-

tion, the resulting intensity distribution is slightly more accu-

rate for the CM method. For XFEL fluences I0 �

2 � 1027 photons m�2, the CM method gives the ‘true’ distri-

bution W = WT with all patterns perfectly oriented, while the

EMC method still gives some weights to a few slightly

misoriented patterns.

4.2. Full orientation problem in 3D

The original orientation problem of SPI is more challenging

than the above simplified 1D problem. First of all, the

measured patterns are 2D, while the sought intensity distri-

bution is 3D. In the expansion and compression steps, the 3D

distribution is interpolated into the 2D grid and vice versa. In

the EMC method we used linear interpolation, while in the

CM method the nearest grid point was selected. In the

compression step, pixels of many 2D patterns give contribu-

tions to a single voxel of the 3D distribution, leading to a slight

smoothing in the reciprocal space.

We applied the EMC and the CM methods to find the

relative orientations of the diffraction patterns of the two test

molecules. In all cases, we continued the iteration until there

was practically no change in the results. After convergence of

the CM algorithm, the orientations of the patterns were

further refined (Tegze & Bortel, 2012). The maximum of the

correlation Cmax{K, W} between each pattern and the

expanded model slices (i.e. the correlation in the best orien-

tation) was calculated for every iteration. This correlation is

an essential part of the CM method only (Tegze & Bortel,

2012), but we calculated it for the EMC method as well. We

used the distribution of these correlations to monitor the

iteration process. A sudden jump in this correlation distribu-

tion indicates finding the solution of the orientation problem.

The left two columns of Fig. 4 show the development of the

correlation distribution for both methods at various incident

fluences in the case of RNA polymerase II.
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Figure 3
The maximums of Pearson correlation between circular 1D intensity
distributions Wx and Wy as rotated relative to each other, for lysozyme at
scattering angle # ¼ 15� and various incident XFEL fluence values. Wx

denotes the intensity distribution reconstructed by either EMC (blue
circles) or CM (red squares). Wy refers to the reference intensity
distributions WT or W0. Cmax is calculated in all four combinations, but
only correlation with WT is plotted, the one with W0 would overlap almost
perfectly.



Several methods have been suggested to validate the results

of the orientation process. Fourier shell correlation (FSC;

Harauz & van Heel, 1986), developed for cryo-EM, is

frequently used to validate the reconstructed 3D intensity

distribution, and to estimate the spatial resolution for SPI data

as well (Nakano et al., 2018; Rose et al., 2018; von Ardenne et

al., 2018; Ayyer et al., 2019; Giewekemeyer et al., 2019; Poudyal

et al., 2020). This and some other methods (Yoon et al., 2016;

Liu et al., 2018) rely on dividing the measured dataset into two

or more parts and compare the independently recovered

intensity distributions. However, Shen et al. (2021) have shown

that these methods suffer from serious problems. Most

notably, the correlation can grow with increasing orientation

disorder when approaching the powder average. They

suggested a validation method based on information theory,

which is free of these problems. However, calculations of the

suggested measures of orientation uncertainties are rather

complicated and not practical for orientation methods other

than EMC, where most of the probability distributions

necessary are already computed. In one of our earlier articles

(Tegze & Bortel, 2016) we introduced correlation maps

(distributions in orientation space of correlations between a

diffraction pattern and slices of the 3D intensity volume) and

the C factor, a single figure of merit to indicate the progress

and convergence of the orientation algorithm. The C factor is

defined as the ratio of the diffraction patterns with peaks

well above the noise level in the correlation maps. The

developments of the C factor at various XFEL fluences

for both EMC and CM is shown in the right column of

Fig. 4.

We can test the accuracy of the reconstructed 3D intensity

volume W by comparing with reference volumes produced in

the simulation step. We use two reference volumes: W0, the

ideal noiseless 3D model intensity distribution calculated

directly from the known atomic structure, and WT, constructed

from the simulated noisy patterns using their true orientations.

Since the shapes of the patterns used for the reconstruction

are spherical caps in the reciprocal space with the origin at

their center, the shapes of the reconstructed volumes W and

WT are spherical. The 3D intensity distribution W is recovered

in a random orientation. Therefore, before comparison we

have to rotate W to the best-fitting orientation. We first rotate

W with all possible Euler angles on a 3D orientation grid,

interpolate to the 3D grid in reciprocal space and find the

angles with maximum Pearson correlation with W0 or WT.

