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Although experimental protein-structure determination usually targets known

proteins, chains of unknown sequence are often encountered. They can be

purified from natural sources, appear as an unexpected fragment of a well

characterized protein or appear as a contaminant. Regardless of the source of

the problem, the unknown protein always requires characterization. Here, an

automated pipeline is presented for the identification of protein sequences from

cryo-EM reconstructions and crystallographic data. The method’s application to

characterize the crystal structure of an unknown protein purified from a snake

venom is presented. It is also shown that the approach can be successfully

applied to the identification of protein sequences and validation of sequence

assignments in cryo-EM protein structures.

1. Introduction

Recent years have witnessed an unprecedented advancement

of protein-structure-prediction approaches. Tools based on

deep neural networks proved not only much better than any

previously available approaches but also able to predict

structures of proteins at a level of detail comparable with

X-ray crystallography, which has been traditionally the

predominant high-resolution technique (Jumper et al., 2021).

Nevertheless, there are macromolecular targets which are not

yet amenable to in silico structure-prediction approaches,

most notably including structurally heterogeneous large

macromolecular complexes containing protein, RNA and

small-molecule components. Particularly interesting in this

context are recent advances in cryo-EM that enabled detailed

studies of macromolecular complexes in their natural cellular

environment (Tegunov et al., 2021). The biochemical factors

affecting the macromolecular composition and conformation

are, however, not the only issue here as whole macromolecular

complexes or their components may remain uncharacterized

prior to structure-determination attempts, or when purified

from endogenous sources (Roh et al., 2018). The problem of

unknown-protein identity is not unique to cryo-EM studies. It

is surprisingly common for macromolecular crystallographers

to crystallize and solve previously uncharacterized protein

structures. These can be proteins purified from natural sources

(as described in this work) or contaminants, either native to an
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expression host (Niedzialkowska et al., 2016) or from else-

where (Keegan et al., 2016; Hatti et al., 2016). Finally, samples

can be simply mislabeled during crystallization or a synchro-

tron trip, which we have witnessed surprisingly often.

The experimental method of choice for protein character-

ization is sequencing of a sample (preparation or a crystal)

using mass spectrometry. In the case of cryo-EM, however, this

may reduce the number of plausible sequence alternatives but

not solve the sequence-assignment problem entirely (Ramrath

et al., 2018). It is also not applicable to crystallography in cases

where a crystal and sample solution are no longer available

and cannot be reproduced.

Solving the crystal structure of a mis- or unidentified

protein is a major difficulty. When reliable phase estimates can

be obtained from anomalous differences, or directly from

ultra-high-resolution diffraction data, an initial model can be

built based on an experimentally phased electron-density map.

The use of a standard alternative-phasing method – molecular

replacement (MR) – is typically impossible due to lack of

model-selection criteria. In such a case, a brute-force MR

approach, such as that implemented in SIMBAD (Simpkin et

al., 2020, 2018), marathonMR (Hatti et al., 2017) or by the

Wide-Search MR server (Stokes-Rees & Sliz, 2010), is the only

option.

In a high-resolution crystal structure model the manual

identification of protein sequences can be performed by an

experienced crystallographer. However, similarly shaped

amino acid side chains (e.g. glutamate and glutamine, or

aspartate and asparagine) cannot usually be distinguished

without an additional source of information. At lower reso-

lutions the procedure becomes increasingly difficult, as model

tracing itself is non-trivial without the sequence information

(Chojnowski et al., 2019). In such cases, when at least a frag-

mented model can be traced in an electron-density map, the

use of fold-recognition tools [such as GESAMT (Krissinel,

2012), DALI (Holm & Laakso, 2016) or FATCAT (Ye &

Godzik, 2003)] may help to identify the protein (Niedzialk-

owska et al., 2016). This approach, however, may be difficult as

the identification of complete protein chains in fragmented

models, and in the presence of symmetry, is usually not

possible without the use of a target sequence. On the other

hand, the use of short polypeptide stretches may be misleading

as many remote homologs tend to share structural motifs

(Chojnowski et al., 2020).

For cryo-EM, the sequence-identification methods

mentioned above in the context of X-ray crystallography are

generally applicable. Nevertheless, cryo-EM maps are usually

determined at resolutions lower than in crystallography,

making the model building and the identification of side-chain

identities far more ambiguous and challenging (Chojnowski et

al., 2021). There are, however, examples of successful protein

identification that avoid these issues by a brute-force fitting of

structures automatically predicted for a large pool of

proteome sequences (Ramrath et al., 2018). It was also shown

(Brown et al., 2015) that a large-scale rigid-body docking of

protein domains using a BALBES–MOLREP pipeline (Long

et al., 2008; Vagin & Teplyakov, 1997) may enable successful

identification of target protein homologues from the Protein

Data Bank (PDB) (Berman et al., 2000).

Several computer programs have previously been devel-

oped to facilitate protein identification in X-ray crystal-

lography and cryo-EM. Fitmunk (Porebski et al., 2016),

originally side-chain modelling software, can assign probable

residue identities to partial crystal structure models to then

query sequence databases using BLAST (Altschul et al., 1997).

