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X-ray diffraction based microscopy techniques such as high-energy diffraction

microscopy (HEDM) rely on knowledge of the position of diffraction peaks with

high precision. These positions are typically computed by fitting the observed

intensities in detector data to a theoretical peak shape such as pseudo-Voigt. As

experiments become more complex and detector technologies evolve, the

computational cost of such peak-shape fitting becomes the biggest hurdle to the

rapid analysis required for real-time feedback in experiments. To this end, we

propose BraggNN, a deep-learning based method that can determine peak

positions much more rapidly than conventional pseudo-Voigt peak fitting. When

applied to a test dataset, peak center-of-mass positions obtained from BraggNN

deviate less than 0.29 and 0.57 pixels for 75 and 95% of the peaks, respectively,

from positions obtained using conventional pseudo-Voigt fitting (Euclidean

distance). When applied to a real experimental dataset and using grain positions

from near-field HEDM reconstruction as ground-truth, grain positions using

BraggNN result in 15% smaller errors compared with those calculated using

pseudo-Voigt. Recent advances in deep-learning method implementations and

special-purpose model inference accelerators allow BraggNN to deliver

enormous performance improvements relative to the conventional method,

running, for example, more than 200 times faster on a consumer-class GPU card

with out-of-the-box software.

1. Introduction

Advanced materials affect every aspect of our daily lives,

including the generation, transmission and use of energy.

Accelerating the pace of materials design promises to enhance

economic activity and the transition to a cleaner energy future.

However, current material design approaches rely heavily on

intuition based on past experiences and empirical relation-

ships. In order to qualify new materials for critical applica-

tions, several high-energy X-ray characterization methods

have been developed over the past decade. One of the fore-

most is high-energy diffraction microscopy (HEDM) (Park et

al., 2017), which provides non-destructive 3D information on a

structure and its evolution within polycrystalline materials.

HEDM techniques have enabled breakthroughs in under-

standing of various processes, through carefully designed

experiments that are tractable for analysis by researchers

(Naragani et al., 2017; Bernier et al., 2020; Wang et al., 2020).

These methods use diffraction and tomographic imaging of up

to centimetre-sized objects with resolutions down to the

micrometre level.

A conventional HEDM experiment involves four steps: (1)

data acquisition, (2) transfer of full scan from detector to

central storage, (3) offline Bragg peak analysis to determine

precise peak positions and (4) reconstruction of grain infor-
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mation from the Bragg peak positions generated in the third

step (Sharma et al., 2012a,b). A single typical HEDM scan

involves acquiring diffraction images (1440–3600 frames in

total) while rotating the specimen at a constant speed about an

axis (similar to tomography) while being illuminated by an

X-ray beam perpendicular to the rotation axis. Data acquisi-

tion is increasingly fast: a single typical HEDM scan consisting

of 1440–3600 frames takes about 6–15 min to acquire today at

the Advanced Photon Source (APS) and projected to be 50–

100 s after the planned upgraded of APS (APS-U) (Streiffer et

al., 2015) with faster detectors. Rotation of the specimen

enables each grain to satisfy the Bragg-diffraction condition

multiple times, resulting in multiple diffraction peaks from the

grain. Reconstruction of far-field (FF) HEDM data depends

on determination of the peak positions with sub-pixel accu-

racy, which can deviate significantly from the maxima as

shown in Fig. 1.

Peak positions are typically computed by (optionally)

transforming the peaks to polar coordinates and then fitting

the peaks to a pre-selected peak shape such as Gaussian,

Lorentzian, Voigt or Pseudo-Voigt (Sharma et al., 2012a). The

Voigt profile, a probability distribution given by a convolution

of a Cauchy–Lorentz distribution and a Gaussian distribution,

is often used in analyzing data from spectroscopy or diffrac-

tion. However, it is computationally expensive to fit a Voigt

profile in 2D (or 3D) space for each Bragg peak, so the peak

shape is approximated to a pseudo-Voigt profile. Depending

on sample properties and the extent of the mechanical,

thermal, electromagnetic or chemical stimuli applied to the

sample, processing time can range from 10 min to a few weeks,

even when using an HPC cluster with thousands of CPU cores.

