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The diffraction patterns of crystalline materials with strongly correlated disorder

are characterized by the presence of structured diffuse scattering. Conventional

analysis approaches generally seek to interpret this scattering either atomisti-

cally or in terms of pairwise (Warren–Cowley) correlation parameters. Here it is

demonstrated how a mean-field methodology allows efficient fitting of diffuse

scattering directly in terms of a microscopic interaction model. In this way the

approach gives as its output the underlying physics responsible for correlated

disorder. Moreover, the use of a very small number of parameters during fitting

renders the approach surprisingly robust to data incompleteness, a particular

advantage when seeking to interpret single-crystal diffuse scattering measured

in complex sample environments. As the basis of this proof-of-concept study, a

toy model is used based on strongly correlated disorder in diammine

mercury(II) halides.

1. Introduction

Complex structures can emerge from simple interactions

(Ziman, 1979; Parsonage & Staveley, 1978; Welberry, 1985).

Geometric frustration in the Ising triangular antiferromagnet

(Wannier, 1950), the hydrogen-bonding-driven configura-

tional degeneracy of cubic ice (Bernal & Fowler, 1933) and the

long-period stacking phases of the anisotropic next-nearest-

neighbour interaction (ANNNI) model (Bak, 1982) are all

well studied examples. It is a natural corollary that complexity

is not particularly uncommon, and indeed there is a growing

realization that complexity of various types is not only present

but important for the behaviour of many key classes of

functional materials, from disordered rocksalt cathodes to

high-temperature superconductors (Clément et al., 2020; Ji et

al., 2019; Mydosh & Oppeneer, 2011; Welberry & Goossens,

2016; Simonov & Goodwin, 2020). Determining the structures

of such systems is one of the key challenges of modern

structural science (Billinge & Levin, 2007; Keen & Goodwin,

2015; Juhás et al., 2015).

Implicit in the term ‘complex’ is the inference that a very

large number of parameters is needed to describe a structure

meaningfully. In the case of disordered crystals, for example,

one approach is to use atomistic configurations, each repre-

senting a structural fragment spanning sufficiently many unit

cells to capture any key correlations; the corresponding

number of descriptors is large indeed, because it scales with

the supercell volume and is amplified further by the loss of

crystal symmetry (McGreevy & Pusztai, 1988; Eremenko et al.,

2019; Goodwin, 2019) [Fig. 1(a)]. An alternative is to describe

disordered structures in terms of interatomic correlations such

as the Warren–Cowley parameters, since these are uniquely

determined for disordered crystals even if they can be realized
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by many microscopically distinguishable configurations

(Cowley, 1950; Weber & Simonov, 2012). Yet even these

parameters are many because correlations usually extend

across a large number of unit cells, there are many individual

contributions to the correlation function for a given pair, and

one needs in principle to consider not only two-body but also

higher-order terms [Fig. 1(b)]. Hence there is an apparent

paradox in that some complex structures can be succinctly

generated, but not succinctly described.

An obvious resolution is to describe complex structures in

terms of the (simple) interactions from which they arise – we

will come to call this an ‘interaction space’ description. Doing

so is the motivation, of course, of direct Monte Carlo (MC)

studies of disordered and other complex materials: one tests

candidate interaction models by comparing their predictions

against observables, until the best model – the ‘solution’ – is

identified (Weber, 2005; Welberry, 1985, 2004; Welberry et al.,

1998) [Fig. 1(c)]. In a crystallographic context, the key

experimental observable one might use to best discriminate

between different models is the structured diffuse scattering

pattern measured in a suitable single-crystal diffraction

experiment (Neder & Proffen, 2008; Welberry & Goossens,

2014). This diffuse scattering can be calculated directly from

MC configurations, allowing a quantitative measure of the

goodness of fit. A combination of (i) varying the interaction

potentials and/or their descriptive parameter(s), (ii) re-

running the corresponding MC simulations and (iii) assessing

the change in quality of the fit to the data then forms the basis

of an interaction-space refinement strategy, such as employed

in the inverse Monte Carlo (IMC) (Weber, 2005; Almarza &

Lomba, 2003; Jain et al., 2006; D’Alessandro, 2011; Welberry,

2001) and empirical potential structure refinement (EPSR)

(Soper, 1996, 2012) approaches.

Here we explore the viability of a particularly efficient

alternative method for refining interaction parameters against

diffuse scattering data that bypasses altogether the need to

generate atomistic configurations en route [Fig. 1(c)]. Not only

is the approach computationally attractive, but it removes the

uncertainty introduced by employing a stochastic method such

as MC. The approach itself is based on mean-field (MF)

theory, and has been applied previously in various guises to

the study of plastic crystals and frustrated magnets (Naya,

1974; Nagai, 1982; Descamps, 1982; Derollez et al., 1990;

Enjalran & Gingras, 2004; Paddison et al., 2013; Paddison,

2020). We anticipate that a suitably generalized methodology

could be of enormous value in the investigation of disordered

crystals beyond these two specific cases.