Although this approach generously assumes that the residue-

type ambiguity can be modelled using standard scoring

matrices hardcoded in BLAST, it has been successfully used

for the determination of sequence identity in several protein

models (Niedzialkowska et al., 2016). The program

phenix.sequence_from_map (Terwilliger, 2003) estimates

residue-type probabilities based on the correlation of side-

chain rotamer templates with a map, which can then be used to

query sequence databases. CryoID (Ho et al., 2020), an

approach designed to address protein characterization in cryo-

EM, uses the phenix.sequence_from_map tool adapted for the

interpretation of EM maps to identify plausible residue

identities using a six-letter sequence, which is simplified based

on side-chain volume similarity. Similarly to Fitmunk, CryoID

relies on standard sequence-similarity scoring matrices that

have been adapted for the simplified six-letter sequence. It

also requires manual curation and selection of the most reli-

able fragments, presumably due to the fact that by default the

method strongly penalizes gaps in BLAST alignments and

requires reliable continuous main-chain traces on input. In a

recent update (published when our article was in preparation)

CryoID authors modified their protocol, which instead of

BLAST can also use a dynamic programming sequence-

alignment procedure that accounts for tracing errors in the

models (Terwilliger et al., 2021). Although the alignments are

obtained by default using a simplified six-letter sequence, they

are scored using individual residue probabilities derived from

a rotamer-template-matching procedure implemented in

phenix.sequence_from_map.

It is known that tracing errors (deletions, insertions) are

very common in intermediate models, in particular at lower

resolutions and cryo-EM models, and correcting them usually

requires the use of a target sequence (Chojnowski et al., 2019).

This has already been recognized by the authors of the above-

mentioned CryoID update. Moreover, standard substitution

matrices used for sequence alignment do not necessarily

reflect the ambiguity of the residue types assigned based on

partial models and maps. For example, in a recent study it was

shown that a machine-learning classifier most reliably discri-

minated shortest side chains (alanine versus glycine) that

would fall into a single group simplified by side-chain size only

(Chojnowski et al., 2019). To address these issues we devel-

oped findMySequence, a computer program that uses

machine-learning predicted residue-type probabilities to

query sequence databases using HMMER, a popular

sequence-analysis tool (Eddy, 2011). We show that the

program successfully identifies sequences of protein models

automatically built into crystallographic and cryo-EM maps,

even though the automatically built models are usually highly
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fragmented and prone to tracing errors (Chojnowski et al.,

2021). Furthermore, we use findMySequence to identify a

protein purified and crystallized from a snake venom retrieved

from Bothrops atrox, the most clinically important snake

species in northern parts of South America (Estevao-Costa et

al., 2016).

2. Materials and methods

2.1. Crystal structures training set

For training the crystal structure residue-type classifier, we

selected protein crystal structures from the PDB (Berman et

al., 2000). The selection criteria included pairwise sequence

identity below 50% (PDB50 set), resolution between 2 and

3 Å, and crystallographic R factor below 0.3. Out of 54 749

structures fulfilling these criteria on 4 February 2020, we

selected 1000 at random and downloaded corresponding

‘conservatively optimized’ crystal structure models from the

PDB_REDO server (Joosten et al., 2014) together with the

corresponding weighted 2Fo � Fc map coefficients from

REFMAC5 (Murshudov et al., 2011).

2.2. EM-structures training set

For training the cryo-EM residue-type classifier, we selected

from PDB cryo-EM structures solved at a resolution better

than 4 Å, with molecular weight below 500 kDa and half maps

available for download in the Electron Microscopy Data Bank

(EMDB) (Velankar et al., 2016). As of 4 February 2020, we

found 184 structures fulfilling these criteria. Initially, all the

structures were refined into their corresponding maps with

REFMAC5 using the auto_em.sh script from the

ARP/wARP 8.1 suite (Chojnowski et al., 2021). Out of

these, 117 models with CC_mask over 0.7 [estimated using

phenix.map_model_cc (Liebschner et al., 2019)] were selected

for training the classifier. The deposited maps were not altered

by any means prior to training.

2.3. Crystal structure identification benchmark set

For benchmarking the sequence-identification procedure in

crystal structures, we used a set of main-chain-only models

built using ARP/wARP for MR solutions at various target

resolutions and search-model similarity levels.

As targets we selected three hen egg-white lysozyme

(HEWL) crystal structures solved over a range of resolutions:

2.9, 2.2 and 1.2 Å (PDB IDs 4gce, 4rln and 2hub, respectively)

(Helliwell & Tanley, 2013; Botha et al., 2015; Lagziel-Simis et

al., to be published). All the target structures contain one

molecule and 129 residues in the asymmetric unit (ASU) and

were solved in space group P43212, albeit with slightly

different unit-cell dimensions.

For each of the targets we used GESAMT (Krissinel, 2012)

with default parameters to select a set of structurally similar

models from the PDB (as of 4 February 2020). After excluding

structures with ‘CA atoms only’ and those solved with powder

diffraction or NMR, the sets contained 1496, 1478 and 1492

models for targets at 2.9, 2.2 and 1.2 Å resolution, respectively,

spanning over large ranges of sequence identity and structural

similarity to the target (see Fig. S1 in the supporting infor-

mation) The different numbers of search models can be

attributed to small differences in the target-structure coordi-

nates. We used these as search models to solve the corre-

sponding target structure with MR using Phaser (McCoy et al.,

2007) with default parameters. The MR solutions were then

used as an input for main-chain-only model building with

ARP/wARP 8.1. In addition to default model-building para-

meters, we employed a recently developed protocol for

building short loops without sequence information (Choj-

nowski et al., 2019) to reduce model fragmentation. For

benchmarks we used final ARP/wARP models and corre-

sponding weighted 2Fo � Fc maps from REFMAC5.