These long data analysis times are more than just an incon-

venience: they prevent experimental modalities that depend

on measurement-based feedback for experimental steering.

Although we describe the BraggNN framework as applied

to FF-HEDM, it is also useful for other diffraction techniques

dealing with single or polycrystal diffraction. The data and

source code that support the findings of this study are openly

available at https://github.com/lzhengchun/BraggNN.

2. BraggNN and its training

A significant fraction of HEDM data analysis time is spent on

determining peak positions, motivating us to seek methods for

accelerating this operation. Artificial neural networks are

known for their universal approximation capability that allows

them to represent complex and abstract functions and rela-

tionships (Hornik, 1991). Thus, a promising solution to the

Bragg peak localization challenge is to train a deep-learning

(DL) model to directly approximate the position of Bragg

peaks. Advances in both machine-learning (ML) methods and

AI inference accelerators allow such a model to run much

faster than conventional methods (Abeykoon et al., 2019),

making it feasible to extract peak information from streaming

data in real-time, enabling rapid feedback and reducing

downstream transfer, storage and computation costs.

2.1. Model design

DL is part of a broader family of ML methods based on

artificial neural networks to progressively extract higher level

features from the pixel-level input through a hierarchical

multi-layer framework. The convolutional neural network

(CNN), a widely used building block of DL models for visual

image analysis, is an efficient parameter owing to the trans-

lation-invariant property of its representations, which is the

key to the success of training DL models without severe over-

fitting. Although a strong theory is currently missing, much

empirical evidence supports the notion that both the transla-

tion-invariant property and convolutional weight sharing

(whereby the same weights are shared across an entire image)

are important for good predictive performance (Cheng et al.,

2017).

In this work, we express this task as a regression problem

using supervised ML and present BraggNN, a deep neural

network-based model for precisely localizing Bragg peaks far

more rapidly than that which can be achieved by applying

conventional fitting methods to peak-shape profiles. Note that

we are not concerned here with the problem of locating within

an image a patch that contains a peak (the ‘object localization

problem’) because Bragg peaks are easily separated from

background using a heuristic thresholding value, and from

neighbor peaks using a connected-component labeling algo-

rithm (overlapped peaks and fitting in 3D will be studied in

future work) (Fiorio & Gustedt, 1996; Wu et al., 2005). Our

problem rather is to determine, with sub-pixel precision, the

center-of-mass (COM) of a diffraction peak in a supplied

patch: the ‘peak localization problem’.
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Figure 1
Diffraction peak in X-ray diffraction (11 � 11 patch). The height denotes
photon counts, and the red dots show the peak position computed by
fitting a pseudo-Voigt profile.



The BraggNN network architecture, shown in Fig. 2,

comprises a series of CNN layers (four in the figure) acting as

feature extractors, followed by a series of fully connected

layers (three in the figure) that generate a regression predic-

tion. Each CNN kernel/filter is an artificial neuron that, in

contrast to traditional algorithms in which kernels are hand-

engineered, learns to extract a type of feature (e.g. various

oriented edges, or blobs of color) from its input. Each 2D

CNN neuron has 3 � 3 � c learnable weights plus one

learnable bias to convolve a feature map (a 3D volume shaped

as height � width � depth/channel) with c channels (e.g. the

input patch has one channel as shown in the figure).

Here we use the first layer, which takes a Bragg peak in a

patch with 11 � 11 � 1 (c = 1) pixels as input and outputs 64

feature maps (each has 9 � 9 pixels) as an example to explain

the convolution operation. At every convolution position, for

example the one shown as a dotted line in the figure, the dot

product between the weights and the input entry (3 � 3 � c

centered at the convolution position) is computed and added

to the learnable bias. This convolution result, called the acti-

vation, is then passed through a rectified linear unit [ReLU,

frelux = max(x, 0)] activation function to yield a feature. Each

kernel is convolved (vertically and horizontally) across the

input image, producing a 9 � 9 feature map. Thus, although

the operation is colloquially referred to as a convolution,

mathematically, it is a sliding dot product or cross-correlation.

Each layer has multiple independent neurons that result in

multiple feature maps. All feature maps are stacked along the

depth dimension and then passed to the next layer as input.