Then we refine the three Euler angles by a nonlinear maxi-

mization method. Comparison of W with WT gives information

on the errors due to the misorientation of the patterns. In the

ideal case, when the true orientations are found, the correla-

tion would be near to unity (the small deviation is due to

interpolation errors). On the other hand, comparing with W0

shows the effects of all errors (misorientation and Poisson

noise) and the correlation approaches unity only when the

Poisson noise is negligible (the XFEL pulse fluence is very
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Figure 4
Development of the correlation distributions for the CM (left column) and EMC (middle column) methods at various incident XFEL fluences (indicated
at the right-hand side of the figure). The grayscale is linear between zero (white) and the largest value (black). Right column: development of the C factor
for the CM (red squares) and EMC (blue circles) methods.



high). The scattered intensity decreases approximately with

the inverse square of the length of the scattering vector q,

therefore we applied q2 weighting to both W and WT (or W0)

before calculating the correlation. The resulting Cmax{Wq2,

WTq2} and Cmax{Wq2, W0q2} correlations are presented in Fig.

5. In principle, the correlation to WT would show how well the

patterns are oriented. However, small errors in the orientation

and interpolation errors and averaging in the compression

step lead to differences in the noise in W and WT, and a

considerable decrease in the correlation. Since the model

intensity W0 is without noise, for the more complex RNA

polymerase II molecule at low XFEL pulse fluences, the

correlation to W0 (dotted lines in Fig. 5) can be higher than the

correlation to WT (solid lines). For reference, we also plotted

the correlation between WT and W0 in Fig. 5 (black cross

symbols and dotted lines).

Surprisingly, for the relatively small lysozyme, the results of

the two methods do not differ much. Both methods are

successful for XFEL fluences I0 � 1027 photons m�2, corre-

sponding to an average of 905.5 photons in a pattern. As in our

1D tests, the CM method gives slightly more accurate results.

The increase in accuracy is partly due to the refinement of the

orientations in the final step of the CM method. Unfortu-

nately, the same refinement is not possible for the EMC

method, where not only the best, but all orientations are used

to construct the 3D intensity distribution.

For the more realistic case of RNA polymerase II, we found

that the CM algorithm can solve the orientation problem for

pulse fluences I0 � 3 � 1025 photons m�2, corresponding to an

average of 927.4 photons in a pattern. This incident X-ray

pulse fluence is near to the limit of the capabilities of present

XFEL sources. The EMC method provides again slightly less

accurate results for the same fluence region, but can also give

solutions for even lower fluences (I0 � 5 � 1024 photons m�2,

an average of 156.1 photons per pattern). However, the

accuracy of the solution strongly decreases with decreasing

X-ray fluence (blue circles in Fig. 5).

We tried to improve the results of the EMC method by

applying a few extra iterations by the CM algorithm. We

hoped that in the incident X-ray fluence region where the CM

method by itself failed to converge, replacing the probability

distribution in EMC by a Dirac delta function and then

refining the orientation angles would give better results.

However, this combination of the two methods produced only

marginal improvement in the correlation with WT or W0 at I0 =

2 � 1025 and even a slightly worse correlation at I0 = 5 � 1024

(black diamonds in Fig. 5).

We plotted the reconstructed intensity W along a radial

direction in q space in Fig. 6 at six selected I0 values. The

results of the two algorithms (EMC: blue solid lines: CM: red

dashed lines) are compared with the reconstruction using the

true orientations (WT, black dotted lines) and the noiseless

model intensity (W0, green dash-dotted lines). At high XFEL

pulse fluences, I0 > 2 � 1025, the agreement between all four

curves is quite good in the full q region. For lower I0 values the

CM method does not converge to a meaningful solution. As I0

decreases, the reconstruction by EMC (and to a lesser extent,

even WT) deviates more from the model intensity W0 in the

high-q region.

The loss of accuracy with decreasing incident X-ray fluence

is not uniform within the recovered intensity sphere. Misor-

ientation of the patterns and relative noise increasing with q

both lead to higher inaccuracies at large q values, thus

decreasing resolution. We can investigate the loss off resolu-

tion by calculating the FSC between the 3D intensity volume

W reconstructed by either method and the ideally recon-

structed intensity WT or the noiseless 3D model intensity

distribution W0. We noted earlier that FSC, calculated

between volumes reconstructed from two independent sets of

measured data, suffers serious problems when used for char-

acterization of the resolution errors (Shen et al., 2021).