Our paper is arranged as follows. We begin by presenting

the underlying theory for the MF calculation of single-crystal

diffuse scattering from a given interaction model. In Section 3

we briefly introduce the disordered physical system that will

form the basis of our proof-of-principle study and develop a

related simplified 2D toy model. In both cases we present the

corresponding single-crystal diffuse scattering patterns and set

as our challenge the task of recovering from this scattering the

underlying physics responsible for driving complexity.

Section 4 sets out the results of our MF analysis, which we

compare against the results of conventional approaches based

on reverse Monte Carlo (RMC) and Warren–Cowley (WC)

methodologies. We consider in turn both the 2D toy model

and its 3D (physical) parent. This section concludes with a

discussion of the relative sensitivities of different approaches

to data loss; a key result is that the MF approach is remarkably

robust in this respect. In the final Section 5 we summarize the

opportunities and challenges for generalizing this MF

methodology to enable the systematic investigation of

complexity in a wide range of different materials.

2. Theory

Mean-field theory is a self-consistent field theory, widely used

in statistical physics to model high-dimensional random

systems (Curie, 1895; Weiss, 1907; Kadanoff, 2009). Here, we

present the formalism as applied to orientationally disordered

molecular crystals, but will come to show how this inter-

pretation might equally well be applied to compositional

disorder.

2.1. Mean-field formalism

Our starting point is to define a suitable pair-interaction

Hamiltonian for our particular system of interest. We consider

the system as comprised of individual building blocks (e.g.

molecules), which (i) can adopt any one of a fixed number of

discrete orientations, (ii) are positioned on a periodic lattice,

and (iii) interact with one another in a pairwise sense. The

generalized Hamiltonian is then [following Naya (1974)]:

H ¼
1

2

X
j

X
k

Xs

l¼1

Xs

m¼1

�l
j Jl m

j k �
m
k ; ð1Þ

where j and k sum over all unit cells in the crystal, and l and m

sum over all s possible orientations of the disordered mol-

ecule. The variables �l
j are equal to 1 if the molecule at site j is

in orientation l and 0 otherwise; the Jl m
j k are the components of

the pair-interaction Hamiltonian.

It will be convenient for us to express equation (1) in matrix

form:

H ¼
1

2

X
j

X
k

lj Jj k lk; ð2Þ
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Figure 1
Descriptions of complex structures, illustrated for the case of a disordered
binary alloy. (a) A representative atomistic configuration. (b) The auto-
correlation function, with positive maxima represented by filled circles
and negative maxima by empty circles. The size of the circle corresponds
to the strength of the auto-correlation. (c) The interaction space driving
the generation of atomistic models as in panel (a) and the corresponding
auto-correlation function in panel (b).



where lj is the s-dimensional vector with components �l
j and

Jj k is an s � s-dimensional interaction matrix.

Working within the same formalism, the diffuse scattering

intensity I(q) is given by

IðqÞ / Tr F lq � lq

� �� �
: ð3Þ

Here, F is the s � s-dimensional matrix of molecular form

factors and lq is the Fourier transform of lj. The angle

brackets h i denote the expectation value.

The MF approximation as taken by Naya (1974) allows us to

express the diffuse scattering intensity in terms of the pair-

interaction Hamiltonian,

IðqÞ / Tr MF 1þ �MJðqÞ½ �
�1

� �
; ð4Þ

where 1 is the identity matrix and M is the s � s matrix of

average orientational populations, with elements

Mi j ¼ mi �i j �mi mj: ð5Þ

Here, mi is the probability of finding a molecule in the

orientation i; i.e. the average occupancy of the building block i.

For the special case where all s orientations occur with the

same probability 1/s, equation (5) reduces to

Mi j ¼
1

s
�i j �

1

s2
: ð6Þ

JðqÞ is the Fourier transform of the pair-interaction matrix and

� ¼ 1=kBT is the inverse thermodynamic temperature, where

kB is the Boltzmann constant.

This expression can be recast as an eigenvalue problem,

IðqÞ ¼ �
Xs

i¼1

�
UMFU�1
� �

i i

1þ ��i

; ð7Þ

where U is the matrix that transforms MJðqÞ into diagonal

form and �i are the eigenvalues of MJðqÞ. The parameter � is a

scale factor. Note that the contribution of a given eigenmode

to the scattering function is numerically greatest when the

corresponding eigenvalue is large and negative.

By assigning a cost function �2 ¼
P

q½IexpðqÞ � IðqÞ�2 to

quantify the difference between experimental and MF diffuse

scattering intensities, one can use conventional least-squares

approaches to refine the entries in the interaction matrices Jj k.