For example, as the first layer has 64 neurons, it turns the 11 �

11 � 1 input patch to a 9 � 9 � 64 volume. Multiple convo-

lution layers are chained to encode the input image into a

representation in latent space.

The fully connected (FC) neural network layer takes the

encoded representation produced by the CNN layer as input,

estimates the center of the input Bragg peak and produces the

(x, y) coordinates as output. In a similar manner to the CNN

layer, each FC layer has multiple artificial neurons, each of

which has the same number of learnable weights as its input

plus one learnable bias. The 3D feature map (e.g. 5 � 5 � 4)

produced by the last CNN layer is reshaped into a 1D vector

before feeding it into the first FC layer. The dot product

between the neuron weights and input is computed and added

to the bias. Thus, n neurons in a given FC layer generate an

output vector of dimension n, which are passed into the ReLU

activation function and then serve as the input of the next

layer. As one can see, unlike the CNN neurons that receive

input from only a restricted subarea of the previous layer for

each convolution point, each neuron in an FC layer is

connected to all neurons in the previous layer. The output

layer in our design has no activation function (or, equivalently,

it applies a linear activation).

The whole process that turns an input Bragg peak patch into

two floating point numbers (the coordinates of the peak

center) is called a feed-forward pass. The mean-squared error

is computed between the model output and ground truth

(estimated using pseudo-Voigt fitting) as the model loss. It is

important to note here that the ground truth computed using

pseudo-Voigt fitting is at best an estimate with some inherent

error and the goal of BraggNN is to achieve (at least) similar

performance to pseudo-Voigt fitting. Training then proceeds

as follows. We compute the gradient of the weights of each

neuron with respect to the loss function using the chain rule

[implemented via automatic differentiation in DL frameworks

such as PyTorch (Paszke et al., 2019)]. This process of

computing the gradient of learnable weights is called back

propagation. The neuron weights are then updated using the

gradient descent optimization algorithm (Kingma & Ba, 2014).

Training iterates the feed-forward and back-propagation

process on different (Bragg peak patch, ground truth center)

pairs many times, until the model no longer makes noticeable

progress in minimizing the ‘2-norm.

We train the BraggNN model with a collection of input–

output pairs, each with a peak patch as input and the peak

center position obtained from pseudo-Voigt fitting as output.

Once the BraggNN model is trained, we can then apply it to
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Figure 2
Application of the BraggNN deep neural network to an input patch yields a peak center position (y, z). All convolutions are 2D of size 3 � 3, with a
rectifier activation function. Each fully connected layer, except for the output layer, also has a rectifier activation function. The non-local attention block
will be discussed in Appendix A.



patches obtained from new diffraction data as follows: (1) we

use the connected-component labeling algorithm (Fiorio &

Gustedt, 1996; Wu et al., 2005) to detect connected regions (i.e.

peaks) in binary digital images. If the region has multiple

maxima, indicating the presence of overlapping peaks, the

region is discarded. Overlapping peaks will be investigated in

a later study. (2) For each region detected in the previous step,

we determine the coordinate (row and column index of the

image matrix) of its peak (maxima) and crop a patch with a

pre-defined size (an odd number, must be the same as that

used for training BraggNN) with the peak coordinate as the

geometric center. Application of the trained BraggNN model

to such a patch then yields an estimate of the peak position.

Given this COM, we then map the position of the peak in the

patch back to the diffraction frame based on the location of

the patch in the diffraction frame. Each diffraction frame is

processed independently, focusing only on 2D shapes of the

peaks. In cases of heavily deformed materials, where orien-

tation changes within grains cause the diffraction signal to be

present in multiple frames, 3D peak processing would be

required and will be investigated in a future study.

2.2. Data augmentation

The performance of a deep neural network depends heavily

on the quantity, quality and diversity of the data used to train

the model. If data are not sufficiently diverse, it is easy to

experience overfitting, whereby a network learns a function

with very high variance that models the training data perfectly

but performs badly on other data. Many application domains,

including ours, lack access to large (in terms of both quantity

and diversity) and high-quality (accurately annotated) labeled

data. Data augmentation is a strategy that enables practi-

tioners to significantly increase the diversity of data available

to train their DL models, without actually collecting new data.