However, when FSC is calculated between a measured

intensity volume W and model intensities W0 with no errors or

WT with well known errors (Poisson noise and interpolation
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Figure 5
The maximums of Pearson correlation between intensity volumes Wx and Wy as rotated relative to each other, for lysozyme (right) and RNA polymerase
II (left) at various incident XFEL fluence values. The upper scale (number of photons per pattern) is different for the two molecules. Wx denotes the
intensity distribution reconstructed by either EMC (blue circles), CM (red squares), a combination of them (black diamonds, see the main text for
details) or using the true orientations (black crosses). Wy refers to the reference intensity distributions WT (full symbols and solid lines) or W0 (empty
symbols and dotted lines).



errors), most of these problems disappear. In Fig. 7 we show

the FSC between W and WT for both methods at various

XFEL pulse fluences. One can see that the loss of accuracy

becomes significant at higher-resolution shells as the XFEL

pulse fluence decreases.

In Fig. 8, we plotted the FSC between the reconstructed

intensities and the noiseless model intensityW0 for two values

of the XFEL pulse fluence I0. At I0 = 1026, the FSC for the CM

method (red dashed line) is much nearer to the FSC for the

ideally reconstructed intensity WT (black dash-dotted line)

than the FSC for the EMC method (blue solid line). This

indicates again that the CM method, when it can solve the

orientation problem, gives more accurate results than the

EMC method. At the lower XFEL pulse fluence I0 = 2 � 1025,
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Figure 8
FSC between the 3D intensity volume W reconstructed by the EMC (blue
solid lines) method, the CM (red dashed lines) method or a combination
of both methods (red dotted line), and using the true orientations (WT,
black dash-dotted line) and the noiseless model intensity W0, at I0 =
2 � 1025 and 1026 for RNA polymerase II.

Figure 6
Intensity W reconstructed by the EMC (blue solid line) method, the CM (red dashed line) method, and using the true orientations (WT, black dotted line)
for RNA polymerase II along a radial direction at various incident XFEL fluences I0 (indicated at the top of the panels). The shape of the noiseless
model intensity (W0, green dash-dotted line) is independent of I0.

Figure 7
FSC between the 3D intensity volume W reconstructed by the EMC (blue
solid lines) and CM (red dashed lines) methods and the ideally
reconstructed intensity WT at various incident XFEL fluences for RNA
polymerase II.



the CM algorithm did not converge. Instead, we plotted here

the FSC for the results of the combined EMC + CM method (a

few iterations of CM after convergence by EMC, red dotted

line in Fig. 8). In this case, the improvement over the results of

the EMC method (blue solid line) is small.

The origin of the accuracy loss at high q values is twofold.

First, the signal-to-noise ratio of the patterns and thus that of

the reconstructed 3D intensity volume decreases with

decreasing I0, even for the case where the patterns are

perfectly oriented (see the black cross symbols and dotted

lines in Fig. 5). As the number of scattered photons decreases

with the scattering angle and the number of patterns contri-

buting to a voxel also decreases, the accuracy strongly

decreases with q (see the black dash-dotted lines in Fig. 8).

The second reason for the loss of accuracy is the imperfect

orientation of the patterns. The CM method, when the signal-

to-noise ratio is not sufficient to orient a pattern, simply fails

to converge to a meaningful solution. The EMC method

behaves differently at lower XFEL pulse fluences. It converges

to a solution but the result deviates from the ideal solution WT

for lower XFEL pulse fluences (see the increasing difference

between the blue circles and the black cross symbols in Fig. 5).

Since from the simulation we know the true orientations of the

patterns, we can calculate the angular error of the orientation

of each pattern. First, we find the best orientation (the one

with the highest correlation to the reconstructed 3D volume

W) of a pattern, then we calculate the misorientation angle, i.e.

the smallest angle of rotation to bring the pattern to its true

orientation. In the calculation we take into account the rota-

tion necessary to reach the highest correlation between W and

WT. The distribution of the misorientation angles is shown in

Fig. 9 for XFEL pulse fluences between 2 and

5 � 1024 photons m�2. At I0 = 5 � 1024, the misorientation

angles are small, typically a few degrees. As I0 decreases, the

misorientation peak widens and a second peak appears at

180�, which is the largest possible misorientation. At I0 =

2 � 1024 the second peak becomes as large as the first one.