2.4. EM-structure-identification benchmark set

To benchmark the sequence-identification procedure in

cryo-EM maps, we used two sets of ribosomal proteins: models

built de novo and deposited models refined into corresponding

EM maps.

From the PDB we selected cryo-EM structures of ribosomes

determined at a resolution better than 3.5 Å, with half maps

available for download in the EMDB. Initially, all the struc-

tures were refined into corresponding maps with REFMAC5

using the auto_em.sh script from ARP/wARP 8.1 suite

(Chojnowski et al., 2021). Out of these we selected refined

models with CC_mask over 0.7 [estimated using phenix.

map_model_cc (Liebschner et al., 2019)]. The resulting set

contained 17 ribosomes and 909 protein-chain models origi-

nating from five different organisms: Plasmodium falciparum,

Escherichia coli, Staphylococcus aureus, Sus scrofa and

Oryctolagus cuniculus.

For each of the protein-chain models we estimated median

local resolution for CA atom positions, using local resolution

maps calculated using ResMap version 1.1.4 (Kucukelbir et al.,

2014) with default parameters.

For benchmarks we used both deposited coordinates of

ribosomal proteins and corresponding main-chain models

traced fully automatically and de novo using ARP/wARP 8.1

with default parameters. To reduce model fragmentation we

additionally used a recently developed protocol for building

short loops without sequence information (Chojnowski et al.,

2019). Each protein-chain model was built in an artificial

rectangular box encapsulating a corresponding deposited

model with a 5 Å margin. All remaining protein and RNA

atoms from the corresponding ribosome model were masked

with 3.0 Å radius.

2.5. Sequence databases

In principle, the protein-sequence-identification queries can

be carried out against any set of sequences in FASTA format.

Here, we used a set of 552 121 sequences corresponding to all

protein chains available in the PDB, downloaded as of 17

September 2020 (PDB100). For the identification of ribosomal

proteins in cryo-EM models we also used sets of reference

proteomes downloaded from UniProt (The UniProt Consor-

tium, 2021) for each of the targets. These were significantly
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smaller than the PDB100 set: three contained less than 6000

sequences (P. falciparum, E. coli, S. aureus; UniProt IDs

UP000001450, UP000000625 and UP000008816, respectively),

while two mammalian proteomes had roughly 20 000

sequences each (S. scrofa, O. cuniculus; UniProt IDs

UP000008227 and UP000001811, respectively).

Saccharomyces cerevisiae proteome used for the identifi-

cation of Voa1 assembly factor was downloaded from UniProt

(UP000002311, 6049 sequences). B. atrox proteome sequences

identified by Amazonas et al. (2018) were downloaded from

UniProt (selected by taxonomic identifier 8725).

2.6. Solving crystal structures with SIMBAD

In contrast to cryo-EM, where a complete map can be

reconstructed from experimental data, the phases in crystal-

lography are not measured and need to be retrieved from

other sources [Fig. 1(a)]. MR exploits the fact that evolutio-

narily related macromolecules tend to be structurally similar.

Given sufficient similarity, a known structure correctly posi-

tioned in the target cell by MR can provide an approximation

to the unknown phases of the target. In a typical MR search,

suitable search models can be identified by a sequence search.

However, in the case of the venom protein crystal discussed

here, the target sequence was unknown. Therefore the

domain-database search option in SIMBAD was used to

perform sequence-independent MR. This brute-force option

makes use of the non-redundant domain database defined in

the MoRDa application (Vagin & Lebedev, 2015) consisting of

almost 100 000 domains from the PDB. These domains are

used as search models in the rotation function step of MR as a

quick means to score and identify possible homologues suited

to providing the initial approximation to the target’s phases.

2.7. Neural-network-model architecture and training

For predicting residue-type probabilities based on map

values and main-chain models we built two neural-network

models [Fig. 1(b)]. The two models have identical architecture

but are trained on distinct training sets derived from crystal

structures or cryo-EM models and their respective maps (see

Sections 2.1 and 2.2 for details).

Side-chain densities are described as a vector containing 324

map values sampled on a regular grid with 1.0 Å spacing (a

residue descriptor). The grid is defined by N-, CA- and C-

peptide-backbone atoms; it is centred at the CA atom and

spanned by orthonormal vectors defined by N–CA atoms (ex),

N–CA–C plane normal (ey) and their cross product (ez =

ex � ey). The input to the classifier contains all grid points that

are within 1.0 Å distance from any side-chain atom in the

top500 rotamers library (Lovell et al., 2000) aligned by N-,

CA- and C-backbone atoms. The alignment of the classifier

input (residue descriptor) to the main-chain atoms makes it

very sensitive to tracing errors, which is a desired feature of

the method.

The neural-network-model input is a vector of length 324

(the residue descriptor). The model contains two fully

connected hidden layers. The first layer has a rectified-linear-

unit activation function, which sets all negative neuron inputs

to zero, and 324 output features. The second layer has 20

output features and uses the log-softmax normalization func-

tion, enabling estimation of output classification probabilities.