Data augmentation techniques such as cropping, padding and

horizontal flipping are commonly used to train large neural

networks for image classification (Cubuk et al., 2018; Shorten

& Khoshgoftaar, 2019) such as CIFAR-10 (Krizhevsky, 2009)

and ImageNet (Deng et al., 2009).

Although some existing data-augmentation techniques may

be useful in the Bragg peak context to avoid over-fitting, none

are useful for training a more generic model (e.g. one that

generalizes to data outside the training set, or that handles

unseen peaks cropped from noisy diffraction frames) because

the augmented samples used in the above-mentioned techni-

ques will not be found in practice.

Thus, we introduce a novel physics-inspired data augmen-

tation method that can both avoid overfitting and help to train

a more generic model able to deal with imperfect peak crop-

ping from noisy diffraction frames. Specifically, when cropping

patches for model training we deviate the peak center from

the geometric center randomly by up to �m pixels in the

horizontal and �n pixels in the vertical directions.

Fig. 3 demonstrates a batch of 10 patches with [Fig. 3(a)]

and without [Fig. 3(b)] data augmentation.

This data-augmentation approach helps to train a more

general model because, like regularization (Zhang et al., 2016),

it adds prior knowledge (the COM is not always near the

geometric center) to a model training and increases training

data. It also helps to make the testing dataset statistically more

similar to the peak patches that will be encountered during

inference in production. The ablation evaluation in Appendix

A shows the effectiveness of this novel data-augmentation

method.

2.3. Model training

An important tunable parameter when training a model is

the input patch size, as shown in Fig. 2. The appropriate patch

size depends on the pixel size of the detector and size of the

diffraction peaks. Best practice is to choose a patch size that

can fully cover all valid peaks and still leave 2–4 pixels from

peak edge to patch edge for data augmentation. Since the

input patch size will determine the size of the neurons in the

first fully connected layer, a model trained with one patch size

cannot work with another patch size in practice. In the data

presented here, 11 � 11 pixel patches were large enough to

cover all the different diffraction peaks, but in cases where the

diffraction signal has peaks larger than 10 � 10 pixels,

BraggNN can be retrained with larger patches.

Another tunable parameter is for data augmentation, i.e.

the interval of displacements (m and n). We typically choose

the same interval size for m and n. During training, we inde-

pendently sample (with replacement) a number from the

interval for m and n separately in order to prepare each

sample of each mini-batch online.

We implemented our model using the PyTorch (Paszke et

al., 2019) ML framework. We train the model for a maximum

of 80 000 iterations with a mini-batch size of 512, with vali-

dation-based early stopping applied to avoid using an over-

fitted model for testing and production use. Training takes

about 1 h using one NVIDIA V100 GPU, and less than 1 min

using the Cerebras (https://www.cerebras.net/) artificial intel-

ligence system (Liu et al., 2021). In order to (re)train BraggNN

rapidly using data collected at the early stage of an experiment

so as to use it for real-time peak finding from subsequent data
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Figure 3
Demonstration of a mini-batch of patches (11 � 11 pixels) with data
augmentation for model training. (a) The peak maxima is in the center of
the patch. (b) The peak maxima is intentionally offset by up to �2 pixels
in the horizontal and vertical directions for the same peaks.



near the data source for data reduction and actionable infor-

mation retrieval using edge computing, we developed (Liu et

al., 2021) an automated workflow to (re)train BraggNN using

powerful yet remote AI systems in data center or leadership

computing facilities.

In the experimental studies reported in this paper we train

and evaluate BraggNN on a diffraction scan dataset collected

using an undeformed bi-crystal gold sample (Shade et al.,

2016) with 1440 frames (0.25� steps over 360�) totaling 69 347

valid peaks. We used 80% of these peaks (55 478) as our

training set, 6000 peaks (�9%) as our validation set for early

stopping (Goodfellow et al., 2016) and the remaining 7869

peaks (�11%) as a test dataset for model evaluation.