This means that the algorithm cannot distinguish between two

orientations of a pattern separated by a 180� rotation in

orientation space. It is easy to understand why this happens if

we consider the Friedel symmetry of elastic X-ray scattering.

According to Friedel’s law, in the absence of resonant scat-

tering, the scattered intensity is centrosymmetric in the reci-

procal space. If the measured patterns were flat, then they

would be centrosymmetric as well. As an inversion is identical

to a twofold rotation in 2D, the centrosymmetry introduced by

Friedel’s law would appear as an exact 180� rotation ambiguity

in this hypothetic planar pattern orientation problem.

However, in SPI the patterns in the reciprocal space are not

flat, but spherical caps. Near the center at q = 0, they are nearly

centrosymmetric, but as the scattering angle increases, the

deviation from centrosymmetry becomes larger. This devia-

tion makes it possible for the orientation methods to distin-

guish between the two orientations of a pattern related by a

180� rotation about its center. When this deviation from

centrosymmetry disappears in the noise (the relative noise is

largest at the edge of the pattern), then the orientation

methods place the pattern in both orientations with �50%

probability. At low q values this does not cause large errors

but at higher q values the accuracy of the reconstructed

intensity is strongly degraded.

We also calculated the misorientation angles for the same

pulse fluences as in Fig. 9, but using different numbers of

diffraction patterns (Fig. 10). The numbers of patterns Ndata

are chosen to keep the total number of collected photons

constant. Increasing Ndata decreases the noise of the assem-

bled 3D intensity distribution. From comparison of the two

figures, it is clear that the increased number of patterns can

only partly compensate the decreasing number of photons in

the individual patterns while keeping the total number of

collected photons constant.

5. Phase retrieval

The 3D intensity distribution reconstructed by the orientation

algorithm is the input for the next phase-recovery step in the

evaluation process. The accuracy of the intensity distribution

affects the quality of the resulting electron density. Moreover,

errors in the 3D intensity distribution may prohibit the

recovery of the phases and producing an electron density at

all. The ideal intensity distribution is the squared modulus of

the Fourier transform of the electron density. The electron

density is always real and non-negative. This places serious

constraints on the intensity distribution, which are usually not
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Figure 9
Distribution of the misorientation angle for the converged results of the
EMC method at three different XFEL pulse fluences (indicated at the top
of the panels) for RNA polymerase II.



satisfied if it contains errors. The reality of the electron density

requires the intensity to be centrosymmetric by Friedel’s law.

This can be easily satisfied by replacing the intensity W(q) with

its symmetric average [W(q) + W(�q)]/2. Unfortunately, there

is no simple rule for the intensity distribution to ensure the

non-negativity of the electron density. There are several

iterative algorithms (Fienup, 1982; Bauschke et al., 2004; Luke,

2005; Oszlányi & Süto��, 2008) to find a set of phases which

approximately satisfy this condition. However, these algo-

rithms may fail, if the errors in the reconstructed 3D intensity

distribution are too large.

We used Fienup’s hybrid input–output (HIO) algorithm

(Fienup, 1982) with parameter � = 0.7 in conjunction with a

shrink-wrap constraint (Marchesini et al., 2003) to recover the

electron density of RNA polymerase II. The threshold for the

shrink-wrap constraint was 5% of the maximum value of the

electron density. The unmeasured regions in the corners of the

superscribed cube of the reconstructed intensity volume and

in the center were set to zero at the start and allowed to have

any value at later iterations. The initial phases were random

numbers between 0 and 2�. After convergence of the HIO

algorithm, 50 iterations of the error-reduction algorithm

(Fienup, 1982) were executed. In Fig. 11 the reconstructed

electron densities for various XFEL pulse fluences I0 are

compared with the atomic model of the molecule. For 3 � 1025

� I0 � 5 � 1024 it was necessary to reduce the size of the

intensity volume by a factor of
ffiffiffi
3
p

to the inscribed cube in

order to find a solution of the phase problem. At I0 = 3 � 1024

a reduction by a factor of two (one eighth of the original cube

volume) was needed. Below this value we were unable to find

the correct phases, even when the size of the q region was

further reduced. At higher XFEL pulse fluences there is no
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Figure 11
Reconstructed electron density (gray surface) of RNA polymerase II for various XFEL pulse fluences (indicated on the panels). The orientation
problem was solved by the CM (bottom left and middle panel) and EMC methods (all other panels). All reconstructed electron densities were rotated
and shifted to achieve the best overlap with the original structure (ball-and-stick model) using the Chimera program (Pettersen et al., 2004).