2.2. Approximations in the MF derivation

The approach used by Naya (1974) is developed in the

random-phase approximation. In this approximation, the �l
j

that describe the occupation of the disordered sites in the

crystalline system are treated as random variables. The

expectation value h�l
ji is given by the average occupation of

the molecular component as determined by average structure

analysis. For the systems presented here, this average occu-

pation is constrained by the average symmetry and is constant

for all different orientations.

The local correlations, and the constraint that in the real

disordered system each site is occupied by exactly one

orientation, collectively imply that the �l
j are not independent

random variables. In the MF approximation, the central limit

theorem is applied and it is assumed that the probability

distribution of lq is given as an s-dimensional Gaussian

probability distribution (Naya, 1974),

PðlqÞ ¼
exp � 1

2 lT
q M�1

q lq

� 	

ð2�Þs det Mq

� 	� �1=2
; ð8Þ

with Mq the matrix of the second moments of the random

variable lq.

The random-phase approximation – and hence our MF

analysis – is expected to break down for ordered phases, such

as an antiferromagnetic Ising system at low temperatures. This

is the case when the pair-interaction energies are large with

respect to the available thermal energy. Naya (1974) gives the

criterion

det 1þ �MJðqÞ½ � � 0 ð9Þ

to describe the temperature range in which the MF approx-

imation might be expected to give physical results. In the

related MF formalism developed for frustrated magnets

(Enjalran & Gingras, 2004), an equivalent criterion is used

that depends on the most negative eigenvalue �min(q) in

equation (7),

� � ��minðqÞ: ð10Þ

Hence, for all refined pair-interaction energies in the MF

approximation presented here, it has to be ascertained that

both inequalities (9) and (10) are satisfied.

2.3. Number of included pair-interaction terms

In principle, there is no a priori limit on the number of pair-

interaction terms that might be included in the interaction

matrix (2), although our motivation of attempting to describe

complex structures succinctly implies that we wish in due

course to use as few terms as possible. If too many parameters

are used, and their values subsequently refined against

experimental diffuse scattering data as outlined above, then

such refinements are often unstable. This instability can often

be traced back to violation of the criteria in (9) and/or (10).

A suitable strategy, in our view, is as developed by Paddison

et al. (2013) for the identification and refinement of magnetic

interactions in the frustrated magnet �-CoxMn1�x . Pair-

interaction terms are included in a refinement procedure one

by one and the goodness of fit monitored. Only terms that lead

to a significant improvement can be interpreted in terms of a

physical interaction model and should be included in the

subsequent analysis.

3. Model system

3.1. Parent compound

For the purposes of this study, we use as our model system

the compound Hg(NH3)2Cl2 (Lipscomb, 1953), chosen

because it exhibits strongly correlated disorder that arises

from particularly simple local interactions (Parsonage &

Staveley, 1978; Simonov & Goodwin, 2020) [Fig. 2(a)]. In the

physical material, the Cl� ions are positioned on a simple
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cubic lattice. At the centre of each Cl8 cube lies an ammonia

molecule, oriented such that its electric dipole points along

one of the six h100i directions. Pairs of NH3 molecules in

neighbouring cells are connected by Hg2+ ions to form [H3N–

Hg–NH3]2+ ions that each span a 2 � 1 � 1 ‘brick’ of the cubic

Cl� lattice. Hence the orientations of NH3 molecules within a

single brick are strongly coupled (they point towards one

another if connected by a common Hg2+ ion), although this

local rule is not strong enough to drive long-range orienta-

tional order. The system is instead an example of a ‘procrys-

talline’ material [label C1 in the notation of Overy et al.

(2016)], with Pm3m average symmetry.

From a chemical perspective, the structural complexity of

Hg(NH3)2Cl2 arises from strongly correlated Hg2+ occupancy

disorder on the 3c Wyckoff position, which couples to orien-

tational disorder on the NH3 (1b) position. Because we

develop our MF formalism in the context of (pure) orienta-

tional disorder, we divide the [H3N–Hg–NH3]2+ molecules in

two and recast the underlying degrees of freedom in terms of

orientations of fictitious (but useful) [Hg1/2–NH3]+ half-

molecules. This approach of establishing one-to-one mappings

between orientational and compositional disorder problems is

well established in the field (Parsonage & Staveley, 1978;

Simonov & Goodwin, 2020).

3.2. Single-crystal diffuse scattering

We generated single-crystal X-ray and neutron diffuse

scattering patterns for Hg(NH3)2Cl2 by direct calculation from

ensembles of explicit atomistic configurations. The configura-

tions themselves were generated using a ‘loop-move’ MC

algorithm (Melko et al., 2001; Evertz, 2003), which enabled

efficient sampling of the manifold of configurations strictly

obeying the [Hg1/2–NH3]+ half-molecule matching rules. A

total of 50 ground-state configurations were generated in this

way, each corresponding to a 40 � 40 � 40 supercell of the

Pm3m unit cell. Local bond lengths were taken from the

related structure of HgNH2Cl (Lipscomb, 1953), and we

included rotations of the NH3 molecules around the N—Hg

bond axis as identified from infrared spectroscopy measure-

ments (Ebisuzaki et al., 1982). To speed up the calculation, we

exploited the fast Fourier calculation algorithm developed by

Paddison (2019). We further improved the statistics of the

calculated I(q) functions by applying m3m Laue symmetry.