3. Results, analysis and discussion

Once the model was trained, we evaluated its performance

from two perspectives: (1) we measured the distance (i.e.

error) between each BraggNN-estimated center and the

corresponding center obtained via the conventional pseudo-

Voigt profile (conventional method); (2) we applied BraggNN

to an experiment of a different sample, reconstructed grains

using peak information by BraggNN and compared the

reconstructed grain size and position with those reconstructed

using conventional methods (Sharma et al., 2012a). Note,

although we compare BraggNN with conventional pseudo-

Voigt fitting, the ill-posed inverse problem means that

conventional pseudo-Voigt is not the ground truth. Therefore,

to evaluate the performance of BraggNN in Section 3.2, we

compare the results with the reconstructed position of grains

in addition to diffraction peak positions. This has two advan-

tages: in case the error in the peak positions is not systematic,

the error in the grain positions can be small even if the error in

the peak positions is large; and the goal of the analysis is to

compute grain positions, so error in grain positions is espe-

cially relevant.

3.1. Model performance

We start with quantitatively evaluating BraggNN by looking

at the accuracy of the estimated Bragg positions.

Fig. 4 shows the distribution of difference between the

position of diffraction peaks determined using BraggNN [Figs.

4(a)–4(c)] or peak maxima [Fig. 4(d)] and conventional

pseudo-Voigt fit.

As quantified using Euclidean distance in Fig. 4(c), most

peaks deviate slightly (e.g. 75% of peaks deviate less than 0.3

pixels) from the position identified by conventional methods.

A computationally advantageous method to guess the COM of

peaks is to use just the position of maximum intensity (maxima

positions) of the Bragg peaks. However, the differences

between maxima positions and conventional method results,

shown in Fig. 4(d), are much higher than differences between

BraggNN and conventional method results in Fig. 4(c),

demonstrating the superiority of BraggNN over maxima

positions.
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Figure 4
Distribution of difference between peak positions determined using (a)–(c) BraggNN or (d) maxima and the conventional pseudo-Voigt fit. (a)
Difference in horizontal direction, (b) difference in vertical direction, (c) euclidean distance between peak position and (d) euclidean distance between
peak positions determined using the maxima position of peaks and conventional pseudo-Voigt fit. Pn in (c) and (d) denotes the Euclidean distance at the
nth percentile.



3.2. Reconstruction error analysis
Since the reconstruction of grain positions is our final goal,

we also evaluate the trained BraggNN on a different dataset

(Turner et al., 2016) and make a comparison with results from

the conventional method. The dataset consists of FF- and NF-

HEDM data acquired in situ during deformation of a Ti–7Al

sample. FF-HEDM data were acquired using the same beam

configuration at the same location in the sample as NF-HEDM

data, thus enabling a one-to-one comparison of the COM

position of grains. FF-HEDM directly outputs the COM

position of grains, whereas COM positions were calculated

from NF-HEDM reconstructions using the voxelized infor-

mation. A single 2D slice of the specimen was reconstructed

using the MIDAS software package (Sharma, 2020; Sharma et

al., 2012b,a) in three different configurations: FF-HEDM

reconstruction using BraggNN, FF-HEDM reconstruction

using conventional pseudo-Voigt fitting and NF-HEDM

reconstruction.

First we compare the FF-HEDM reconstructions using peak

positions obtained from BraggNN to the FF-HEDM recon-

structions using conventional pseudo-Voigt fitting shown in

Fig. 5. The difference in position in the x axis [along the X-ray

beam, Fig. 5(a)], y axis [horizontal direction perpendicular to

the x axis, Fig. 5(b)] and z axis [vertical direction coincident

with the rotation axis, Fig. 5(c)] are centered around 0,

implying there is no systematic bias between the two recon-

structions. The Euclidean distance between grains recon-

structed using BraggNN and conventional pseudo-Voigt fitting

[Fig. 5(d)] is less than 15 mm for 50% of the grains. This

number is similar to the resolution of the FF-HEDM tech-

nique (Park et al., 2021), thus is acceptable. The Euclidean

distance is smaller than 50 mm for all the grains.