Figure 10
Distribution of the misorientation angle for the same pulse fluences as in
Fig. 9, but using different numbers of diffraction patterns. The numbers of
patterns Ndata (indicated at the top of the panels) are chosen to keep the
total number of collected photons constant. The histogram in the top
panel is identical to that of Fig. 9, we included it here for easier
comparison.



observable difference between the results of the EMC and CM

orientation methods. At lower X-ray fluences (where only the

EMC algorithm converged) the resolution and the accuracy of

the reconstructed electron density visibly decrease.

6. Conclusions

We tested the efficiency of two methods, EMC and CM, for

orienting the noisy SPI patterns and reconstructing a consis-

tent 3D intensity distribution. The EMC algorithm was slightly

modified to increase its computing speed. We found that at

higher XFEL pulse fluences both the EMC and the CM

algorithms give reliable results. However, the 3D intensity

volume reconstructed by the CM method is more accurate

than the one by the EMC method. The reason for this is the

following: the EMC method uses the probability distributions

as weights for the different orientations (defined on a grid) of

a measured pattern. These distributions become narrow when

convergence is reached at high XFEL pulse fluences.

However, due to oversampling of the reciprocal space, this

narrow width can still lead to some smearing of the resulting

intensity distribution. In contrast, the CM method can find the

single best orientation of a measured pattern and can even

refine its orientation angles.

For lower incident XFEL fluences, the CM method fails,

while the more sophisticated EMC method can still converge

to a meaningful solution. However, with decreasing XFEL

pulse fluence the accuracy of the resulting 3D intensity

distribution quickly deteriorates. We found that applying the

CM method to the results of the EMC method can only

marginally improve them. The decrease in accuracy is most

pronounced at the high-q part of the results and leads to a loss

of resolution in the reconstructed electron density. This

decrease in accuracy is because the algorithm cannot distin-

guish between two orientations of a pattern (related by a 180�

rotation) when the signal-to-noise ratio is low.

While in this simulation it was easy to verify the results, we

would like to stress the importance of using reliable figures of

merit (e.g. the C factor; Tegze & Bortel, 2016) and correlation

maps (Tegze & Bortel, 2016, 2018) to validate the results in the

case of real measurements.

APPENDIX A
Modifications of the EMC algorithm to improve
computational efficiency

We use the notations of Loh & Elser (2009) when possible and

introduce new notations only where necessary.

The 2D detectors used for collecting the scattered photons

in a SPI experiment are usually flat with rectangular pixels and

(after some calibration and processing) provide photon counts

Kik for frame k and pixel i. As a first step, we divide the photon

counts by the solid angles of the individual pixels and correct

with the polarization factor. The resulting intensities are

interpolated to a regular (#‘, ’m) polar grid on the surface of

the Ewald sphere. The polar angle #‘ ¼ ‘�#; ‘ ¼ 1 � � �N#

corresponds to the scattering angle (conventionally 2� in

crystallography) and the azimuthal angle ’m ¼ m�’;
m ¼ 1 � � �N’ corresponds to a rotation about the incident

X-ray beam, and together they define the scattering vector:

q‘m ¼ k sin#‘ cos ’m; sin#‘ sin ’m; cos#‘ � 1
� �

; ð1Þ

where k is the wavenumber.

The step �# is chosen to approximately match the detector

pixel size, and �’ = 2�/N’’�#/sin #max, where #max = N#�#
is the scattering angle at the edge of the detector. Finally, we

multiply the intensities by the solid angles �’�# sin#‘ to get

‘photon counts’ again. The transition from detector pixels to

polar grid introduces some smoothing of the data due to the

interpolation used. The resulting K‘mk are not really photon

counts, as they are not integers, and the Poisson statistics are

not strictly valid any more. However, all expressions derived

from the Poisson distribution can be extended to non-integers

(formally by replacing factorials with gamma functions)

without adverse effects on the performance of the EMC

method.