Key slices of the diffuse scattering patterns are shown in

Fig. 2(b); note that the only difference between the X-ray and

neutron scattering is the difference in the scattering factors of

the atoms. While the X-ray scattering is dominated by the

contributions from Hg, scattering from the lighter N and H

atoms dominates the neutron diffraction pattern. The ‘pinch

points’ observed in the hk 1
2 layer arise from the strict local

ordering rule. Full details of our calculations and a short

discussion on the form of the diffuse scattering are given in the

supporting information.

3.3. Two-dimensional toy model

It will suit our purposes to establish proof of principle of the

MF approach using a simplified model of Hg(NH3)2Cl2 ,

obtained by projecting onto two spatial dimensions. Because

the Cl� ions are ordered, we omit them altogether from this

model. The six h100i [Hg1/2–NH3]+ orientations of the parent

3D model are replaced by four h10i-oriented tiles in two

dimensions [Fig. 2(c)]; equivalent matching rules apply.

Formally, the set of fully matched tilings now corresponds to

the S1 procrystalline model (Overy et al., 2016) and maps to

the ground-state of the ‘square dimer’ model (Kasteleyn,

1961).

One particular advantage of a 2D model is that the corre-

sponding diffuse scattering pattern is more straightforwardly

presented. We show in Fig. 2(d) the X-ray and neutron I(q)

functions calculated for the reciprocal-space region �4 � h,

k � 4. This calculation was again based on loop-move-derived

MC configurations (50 multiples of 100 � 100 supercells), but

was now carried out using the DISCUS program (Neder &

Proffen, 2008). The simulation procedures are described in

more detail in the supporting information.

3.4. Articulating the challenge to be addressed

Our key goal is to establish whether, having measured the

diffuse scattering patterns of the type shown in Figs. 2(b) or

2(d), we can use an MF-based approach to extract the physical

interactions responsible for strongly correlated disorder in the

relevant 2D or 3D systems – in other words, to recover the

underlying matching rules that ultimately provide a succinct

interaction-space description of the complex real-space order.

This contrasts both atomistic and correlation function
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Figure 2
(a) A structural model of Hg(NH3)2Cl2 , illustrating a possible distribu-
tion of Hg2+ ions to form [H3N–Hg–NH3]2+ molecules. The Cl� ions
occupy the cube vertices (only one such ion is shown). (b) Slices of the
diffuse neutron and X-ray scattering as calculated from our simulated
model structures of Hg(NH3)2Cl2. Note that the only difference between
the neutron and X-ray scattering calculations is the difference in
scattering factors. (c) A simplified 2D structural analogue of
Hg(NH3)2Cl2, obtained by projecting onto two spatial dimensions. The
four h10i-oriented tiles of [Hg1/2–NH3]+ are labelled and illustrate the
matching rules of the system. (d) Two-dimensional diffuse neutron and
X-ray scattering of the 2D toy model represented in panel (c).



approaches, against which we will come to compare our

results. We start in 2D, progress to 3D and conclude our results

by assessing resilience to data loss.

4. Results

4.1. Proof-of-concept: 2D toy model

4.1.1. Viability of MF approach. Before attempting an MF-

based refinement of diffuse scattering data, we must first

establish that the I(q) function calculated using equation (7)

for a sensible interaction model actually provides an accurate

representation of the explicit result for our 2D toy model

[Fig. 2(d)]. Consequently, we assemble a set of interaction

matrices based on penalizing neighbour-tile pairings that

violate the matching rules described above. Consider, by way

of an example, the forbidden neighbours in the (1, 0) direction

for the tile labelled III in Fig. 2(c): each of tiles II, III and IV

would leave an un-matched half-Hg and hence we assign a

penalty j > 0 to these pairings. By contrast, it is only a I tile that

is forbidden from neighbouring another I tile in this same

orientation. Enumerating all possibilities, we arrive at the

interaction matrix

Jð1;0Þ ¼

j j 0 j

0 0 j 0

0 0 j 0

0 0 j 0

0
BB@

1
CCA: ð11Þ

Equivalent matrices for the (�1, 0), (0, 1) and (0, �1) direc-

tions are generated straightforwardly by symmetry.

With access to J, and using the starting value �j = 0,

equation (7) can be used to calculate I(q), and a goodness of fit

to the reference data – both X-ray and neutron – can be

calculated. The value of �j was subsequently refined using

least-squares minimization; note that the optimal scale factor

� can be derived analytically at each step of the minimization.