To test the performance of BraggNN, we used and

compared the grain COMs estimated from NF-HEDM –

which results in higher resolution reconstructions by providing

a space-filling orientation map – with grain COMs obtained

using the FF-HEDM reconstruction technique that is the focus

of this paper. A total of 68 grains were identified using NF-

HEDM, out of which all the grains could be matched using

conventional pseudo-Voigt fitting, but 6 grains were not

detected using BraggNN because overlapping peaks are

ignored. Fig. 6(a) shows the position of grains imaged using

the three different reconstruction methods (NF-HEDM,

pseudo-Voigt FF-HEDM and BraggNN FF-HEDM) overlaid

on grain shapes obtained using NF-HEDM. Qualitatively, it

can be seen that most of the centroids from BraggNN (blue

triangles) are situated closer to the NF-HEDM centroids

(black squares) than pseudo-Voigt fitting (red circles).

Quantitatively, Fig. 6(b) shows the distance between grains

reconstructed using pseudo-Voigt FF-HEDM and NF-HEDM;

the mean and median distances are 19.9 and 15.3 mm,

respectively. Similarly, Fig. 6(c) shows the distance between

grains reconstructed using BraggNN and NF-HEDM. The

mean and median distances are 17.0 and 13.2 mm. Both mean

and median distances are smaller for BraggNN by �15%,

demonstrating a superior performance compared with

pseudo-Voigt. Characteristics of grains in FF-HEDM are

computed by refining the COM position, crystallographic

orientation and strain in each grain using hundreds of

diffraction peaks belonging to each grain. This involves
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Figure 5
Distribution of position differences between grains when reconstructed using the BraggNN peak position and by pseudo-Voigt fitting: (a) x axis, (b) y
axis, (c) z axis, (d) Euclidean distance. Pn in (d) denotes the nth percentile.



computing the expected positions of diffraction peaks using

the three grain characteristics and comparing with the

observed positions of diffraction peaks. To judge the quality of

reconstruction, the mean difference in position of expected

and observed diffraction peaks can be used: higher values

indicate worse results. The markers in Figs. 6(b) and 6(c) are

colored according to the mean difference in position of the

expected and observed diffraction peaks (on the detector) for

each grain for pseudo-Voigt and BraggNN, respectively. The

average difference for BraggNN (116.7 mm) is 28.6% lower

than pseudo-Voigt fitting (150.1 mm). The internal angle,

another measure of quality of reconstructions, is the mean of

the angle between the expected and observed diffraction

peaks (in 3D) for each grain. The size of the markers in Figs.

6(b) and 6(c) is directly proportional to internal angle of the

respective grain with an average internal angle for BraggNN

(0.083�) 13% better than the pseudo-Voigt fitting (0.094�).

3.3. Computational efficiency

Comparison of the reconstructed grain characteristics

obtained with BraggNN with those obtained with conven-

tional methods reveals similar performances. However,

BraggNN is much faster. Our highly optimized implementa-

tion of 2D pseudo-Voigt fitting, coded in the C programming

language, takes about 400 core-seconds to process a dataset of

800 000 peaks on an 2.6 GHz, four-core, Intel Xeon server

processor. On the same platform, BraggNN takes less than 7

core-seconds to process the dataset, a speedup of 57�. As it is

an out-of-the-box solution to run BraggNN on a GPU with

any DL framework (i.e. no extra effort needed to program

BraggNN for GPU), we also evaluate BraggNN on an

NVIDIA V100 GPU.

Analysis of the dataset takes only 280 ms, for a speedup of

more than 350� relative to the pseudo-Voigt fitting code on a

quad-core server CPU (to the best of our knowledge, there is

no GPU-accelerated 2D pseudo-Voigt fitting implementation

available so far). If no server-class GPU is available near the

experiment facility, BraggNN on a desktop with an affordable

gaming NVIDIA RTX 2080 Ti card only takes about 400 ms, a

speedup of 250� relative to running conventional pseudo-

Voigt fitting on a high-end workstation CPU. We note that the

dataset we used for our evaluation is small, having been

collected at only every 0.25� (1440 images for 360�). If we

collect with step size of 0.01� (36 000 images for 360�) to assure

better angular resolution in peak coordinates, the conven-

tional method will take hundreds of hours to process all peaks

whereas BraggNN can do it within an hour.