In the E step of the EMC algorithm, the 3D model W[q] is

expanded to the same (#‘, ’m) polar grids on the surface of the

Ewald sphere that has been rotated by the Rj rotation

operators. The rotation operation can be described as subse-

quent rotations about axes z, x and z by Euler angles �, � and

�, respectively. Since the first rotation by � is equivalent to a

rotation of the polar grid about the z axis (the direction of the

incident X-ray beam), we can handle this rotation in a

different way. The other two rotations by (�, �) can be

represented as spherical coordinates of points on the unit

sphere. We set up an approximately uniform grid on the

surface of the sphere [for details, see Tegze & Bortel (2012)]

with grid points (�r, �r) and corresponding rotation operators

Rr. Using this notation, Wij in the original EMC algorithm

becomes W‘,m,r,m0. Here the indices ‘, m refer to the points of

the polar grid, and the indices r, m0 refer to rotations Rr and

Rm0 by (�r, �r) and �m0, respectively. If we choose the same

grid for � as for ’, then the rotation Rm0 is the same as a shift

in the index m, and W‘,m,r,m0 = W‘,m+m0 ,r. To summarize the

changes in the notation:

i! ‘;m

j! r;m0

m;m0 ! mþm0 mod N’

� �

Rj ¼ RrRm0 : ð2Þ

The most time-consuming step of the EMC algorithm is the

computation of the probabilities Pjk(W). The probabilities

Pjk(W) are the normalized versions of the likelihood functions

Rjk(W) [see equation (9) of Loh & Elser (2009)]. Following

equation (18) of Loh & Elser (2009), the logarithm of the

likelihood function can be written as
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log Rjk Wð Þ
� �

¼
XMpix

i¼1

Kik log Wij �Wij

¼
XN#

‘¼1

XN’

m¼1

K‘mk log W‘;mþm0;r �
XN#

‘¼1

XN’

m¼1

W‘mr:

ð3Þ

Here we used the property that the sum for all pixels of

W‘,m+m0 ,r is independent of m0. Now we can apply the cross-

correlation theorem (Weisstein, 2021) for the first sum over m

on the right-hand side of equation (3):

XN’

m¼1

K‘mk log W‘;mþm0;r ¼ FFT�1 FFT K‘mk

� �
FFT log W‘mr

� �	� �
:

ð4Þ

Here FFT refers to the fast Fourier transform along index m

and the asterisk denotes the complex conjugate. Thus the

logarithm of the likelihood function becomes

log Rrm0k Wð Þ
� �

¼
XN#

‘¼1

FFT�1 FFT K‘mk

� �
FFT log W‘mr

� �	� �

�
XN#

‘¼1

XN’

m¼1

W‘mr: ð5Þ

The complexity of calculating the sum for each m0 is O(N’
2),

while the same for the Fourier transform is O(N’ log N’). This

results in a speedup of the calculation of the order of N’/

(3 log N’). Since �’ is usually �1� and N’ ¼ 360�=�’, we

estimate that the gain in speed is somewhere between 10 and

100.

We can apply an equivalent transformation in the

compression step. We separate again the rotations �m and (�r,

�r), and calculate a partially compressed model by averaging

for the index m0:

W
0

‘mr ¼
1

N’

XN’

m0¼1

W 0‘;mþm0;r ¼
1

N’

XNdata

k¼1

XN’

m0¼1

~PPrm0kðWÞK‘;mþm0;k:

ð6Þ

Here ~PPrm0kðWÞ ¼ Prm0kðWÞ=
P

kPrm0kðWÞ are the prob-

abilities normalized for all measurements [see equation (11) of

Loh & Elser (2009)]. We use again the cross-correlation

theorem:

W
0

‘mr ¼
1

N’

XNdata

k¼1

FFT�1 FFT ~PPrm0kðWÞ
� �

FFT K‘m0k

� �	� �
: ð7Þ

Now we map the W
0

‘mr values to the 3D grid [as in equation

(14) of Loh & Elser (2009)]:

WðpÞ ¼

P
‘;m;r f ðp� Rrq‘mÞW

0

‘mrP
‘;m;r f ðp� Rrq‘mÞ

; ð8Þ

where p denotes a spatial-frequency sampling point in the 3D

intensity space and f(q) represents the interpolation weights.
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