All derivatives were calculated numerically and j�j=jj< 10�3

was used as the convergence criterion. The refinement was

repeated using all 50 model data sets, allowing us to obtain

estimates of the parameter uncertainties; full details of our

refinements are given as supporting information. Visual

inspection of the calculated diffuse scattering patterns makes

clear that the MF approach is indeed capable of capturing its

form [Fig. 3(a)], with the biggest deviation arising at the pinch

points [see e.g. the pinch point at (2.5, 2.5)]. The corre-

sponding R values were 13.4 (7) and 14.6 (9)% for, respec-

tively, neutron and X-ray scattering patterns. Both data sets

gave very similar values of �j, each of which satisfies the MF

approximation criterion: 1.750 (4) (neutron) and 1.617 (9)

(X-ray). We consider it remarkable that such high-quality fits

can be achieved using just one parameter.

Of course, a key advantage of this ‘interaction-space’

solution is that, despite its terseness, it can nonetheless be used

to generate a real-space realization of the model of arbitrary

physical size. We used MC simulations, driven by the inter-

action matrices exemplified by equation (11) and the MF value

of �j = 1.617, to obtain a series of atomistic configurations of

the 2D system. A region of one such configuration is illu-

strated in Fig. 3(b); what is clear is that the matching rules are

indeed extremely well obeyed, with very few mismatch

defects. In principle, defects are only strictly forbidden in the

athermal (�!1) limit. Mean-field theory is well known to

overestimate ordering temperatures, and so one does not

necessarily expect the ‘true’ system and MF temperatures to

agree quantitatively, especially in cases with strong correla-

tions (Parisi, 1988). The direct MC configurations can also be

used to calculate the orientational correlation function, shown

schematically in Fig. 3(c). Note that non-vanishing correla-

tions are observed for longer-range neighbour pairs beyond

those included in the interaction Hamiltonian. We will return

to this point in due course.
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Figure 3
(a) Two-dimensional neutron and X-ray diffuse scattering calculated from
the MF refinement (left) are compared with the calculated data (top
right). The lower right-hand corner shows the difference IMF� Iexp, where
positive (negative) values are displayed on a white to black (red) colour
scale. (b) A section of a sample configuration generated by a direct MC
simulation driven by the pair-interaction Hamiltonian of equation (11)
with �j = 1.617. Instances where the tiles are not matched correctly are
circled. (c) The correlation function of the configuration shown in panel
(b) averaged for symmetry. A tile orientation III is chosen as a reference,
indicated by the red box. The probabilities of the different orientations of
the neighbouring tiles are indicated by the occupation probability of the
Hg1/2 according to the black and white scale shown on the right-hand side.
The ammonia groups are indicated in blue for reference. The nearest-
neighbour matching rules are fulfilled to a great extent, as can be seen by
the white circles, representing forbidden orientations, that surround the
red box.



4.1.2. Model-agnostic MF refinement. In assembling the

interaction matrices above [e.g. as in equation (11)] we have

exploited our a priori understanding of the interactions

between neighbouring tiles. Consequently, our next step is to

ascertain whether the form of the interaction matrix might

itself be determined by refinement against diffuse scattering

data. It can be shown that there are exactly seven symmetry-

inequivalent terms in the nearest-neighbour tile-pair inter-

action matrices; the universal form for the (1, 0) direction, by

way of example, is

Jð1;0Þ ¼

j11 j12 j13 j12

j21 j22 j12 j24

j31 j21 j11 j21

j21 j24 j12 j22

0
BB@

1
CCA: ð12Þ

As before, equivalent matrices for the (�1, 0), (0, 1) and

(0, �1) directions are obtained by symmetry; no additional jxy

terms are required beyond those in equation (12).

We used our model data sets to carry out a series of MF

refinements in which we fixed all but one of the jxy parameters

to be zero. The quality of the fit to the neutron and X-ray

diffuse scattering patterns as a function of the single jxy

parameter allowed to refine is represented graphically in Fig. 4.

In six of the seven cases, the fits obtained are poor. But in the

case where j13 is allowed to refine then we obtain fits of exactly

the same quality as in our test case above – the calculated

diffuse scattering patterns in the two instances are indis-

tinguishable (see the supporting information). It can be shown

analytically that equations (11) and (12) lead to the same

eigenvalue problem when j13 = �2j and jxy = 0 otherwise. We

indeed find the refined values of j13 to be equal to �2j. In

retrospect, this equivalence is straightforward to understand:

the underlying physics responsible for complexity in this

system can be couched either in terms of penalizing forbidden

tile pairs (j = j11 = j12 > 0) or, equivalently, in terms of

rewarding matching tile pairs (j13 < 0) in favour of all other

possibilities.