To avoid overfitting, we inserted an additional dropout layer

between the two hidden layers, which at each training step

disables neuron connections at random with probability p =

0.5. The models were trained for 1000 epochs with a batch size

of 20 residue descriptors in each parameters update cycle and

a 10% validation set. The models were trained using the Adam

optimization algorithm (Kingma & Ba, 2014) with a learning

rate of 1 � 10�4 that resulted in the best test-set accuracies.

For training the crystal structure classifier, we used 617 477

and 68 608 residue descriptors for training and test set,

respectively. The accuracies of a resulting model were 0.88 for

the training set and 0.86 for the test set.
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Figure 1
A schematic representation of the findMySequence usage workflow. Key steps are grouped in dashed rectangles: (a) structure solution and model
building, (b) model interpretation, (c) sequence-database queries, and (d) sequence assignment and model building. All steps except model tracing (a)
are integrated in the software and performed automatically.



Similarly, for training the EM classifier we used 177 831 and

19 758 residue descriptors in training and test sets that resulted

in a model with estimated accuracies of 0.64 and 0.59 for

training and test sets, respectively. We observed that unlike a

support-vector machine-based classifier trained previously for

the sequence assignment of crystal structure models in ARP/

wARP (Chojnowski et al., 2019), the accuracy of the neural

network only weakly depends on residue type. This, combined

with the overall high accuracy of the classifier, makes it a

substantial improvement on the previously published method,

which results in a clearly improved performance of the

sequence-identification procedure (Fig. S2).

2.8. Making queries in sequence databases with HMMER

To find a sequence in a database that matches the predicted

residue-type probabilities, we use sequence-comparison tools

from the HMMER suite (Eddy, 2011) [Fig. 1(c)]. Initially,

predicted residue-type probabilities are converted into a

multiple sequence alignment (MSA), where fractions of

residue types in each column correspond to predicted prob-

abilities. The residues in the input model are processed

sequentially, starting from the longest continuous chain frag-

ments. Next, the MSA is converted into a profile hidden

Markov model (profile-HMM) using the default configuration

of the hmmbuild program from the HMMER suite. Finally, the

profile-HMM is used to query a sequence database using

hmmsearch with default parameters, and sequences with the

lowest best-single-domain E values (3 by default) are returned

to the user.

2.9. Sequence assignment in main-chain models

To build side chains in the input main-chain model fragment

[Fig. 1(c)], we consider all possible alignments of a fragment to

the target sequence. The most plausible alignment, given

predicted residue-type probabilities, is then used to assign

residue types to the fragment. For computational efficiency,

we only consider alignments of the fragments as a whole,

which ignores tracing errors (insertions, deletions or wrong

connections).

Individual alignments are scored with a sum of log prob-

abilities of finding a specific residue type at consecutive

positions in a chain fragment. Although our machine-learning

classifier has been calibrated and the predicted residue-type

probabilities generally reflect expected frequencies, the accu-

racy of predictions may vary depending on resolution and

quality of the models (Chojnowski et al., 2019). Therefore, for

each alignment we calculate a standard score (Z score) using

log-probability distribution parameters estimated for a given

fragment and a random target sequence. To additionally

account for the varying target-sequence length we estimate a

probability that the highest Z score selected from a number of

alternative alignments of a fragment to the target sequence

was observed by chance (p value). For this purpose we apply

Gumbel–Fisher–Tippett extreme-value distribution theorem

using formulas derived previously for normalized structure-

factor amplitudes (Chojnowski & Bochtler, 2007). The

analysis assumes that the Z scores are normally distributed,

which we confirmed on our benchmark set using the Shapiro–

Wilk test at 99% confidence level (Shapiro & Wilk, 1965).

The extreme-value analysis allows for the comparison of

scores obtained for multiple target sequences of various

lengths. This, however, assumes that all the alternative align-

ments of a chain fragment to the target sequence are statis-

tically independent, which is obviously not the case. To

account for that, for p-value estimates we use a reduced

number of alternative fragment alignments to the target

sequence. According to our systematic analysis, reducing this

number by a factor of ten results in p values closest to the

logistic regression estimates of the correct assignment prob-

abilities in our benchmark set.

2.10. Venom protein purification, crystallization and data
processing

A manual venom extraction on the main venom gland of

B. atrox from Pucallpa (Peru) was carried out. The venom was

lyophilized and stored at �10�C until later use. A total of

350 mg of lyophilized venom from B. atrox was dissolved in

10 ml of 50 mM ammonium acetate buffer pH 5.0. The

resuspended venom was centrifuged at 2000g for 20 min at

room temperature. The pellet containing insoluble particles

was discarded. The clear supernatant was applied to a CM

Sephadex ion-exchange column C-50 (28� 2.6 cm) previously

equilibrated with the same buffer and the isocratic elution of

unbound proteins was monitored at 280 nm. Bound proteins

were eluted with a gradient (0–1 M NaCl) at a flow rate of

1 ml min�1. In order to identify hemolytically active compo-

nents, all eluted fractions were evaluated with the indirect

hemolytic assay described previously (Camey et al., 2002). The

fractions with the greatest activity, corresponding to the same

peak, were pooled and concentrated for size-exclusion puri-

fication. The concentrated fraction was applied to a Superdex

75 10/300 GL column, previously equilibrated with 50 mM

ammonium acetate buffer pH 5.0. The enzymatic activity was

monitored, and the purity of the protein was evaluated with

SDS–PAGE.