4. Future work

BraggNN is currently trained to be used for diffraction data

consisting of isolated diffraction peaks. Three features of

diffraction peaks necessitate the development and extension

of BraggNN for application to more complex materials:
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Figure 6
Comparison of BraggNN, pseudo-Voigt FF-HEDM and NF-HEDM. (a) Grain positions from NF-HEDM (black squares), pseudo-Voigt FF-HEDM (red
circles) and BraggNN FF-HEDM (blue triangles) overlaid on the NF-HEDM confidence map. (b)–(c) Difference in the position of grains between
pseudo-Voigt FF-HEDM (b), BraggNN and (c) NF-HEDM as a function of grain size. Color of markers in (b)–(c) represent the mean difference in
position of expected and observed diffraction peaks. Size of the markers in (b)–(c) represent the mean internal angle (see text).



Overlapping peaks. The current implementation of

BraggNN discards any patches with overlapping peaks

(defined currently as patches with more than one maxima). We

are extending and training BraggNN on larger patches with

overlapping peaks to deal with such situations.

3D peaks from deformed grains. For heavily deformed

grains, the present technique of determining the 2D peak

position and computing a weighted COM in 3D can introduce

a large error and thus we plan to extend BraggNN to carry out

the peak localization in 3D.

Asymmetric peaks. In extreme cases, the diffraction peaks

can no longer be approximated by a pseudo-Voigt shape. We

are investigating using multi-modal techniques to determine

the peak position with high accuracy and training BraggNN to

work with such data.

Furthermore, we plan to extend BraggNN and apply a DL-

based object localization technique directly to diffraction

frames to avoid labeling the connection component.

5. Conclusions

We have described BraggNN, the first ML-based method for

precisely characterizing Bragg diffraction peaks in HEDM

images. When compared with conventional 2D pseudo-Voigt

fitting and using higher resolution NF-HEDM as ground-

truth, BraggNN-localized peak-based reconstruction can out-

perform pseudo-Voigt fitting while running more than 50�

faster on a CPU and up to 350� faster on a GPU. The speedup

is important for high-resolution, high-throughput and latency-

sensitive applications, including real-time analysis and

experiment steering (e.g. searching the area of interest for

multi-scale images).

APPENDIX A
Ablation study

Here we describe the experiments we used to study the

effectiveness of the data augmentation method described in

Section 2.2 and the non-local self-attention block in our

BraggNN architecture design.

A1. Non-local attention

We used a non-local self-attention block on the feature

maps of the first CNN layer for BraggNN in order to capture

global information on the input patch of peak. The intuition

behind this is that a global view at the early layer can help

CNN layers better extract feature representation in the latent

space for fully connected layers to better approximate its

center (Wang et al., 2018). Here, we conducted an ablation

study to show its effectiveness. We trained two models, one

with attention block one without, using the same datasets (i.e.

attention block is the only difference) and then evaluated their

estimation accuracy. Fig. 7 shows the distribution of errors on

peak location. It is clear that both the 50th and the 75th

percentile deviations are more than 20% worse than Fig. 4(c),

where BraggNN has the non-local self-attention block, the

95th percentile is about 15% worse.

A2. Data augmentation

We presented a novel data augmentation method in Section

2.2 to prevent model over-fitting and to address inaccurate

patch cropping using the connect component in the model

inference phase. In order to study its effectiveness, we trained

BraggNN on the same dataset with and without augmentation

separately. When trained with augmentation, we use an

interval of [�1,1] for both m and n. Fig. 8 demonstrates three

arbitrarily selected cases in our test dataset where the

computed peak location deviated from the corresponding

patch’s geometric center [i.e. (5, 5) for an 11 � 11 pixel patch]

in different directions. We can see from the demonstration that

BraggNN trained with our data augmentation method is able

to locate the peak values precisely even when the peak devi-

ates from the geometric center.

In order to quantitatively evaluate the effectiveness of data

augmentation, we sample m and n independently from {�1, 0,

1} when preparing our test dataset to mimic imperfect patch

cropping. That is, only 1/3 � 1/3 = 1/9 of the patches have

maxima at the geometric center.

Fig. 9 compares the prediction error on the test dataset in a

statistical way. Comparing Fig. 9(a) with Fig. 9(b), we see clear

improvement when augmentation is applied for model

training. The 50th, 75th and 95th percentile errors are all

reduced to about 20% of those obtained when BraggNN is

trained without data augmentation: a 5� improvement.
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