In principle, one might develop the refinement further by

allowing one or more jxy terms, in addition to j13 , to refine, or

by including interactions beyond nearest neighbours. In this

case, of course, doing so does not improve the fit to the data

further than the optimal solution we have already found. As

flagged by Paddison et al. (2013), this is the point at which one

might claim to have ‘solved’ the problem of identifying the key

interactions to which the diffuse scattering data are sensitive.

4.1.3. Comparison with established refinement approa-
ches. By this point, we have shown that the single-crystal

diffuse scattering patterns of Fig. 2(d) can be fitted using an

MF approach with a single interaction parameter, and that the

corresponding interaction model can in turn be used to

generate atomistic representations of the underlying dis-

ordered structure and also the corresponding correlation

functions. We now compare these results with those obtained

using conventional refinement strategies that aim to fit the

diffuse scattering data directly in terms of atomistic config-

urations on the one hand and correlation functions on the

other.

We used a custom RMC code to refine atomistic config-

urations against the 2D neutron and X-ray diffuse scattering

patterns of Fig. 2(d). Each RMC configuration represented a

20 � 20 supercell (i.e. 400 orientational parameters); we used

ten independent runs for each of the 50 model data sets and

exploited the fast Fourier transform algorithm of Paddison

(2019) in our diffuse scattering calculations. While the quality

of the fit to the data is much better than for the MF approach

[R = 6.6 (1)% (neutron) and R = 5.2 (1)% (X-ray)] – perhaps

unsurprising given the 400-fold increase in the number of

parameters – the fraction of correctly matched tiles is only

75.8 (1)% for the neutron data, and as low as 36.9 (1)% for the

X-ray data. This difference in sensitivity is to be expected,

since in the neutron case the H atoms and the off-centred N

atoms make a significant contribution to the molecular form

factor, but in the X-ray case the variations of the molecular

form factor in reciprocal space are much weaker because the

scattering is dominated by Hg. In either case, the underlying

physics responsible for the diffuse scattering is more difficult

to extract from these refinements – and arguably impossible

from the X-ray scattering alone – than for the MF approach

developed above.

The pairwise correlations from which the diffuse scattering

arises can be accessed through the inverse Fourier transform

of the diffuse scattering intensities; the corresponding func-

tion, known as the 2D-�PDF (Simonov et al., 2014a), is

weighted by the X-ray/neutron atomic scattering factors and is

shown in Fig. 5(a) for our toy model. Some direct inter-

pretation of these functions is possible. For example, the

negative peak at r 2 h12,
1
2i in the X-ray 2D-�PDF implies that

Hg–Hg contacts at these vectors are forbidden. Quantitative

refinement of the 2D-�PDF is possible using the YELL code

(Simonov et al., 2014b). We used a suitably customized version

(Schmidt & Neder, 2017) to refine WC correlation parameters

for nearest neighbours; by exploiting various symmetry rela-

tions there are just three independent parameters to be

determined (full details are given in the supporting informa-

tion). These parameters effectively define the probabilities of

different tile pairs, and our results correspond to a better-than-
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Figure 4
The variation in R values for the model-agnostic MF refinement with the
different jxy of equation (12). Neutron scattering (N) values are shown in
blue and X-ray scattering (X) in magenta.



RMC – but not yet perfect – observation of the original

matching rules: the rules are obeyed 87.6 (5)% and 76.8 (57)%

of the time for correlations extracted from neutron and X-ray

data, respectively. In reciprocal space, the corresponding

diffuse scattering patterns provide a reasonable match to the

data [R = 19.9 (2)% (neutron) and R = 15.4 (9)% (X-ray)], but

are much broadened because they are generated using

correlations only at small r values [Fig. 5(b)]. A better fit to the

data would require additional WC terms to be included in the

refinement. Our WC refinements are computationally more

expensive than the corresponding MF refinements: both are

based on a least-squares algorithm but the WC refinement

includes more parameters. A numerical comparison of

different refinement times is provided as supporting infor-

mation.

An important point is made by comparing the 2D-�PDFs

obtained using our MF approach on the one hand and those

represented by this YELL (WC) refinement on the other

hand. Recall that the former arises from refining nearest-

neighbour interactions and the latter from nearest-neighbour

correlations. The MF 2D-�PDF is structured beyond the

nearest-neighbour positions, because short-range interactions

can nonetheless affect longer-range structure [a famous

example being the order-by-disorder transition in hard-sphere

fluids (Alder & Wainwright, 1957; Hoover & Ree, 1968)]. So

despite including fewer refinable parameters, the MF

approach actually has the potential to give rise to a more

detailed structural model. This is the nub of our argument in

favour of an ‘interaction-space’ refinement strategy, as

exemplified in the MF approach we present here.

One difference in the 2D-�PDFs in Fig. 5(a) is at r 2 h1, 1i.

Both the MC-generated data and the corresponding WC

refinement show a negative correlation at these separations,

while the MF refinement predicts a small positive correlation.