The purified protein with hemolytic activity was concen-

trated to 11 mg ml�1 in 50 mM ammonium acetate buffer pH

5.0. Crystallization screening was performed with the sitting-

drop vapour-diffusion method in 96-well plates using a

Honeybee 931 robot (Genomic Solutions Inc.) and a

commercially available Crystal Screen II kit at 18�C. After

seven days, single crystals [20%(v/v) 2-propanol, 20%(w/v)

PEG 4000 and 0.1 M sodium citrate] were harvested and cryo-

cooled in liquid nitrogen for data collection. X-ray diffraction

data were collected on beamline MX-2 at the synchrotron-

radiation source at the Brazilian National Laboratory of

Synchrotron Light from the National Center for Energy and

Materials (LNLS–CNPEM, Brazil) housing a PILATUS 2M

detector. The data were indexed and integrated in iMosflm

version 7.2.1 (Battye et al., 2011), and scaled with SCALA

(Evans, 2006) to 1.95 Å resolution (Table 2).
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2.11. Implementation and availability

The sequence-identification program findMySequence

was implemented using Python 3 with an extensive use of

PyTorch (Paszke et al., 2019), NumPy (Oliphant, 2006),

SciPy (Virtanen et al., 2020), CCTBX (Grosse-Kunstleve et

al., 2002), and CCP4 (Winn et al., 2011) libraries and

utility programs. For making sequence-database queries

we used HMMER suite version 3.3.2. The program

source code and installation instructions are available at

https://gitlab.com/gchojnowski/findmysequence.

The model of the snake-venom protein was deposited in the

PDB.

3. Results

3.1. Benchmarks with deposited crystal structure models

To estimate the performance of our sequence-identification

procedure we used a large set of main-chain-only protein

crystal structure models built using ARP/wARP from MR

solutions, as described in Section 2.3.

We observed that the quality and completeness of a model

are main determinants of the success of the procedure. In

cases where a reasonable model can be built (Rfree below 50%)

a largely correct sequence (above 80% of target residues are

correctly assigned) can be identified in the vast majority of

cases [Fig. 2(a)]. Although this simple rule of thumb applies to

all the tested targets, the performance of model building, and

consequently the sequence identification, is clearly reduced at

lower resolution (2.9 Å). This is in line with previous obser-

vations on the resolution dependence of the ARP/wARP

model building results (Chojnowski et al., 2020).

The Rfree values observed here are higher than one would

expect from a good quality model. This is due to the presence

in the models of ‘free atoms’ used by ARP/wARP for the

sparse representation of electron-density maps. The atoms are

not removed from final models built without sequence infor-

mation (or with a low sequence coverage). As a consequence,

complete main-chain-only models built at lower resolutions

are usually moderately overfitted, which results in high Rfree

values.

For all three targets, a search model with at least 20%

sequence identity is required to solve the structure and iden-

tify the corresponding sequence [Fig. 2(b)]. However, for the

lowest-resolution dataset, sequence-identification attempts

with higher sequence-identity search models were also occa-

sionally unsuccessful.

3.2. Benchmarks with cryo-EM ribosomal protein models

We benchmarked our automated sequence-identification

procedure on a set of 909 ribosomal protein structures

described in Section 2.4. We observed that the majority of

sequences could be correctly identified using models built de

novo up to 4.5 Å local resolution [Fig. 3(a)], which is usually

too low for an automated method to trace a complete model

(Lawson et al., 2021). The use of complete deposited models

readily increases sequence-identification performance at

lower local resolutions [Fig. 3(b)]. We also observed that the

sequence-identification performance for models built de novo

does not depend on the size of a target-sequence database

[Fig. 3(a)].

We also evaluated the reliability of the best-single-domain

E value reported by HMMsearch [Fig. 4(a)]. Generally, for E

values below 1 � 10�7, a sequence close to the target was

identified in most of the cases (the logistic regression estimate

of the correct identification probability exceeds 95%). At the

same time, however, we observed that a number of hits with

very low E values do not exactly match the reference,

suggesting a limited, albeit very high, accuracy in the

approach. In the case of crystal structure models, the logistic

regression estimate of the correct identification probability

exceeds 95% for E values below 1 � 10�3. This is in line with

our estimates of residue-type classifier accuracy, which is

significantly higher for crystal than cryo-EM models.
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Figure 2
Sequence-identification benchmarks for crystal structure models solved with MR using Phaser. Sequence identity of an identified sequence to the target
sequence as a function of (a) Rfree-factor value of a MR solution rebuilt using ARP/wARP without an input sequence and (b) sequence identity of a MR
search model to the target structure. The continuous and dashed curves are logistic regression estimates of a probability that an identified sequence will
have at least 80% sequence identity to the target sequence.



3.3. Benchmarks of the sequence assignment in EM models

We validated the sequence-assignment procedure using the

complete test set of ribosomal proteins. From the protein

chain in the test set we selected random continuous fragments

of length 10, 50 and 100 residues. This resulted in 899, 820 and

548 fragments of length 10, 50 and 100 residues, respectively.

Next, we used our sequence-assignment procedure to find an

optimal alignment of the fragments to their deposited

sequences given the corresponding map.

We observed that the p value is a very accurate estimate of

sequence-assignment reliability and, regardless of the model

quality, local resolution, fragment and target-sequence lengths

for p values below 1 � 10�1, the sequence assignment is

unambiguous [Fig. 4(b)].