We tested whether the discrepancy could be accounted for by

finite-size effects and found that it cannot (see the supporting

information for further discussion). Instead, we suggest that

this difference reflects a limitation of the MF approximation

for this particular system. Nonetheless, the correct (negative)

correlation value is recovered in MC simulations driven by the

MF interaction model, and, after all, it is the set of interactions

that we seek to extract from the diffuse scattering.

4.2. Three dimensions

We turn now to the arguably more physical problem of

correlated disorder in the three-dimensional procrystal

Hg(NH3)2Cl2. Our approach follows closely that described

above for the 2D toy model, and we find ourselves able to

draw essentially the same conclusions. We summarize below

the key results of MF, RMC and WC refinements against both

X-ray and neutron simulated diffuse scattering data. In each

case, the square tiles of the 2D model are replaced by cubic

‘blocks’ that correspond to the six possible orientations of

[Hg1/2–NH3]+ half-molecules to be arranged within the simple

cubic Cl� lattice.

The MF equation (7) gives an excellent representation of

both neutron and X-ray diffuse scattering patterns for nearest-

neighbour interaction matrices that assign a single common

energy penalty j to mismatched neighbour blocks. The refined

values of �j = 2.518 (3) (neutron) and 2.959 (10) (X-ray)

satisfy the MF approximation criteria, and the remarkable

goodness-of-fit values R = 6.7 (2) and 4.2 (3)% are even better

than for the 2D model. Morever, the data themselves can

again be used to determine the form of the interaction

matrices without presuming their form. There are now eight

independent entries of the interaction matrices, and only one

(j12) is needed to obtain high-quality fits to the data (Fig. 6).

This key parameter encodes the matching rules and can be

used to drive MC simulations that obey these rules (see the

supporting information for further discussion). So again we

conclude that, with a single refined parameter, the MF

approach can extract from either neutron or X-ray diffuse

scattering data the microscopic mechanism responsible for

complexity in this representative system.

RMC refinements are somewhat less successful, and espe-

cially so for the case of X-ray diffuse scattering patterns. Our

series of ten independent refinements of ten model data sets

used 6 � 6 � 6 supercells (216 parameters), yet the fraction of

correctly matched tiles was 82.22 (3)% when driven by the

neutron diffuse scattering data, and only 21.44 (3)% for the

X-ray data. Hence the additional degrees of freedom in RMC

versus MF approaches serve simply to open up a large

configurational space of models that are unphysical yet

nonetheless capable of reproducing aspects of the experi-

mental diffuse scattering patterns. The full results of these
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Figure 5
(a) A comparison of the 2D-�PDFs calculated from the diffuse scattering
of the model data (left of panel), the WC refinement (top right of panel)
and MF refinement (bottom right of panel). Positive correlations are
indicated in red and negative correlations in blue. (b) A comparison of
the diffuse scattering used to calculate the 2D-�PDFs in panel (a).



refinements and the corresponding fits to the data are given as

supporting information.

Finally, we also carried out a WC correlation parameter

refinement, confining ourselves to nearest-neighbour terms.

There are six independent variables involved in these fits, and

again full details are provided in the supporting information.

For the same reason as discussed in the context of our 2D

model, the calculated diffuse scattering is necessarily broa-

dened with respect to experiment, but the matching rules are

much more faithfully observed than in the RMC case: the

refined correlation parameters correspond to 96 (3)% and

83 (7)% of correctly matched tiles for neutron and X-ray data,

respectively.

Across these three different refinement strategies, the best

fits to data, the most favourable data-to-parameter ratio and

the clearest path from measurement to identifying the

underlying physics responsible for complexity are again all

given by the MF approach.

4.3. Stability against missing data

Since the MF formalism allows such a parameter-efficient

means of fitting diffuse scattering data, we sought to establish

the extent to which the approach might tolerate incomplete

data. We have some experience in this regard from earlier

studies of magnetic diffuse scattering, where 2D slices of the

full 3D magnetic diffuse scattering pattern have been shown to

be sufficient for robust refinement of the corresponding spin

interaction model (Paddison et al., 2013). In the case of

conventional (non-magnetic) scattering it is usually possible, if

time-consuming, to measure complete single-crystal diffuse

scattering patterns, at least under ambient conditions

(Welberry & Weber, 2016). However, the use of sample

environments, e.g. diamond anvil cells for high-pressure

measurements (Katrusiak, 2008), gas cells (Yufit & Howard,

2005) or electric field cells (Gorfman et al., 2013), often

imposes severe constraints on reciprocal-space coverage.

Likewise, even if the 3D reciprocal space is well covered in a

measurement, it can be difficult to determine accurate diffuse

scattering intensities close to the Bragg reflections; this is the

motivation for so-called ‘punch and fill’ algorithms (Kobas et

al., 2005), which intentionally discard data in these regions of

the diffraction pattern. Consequently, the ongoing challenge

of linking structural complexity to material function may be

aided by the development of efficient refinement strategies

that are robust to partial data loss.