In the sequence-assignment results we encountered three

clear outliers with p value below 1 � 10�4 and assigned

sequences not matching the reference model (protein S21 in

models of E. coli 70S ribosome at 3.0 Å resolution; PDB IDs/

EMDB IDs 5we4/8814, 5wfs/8829 and 5wdt/8813) (Fislage et

al., 2018). A closer look revealed that the reference models

had obvious sequence register errors and therefore were

removed for the benchmark set (Fig. 5). Interestingly, all three

models were built based on an earlier model of E. coli 70S

ribosome (PDB ID/EMDB ID 5afi/2849 at 2.9 Å, not in our

benchmark set) (Fischer et al., 2015; Bharat et al., 2015) that

also contains a register error in the corresponding chain.

3.4. Crystallography of proteins from natural sources

We collected diffraction datasets from crystal of a protein

purified from B. atrox that was observed to have phospho-

lipase A2 (PLA2) activity. SIMBAD’s MoRDa database

search was performed using default parameters and a model

database was created on 18 September 2019.
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Figure 4
Sequence-identification and assignment benchmarks for EM models. (a) Identity of a sequence identified for models built de novo using ARP/wARP as a
function of HMMsearch best-single-domain sequence-alignment score. (b) Identity of a sequence assigned to continuous fragments of deposited EM
models as a function of the sequence-assignment score (p value) for protein-fragment lengths of 10, 50 and 100 residues selected at random from test-set
models. The continuous curves on the plots are logistic regression estimates of a probability that an identified sequence will have at least 80% sequence
identity to the reference model. The orange circles represent three reference chains with register error that were not used for the logistic regression
calculations.

Figure 3
Sequence-identification benchmarks for 909 cryo-EM models of ribosomal proteins. (a) Comparison of the method performances for an identification of
models built de novo against small (proteomes) and large (PDB100) sequence databases. (b) Comparison of the method performances for models built
de novo and those based on refined deposited coordinates. Histograms of the median local resolution of the test-set proteins are shown in grey (in
arbitrary units). The continuous curves are logistic regression estimates of a probability that an identified sequence will have at least 80% sequence
identity to the target sequence.



SIMBAD identified, as a search model, a PLA2 homologue

purified from Deinagkistrodon acutus (PDB ID 1mc2; Liu et

al., 2003), which agreed with the protein activity observed.

Phaser (McCoy et al., 2007) placed one copy of the search

model in the ASU with a log-likelihood gain of 855 and a

translation-function Z score of 23.6. The model refined to an

R/Rfree of 0.31/0.33 after 30 cycles of REFMAC5 (Murshudov

et al., 2011) refinement with jelly-body restraints. The

moderate R/Rfree factor values after refinement were related

to differences between the search model and the target that

were clearly visible in the map [Fig. 6(a)]. An automated

model rebuilding using ARP/wARP without an input

sequence improved main-chain traces in many regions [Fig.

6(b)]. For the sequence identification we used a venom

proteome determined previously for five specimens of B. atrox

snakes from two distinct Brazilian Amazon rainforest popu-

lations (Amazonas et al., 2018). Using findMySequence and an

initial ARP/wARP model built without an input sequence [Fig.

6(b)] we identified all six known PLA2 sequences in the

venom proteome. The hmmsearch E values for the hits clearly

correlate with the sequence similarity of the sequences to the

top-scored sequence variant (Table 1). A final model was built

for the top-scored sequence (A0A1L8D5Z7) that has 68%

identity to the MR search model used to solve the structure.

The crystal structure model was initially traced using ARP/

wARP, rebuilt manually in Coot and refined in REFMAC5

version 5.8.0267 using the CCP4 Cloud interface (Krissinel et

al., 2018). The model was refined to an R/Rfree of 0.19/0.23 [Fig.

6(c)]. The data-collection and structure-refinement statistics

are summarized in Table 2.

In the final refined model we were able to identify a number

of amino acids that unambiguously exclude the PLA2

sequence variants other than the top-scored A0A1L8D5Z7

sequence. These include a clearly resolved Ser65 [Fig. 6(c)],

which in all other sequence variants is replaced with a tyrosine

or phenylalanine. A careful manual inspection of the final

model did not reveal any possible sequence mismatches. We

also queried the venom proteome using phmmer from the

HMMER suite and the sequence of the MR search model

identified by SIMBAD. The query identified all six PLA2

sequences, although the order of hits was different than in the

findMySequence results presented in Table 1 and the sequence

with 86% sequence identity to the top hit was scored best.

3.5. Identification of Voa1 assembly factor density in yeast
V-ATPase Vo proton channel

A 3.5 Å cryo-EM structure of yeast V-ATPase Vo proton

channel revealed an �-helical density (Fig. 7) inside the central

pore of the structure extending into the lumen of the cyto-

plasm suggesting that it may belong to a separate and

unknown protein (Roh et al., 2018). The authors used mass

spectrometry to identify this component as a Voa1 assembly
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Figure 6
Consecutive steps of crystal structure determination and sequence identification of a protein with hemolytic activity purified from B. atrox venom. (a)
Initial MR solution after 30 REFMAC5 refinement cycles with jelly-body restraints. The same fragment in (b) the ARP/wARP model re-traced without
an input sequence and used as an input for findMySequence, and in (c) the final model. The 2Fo� Fc maps are contoured at the 1� level above the mean.
The free atoms used for sparse electron-density map representation in ARP/wARP are shown as grey spheres. Water molecules are shown as red spheres.

Figure 5
Fragment of an S21 protein model from E. coli 70S ribosome at 3.0 Å
resolution (PDB ID/EMDB ID 5we4/8814). (a) In the deposited
coordinates, many side chains outside a well resolved map and a proline
inside a regular alpha helix may raise suspicion. (b) After sequence re-
assignment and side-chain rebuilding with findMySequence, the map
features are better explained by the model. Only residue range 34–44 in
chain u and a corresponding map are shown for clarity.



factor. As Voa1 was not required for Vo assembly and deletion

of the Voa1 was not lethal, the result could be further

confirmed with another EM reconstruction purified from a

yeast strain with the Voa1 gene deleted, which was clearly

missing the characteristic Voa1 density. We were able to

unambiguously identify the Voa1 assembly factor with find-

MySequence in the yeast proteome (E value = 1.2 � 10�13).

We were also able to repeat the result with a single 27 residues

long �-helix built into the Voa1 reconstruction using the ‘place

helix here’ tool and real-space refinement with secondary

structure restraints in Coot (an E value of 2.4 � 10�7 for the

correct orientation and no result for a reversed helix). The

result could be further confirmed with the sequence-assign-

ment procedure that unambiguously recognized the correct

helix orientation and built the model side chains (p values of

1.3 � 10�3 and 0.9 for correct and reversed helix orientation,

respectively). This result confirms the ability of the method to

correctly discriminate wrongly traced main-chain fragments.

3.6. Discussion and conclusions

We have presented a complete pipeline for the identifica-

tion of unknown proteins in crystallography and cryo-EM. A

key element in the pipeline is a computer program findMy-

Sequence that identifies the most plausible protein sequence in

a sequence database, given an electron-density map or cryo-

EM reconstruction and a main-chain-only model.

We have shown that our approach can successfully identify

proteins, based on non-curated models automatically built into

cryo-EM maps, at local resolutions up to 4.5 Å where models

are usually highly fragmented and prone to tracing errors.

Indeed, in an earlier study it was shown that the correctness of

models built into cryo-EM maps using ARP/wARP (i.e. the

fraction of an automatically built model backbone that is

correct) is over 90% up to 4.0 Å local resolution and clearly

reduces at lower local resolutions (Chojnowski et al., 2021). In

the same work it was also shown that the dependence of model

coordinate errors on local resolution is relatively weak, in

particular when they are not assigned to the target sequence.

This suggests that the model correctness may affect the

sequence-prediction accuracy far more strongly than the

accuracy of atomic positions. We also showed that the

method’s performance increases for deposited coordinates for

which successful sequence identification is possible up to

�5.5 Å local resolution. In a more realistic experimental

setup, one can expect that the method performance will be

comparable with this limit, as many errors in automatically
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Table 1
Results of the sequence identification in B. atrox venom proteome using
findMySequence and an ARP/wARP PLA2 model built without an input
sequence.

Uniprot ID hmmsearch E value Sequence identity to the top hit (%)

A0A1L8D5Z7 1.40 � 10�28 100
A0A1L8D611 2.10 � 10�23 86
A0A1L8D605 1.00 � 10�17 61
A0A1L8D602 9.30 � 10�16 56
A0A1L8D6C4 3.00 � 10�15 52
A0A1L8D5Z4 4.10 � 10�12 50

Table 2
Data-collection and structure-refinement parameters for PLA2 from
B. atrox.

Lowest-resolution-shell values are given in brackets.

Data collection
Space group P22121

a, b, c (Å) 36.40, 58.36, 64.46
�, �, � (�) 90, 90, 90
Resolution (Å) 43.26–1.95 (2.06–1.95)
Completeness (%) 99.5 (99.9)
Wavelength (Å) 1.46
Multiplicity 4.0 (4.1)
hI/�(I)i 5.8 (2.2)
CC1/2 (%) 99.2 (83.8)
Rmerge (%) 9.9 (32.2)

Refinement statistics
Rwork/Rfree (%) 19/23
B factors (Å2)

Wilson 23
Model average 27
Protein 21
Solvent 32.1

R.m.s. deviations
Bond lengths (Å) 0.01
Bond angles (�) 1.92

Ramachandran plot (%)
Favoured 95.9
Allowed 3.3
Outliers 0.8

MolProbity clashscore 4

Figure 7
A model of the Voa1 assembly factor and a corresponding cryo-EM
reconstruction at 3.5 Å resolution (PDB and EMDB IDs 6c6l and 7348,
respectively) (Roh et al., 2018). Only a residue range of 217–247 is shown
for clarity.



traced cryo-EM models can usually be easily corrected

manually (Lawson et al., 2021). We also expect that the use of

model-building software other than ARP/wARP [e.g.

phenix.map_to_model (Terwilliger, Adams et al., 2018),

Buccaneer (Hoh et al., 2020), MAINMAST (Terashi & Kihara,

2018), Rosetta (Wang et al., 2016) or DeepTracer (Pfab et al.,

2021)] should produce comparable results. It must be stressed,

however, that most of the available programs require the

target sequence on input, and building a model before it

becomes available may require non-standard input config-

uration e.g. the use of poly-Ala sequences. To address this

issue we also showed that alpha helices, which are relatively

easy to build in medium-resolution cryo-EM maps, are a good

basis for the sequence-identification procedure.