We used our 2D toy model and its neutron/X-ray diffuse

scattering functions to test the implications of data loss in

three cases:

(i) The omission of scattering intensities at and near Bragg

reflections, mimicking the ‘punch’ aspect of the punch-and-fill

approach;

(ii) The restriction of data to a 10	 wedge, such as might be

encountered when using a diamond anvil cell; and

(iii) The limiting case of a 1D cut, taken along the (h0)

reciprocal-space axis.

For each scenario we carried out an MF refinement

employing the interaction matrices related to equation (11),

and we illustrate here the success of this refinement by

attempting to reconstruct the full 2D diffuse scattering

pattern. We then compare this reconstruction against those

generated using RMC and WC refinements.

Our results are summarized in Fig. 7, with a full analysis and

discussion of the extension to three dimensions given in the

supporting information. The key observation is that MF

refinement is indeed remarkably tolerant of data loss. This is

true even in the extreme case of a 1D cut – which omits the key

‘pinch-point’ features – from which the full 2D data can be

recovered. Moreover, it is possible to carry out a model-

agnostic refinement and identify the correct Hamiltonian (see

supporting information). We argue that this robustness arises

because the symmetry of the interaction Hamiltonian enforces

very strong constraints on the form of the I(q) function.

Symmetry also plays a role in stabilizing the WC refinements,

although it is now the (weaker) symmetry of the correlation

functions that constrains I(q). By contrast, RMC is notably

intolerant of data loss, which is perhaps unsurprising since it is

(by design) agnostic of either crystal or interaction symmetry.

5. Concluding remarks and outlook

For the specific procrystalline system Hg(NH3)2Cl2 , and its 2D

toy analogue, we have established that a mean-field refine-
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Figure 6
(a) Slices of the 3D diffuse neutron and X-ray scattering calculated from
our MF refinement (left) compared with the calculated data (top right).
The lower right-hand corner shows the difference IMF � Iexp, where
positive (negative) values are displayed on a white to black (red) colour
scale. (b) The variation in R values for the model-agnostic MF refinement
of the 3D data with the different jxy . See the supporting information for
further details of the nomenclature and the complete pair-interaction
Hamiltonian. Neutron scattering (N) values are shown in blue and X-ray
scattering (X) in purple.



ment approach allows unambiguous determination from the

diffuse scattering patterns of the microscopic interactions that

drive their structural complexity. This link can be established

without assuming the form of the interactions, and the process

is even robust to (extreme) data incompleteness. We

cautiously suggest that the interaction-space approach we

have taken here might form the basis for a more general

strategy for ‘solving’ the structures of complex and/or dis-

ordered crystals (Goodwin, 2019). Certainly, the formalism as

presented here is not limited to substitutional disorder in

molecular systems with homogeneous average occupancies.

The molecular form factors can be easily replaced by atomic

form factors, and unequal average occupations are straight-

forwardly accommodated within the matrix M [see equation

(5)]. The formalism is easily extended to allow treatment of

crystallographic space groups that contain several disordered

sites in the unit cell, and such an extension would allow

investigation of nonstoichiometric compounds as described by

Gusev (2006) and Withers (2015).

Looking forward more generally, what challenges might one

expect to face? An obvious limitation will be the study of

systems poorly described by the mean-field approximation,

e.g. when the stability criteria are not met. This is the case, for

example, for mullite, the diffraction pattern of which contains

sharp incommensurate satellite reflections in addition to

structured diffuse scattering (Welberry, 2001). Other cases

where our formalism may break down are systems far from

equilibrium, or cases that are driven by higher-order inter-

actions which cannot easily be reduced to pair interactions

(Welberry & Butler, 1994). Likewise, the formalism as

described here relies on discrete degrees of freedom, and so is

well suited to problems that can be phrased in terms of

occupational disorder, which may include displacements if

their magnitude is fixed. The extension to continuous degrees

of freedom – needed to capture particular types of displacive

disorder, for example – is an important challenge that we are

hoping to address in the near future. One expects additional

difficulties whenever there is nontrivial interplay between

various different degrees of freedom, such as compositional,

displacive and magnetic. Nevertheless, we hope to have

demonstrated here that the potential reward for developing a

generalized mean-field approach to fitting diffuse scattering

data may be great indeed.

6. Related literature

For further literature related to the supporting information,

see Withers et al. (2004).
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Figure 7
Refinements for missing data input. The top row shows the data input for the three different cases for both neutron and X-ray diffuse scattering: (left) the
omission of scattering intensities close to the Bragg reflections, (middle) restriction of the data to a 10	 wedge and (right) the 1D h0 cut. Omitted data are
indicated by magenta blocks. Rows two to four show the complete diffuse scattering as recovered from the refinements to the restricted data input for the
MF refinement (row two), RMC refinement (row three) and WC refinement (bottom row).
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