We observed that in cryo-EM structures our approach often

identifies sequences that are very close but not identical to the

target. In crystallography, a sequence assignment can be

validated after model refinement as residue-type mismatches

usually produce elevated R-factor values and prominent

difference density peaks. In cryo-EM, however, the sequence-

assignment validation is much more difficult. Although much

like in crystallography they can be detected using difference

Fo � Fc maps (Yamashita et al., 2021) and often affect main-

chain geometry, to the best of our knowledge, no automated

tool exists that could be used for that purpose (Lawson et al.,

2021). Therefore, we proposed a sequence-alignment proce-

dure based on the machine-learning residue-type classifier

used in this work. We have shown that it can unambiguously

identify the correct sequence assignments of protein chains at

a wide range of local resolutions, even though at lower reso-

lutions longer fragments may be needed to produce statisti-

cally relevant scores.

The main strength of our approach is not related to the use

of potent neural-network classifiers, but to a careful design of

the residue-type prediction procedure. As shown by the

authors of the DeepTracer program, neural-network models

are capable of prediction of residue-type probabilities directly

in the EM-map voxels. For sequence assignment, this infor-

mation is combined with independently traced main-chain

models. In findMySequence we implemented a different

approach where input to a residue-type classifier are map

points from a region where side-chain moieties are expected

for a specific main-chain conformation. This makes the models

very sensitive to backbone correctness, enables reliable

discrimination of mistraced model fragments and reduces the

rate of erroneous sequence assignments. Indeed, we have

shown that our approach can correctly identify sequences of

automatically traced error-prone protein models. This func-

tionality of findMySequence has also proved crucial in building

an atomic model of the mycobacterial ESX-5 type VII

secretion system into a 3.4 Å resolution cryo-EM map

(Beckham et al., 2021).

To further illustrate the practical use of findMySequence we

described the identification of a sequence of a protein purified

and crystallized from the venom of a B. atrox species snake.

Prior to the crystallization, only the biochemical activity of the

protein was known. Nevertheless, we were able to solve the

structures using the brute-force MR approach implemented in

SIMBAD and then identify the sequence using findMy-

Sequence with minimal manual input.

For training the findMySequence residue-type classifiers we

used deposited cryo-EM maps and automatically refined PDB

models, ignoring all side chains. However, map sharpening and

the use of available cryo-EM map modification approaches

(e.g. Jakobi et al., 2017; Terwilliger, Sobolev et al., 2018;

Ramı́rez-Aportela et al., 2020) may improve map interpret-

ability and thereby increase initial model completeness, which

is one of the most important factors affecting the sequence-

identification-procedure reliability. Similarly, placement of

some predicted side-chain moieties in the models may

improve the quality of their main-chain geometry and hence

lead to better sequence-identification results.

Although benchmark results that are presented this work

are based on monomeric structures, our approach can be

successfully applied to multimers. This, however, requires a

sequence identification based on manually selected inter-

mediate model fragments in an iterative model-building

procedure. Furthermore, we would like to stress here that

findMySequence is very fast and can be conveniently used

during manual model building. In our benchmarks, a single

sequence-identification procedure took less than 30 s for

models containing up to several thousand residues. This is

negligible compared with the time usually required to

complete an automated model-building procedure, which, for

example, in ARP/wARP averages 12 h for cryo-EM models

(Chojnowski et al., 2021).

Our results show that availability of an initial model is a

main limitation of the method application in crystallography.

In our crystal structure benchmark set every promising MR

solution, with Rfree below 50%, could be used for the

successful identification of target sequences. This required a

search model with at least 20% sequence identity to the target,

which agrees with a popular rule of thumb for search-model

suitability (Abergel, 2013). Thus, where an MR search is likely

to be successful, the resulting map is likely to be tractable for

findMySequence. Although at lower resolutions this does not

always guarantee success, one may expect that, owing to the

number of available protein structures, brute-force MR will

often be able to provide an initial model for sequence iden-

tification (Simpkin et al., 2018). For benchmarks we used three

good-quality diffraction datasets, with data resolution being

the major limiting factor. Crystallographers, however, often

work with datasets bearing a number of pathologies, like

twinning or severe anisotropy. These, no doubt, would affect

the performance of the approach and may require more effort

from a crystallographer e.g. determination of experimental

phases or manual model building. Nevertheless, the applica-

tion of our method should save significant amounts of a

structural biologist’s time in the majority of cases.

4. Related literature

The following reference is cited in the supporting information

for this article: Larkin et al. (2007).
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Köpf, A., Yang, E., Devito, Z., Raison, M., Tejani, A., Chilam-
kurthy, S., Steiner, B., Fang, L., Bai, J. & Chintala, S. (2019).
arXiv:1912.01703.

Pfab, J., Phan, N. M. & Si, D. (2021). Proc. Natl Acad. Sci. USA, 118,
e2017525118.

Porebski, P. J., Cymborowski, M., Pasenkiewicz-Gierula, M. & Minor,
W. (2016). Acta Cryst. D72, 266–280.

Ramı́rez-Aportela, E., Vilas, J. L., Glukhova, A., Melero, R., Conesa,
P., Martı́nez, M., Maluenda, D., Mota, J., Jiménez, A., Vargas, J.,
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