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Structural modelling of octahedral tilts in perovskites is typically carried out

using the symmetry constraints of the resulting space group. In most cases, this

introduces more degrees of freedom than those strictly necessary to describe

only the octahedral tilts. It can therefore be a challenge to disentangle the

octahedral tilts from other structural distortions such as cation displacements

and octahedral distortions. This paper reports the development of constraints

for modelling pure octahedral tilts and implementation of the constraints in

diffpy-CMI, a powerful package to analyse pair distribution function (PDF)

data. The model in the program allows features in the PDF that come from rigid

tilts to be separated from non-rigid relaxations, providing an intuitive picture of

the tilting. The model has many fewer refinable variables than the unconstrained

space group fits and provides robust and stable refinements of the tilt

components. It further demonstrates the use of the model on the canonical tilted

perovskite CaTiO3 which has the known Glazer tilt system �+����. The Glazer

model fits comparably to the corresponding space-group model Pnma below r =

14 Å and becomes progressively worse than the space-group model at higher r

due to non-rigid distortions in the real material.

1. Introduction

Structural distortions in materials, such as those occurring

during displacive structural phase transitions, often involve

collective displacements of groups of atoms (Dove, 1997). For

example, in the perovskites, a material class with the nominal

stoichiometry ABX3 (Fig. 1), collective distortions are known

to cause a host of structural phase transitions that lower the

symmetry of the cubic parent structure (Müller et al., 1968;

Salje, 1990; Goodenough, 1955; Kwei et al., 1993, 1995).

Perovskites have a host of interesting and practical properties

and are highly prized as ferroelectrics (Bhalla et al., 2000;

Benedek & Fennie, 2013), and even as photoactive materials

in emerging photovoltaic technologies (Paillard et al., 2016). It

is critical to be able to model and characterize the nature of

the distortions and their origin to properly understand and

engineer these interesting properties. Because of the collective

motions of the atoms in the distortions, a challenge is to come

up with data-modeling approaches that capture these collec-

tive atomic displacements in a small number of variables.

Distortions away from from the cubic archetype can involve

deformations of the octahedra, displacements of the B cations

inside the octahedra and tilting of the octahedra. The first two

are typically caused by electronic instabilities, while the latterPublished under a CC BY 4.0 licence
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is due to the relative sizes of the cations. For perovskites with

smaller A cations, the octahedra tilt to compress the structure

around them, essentially improving the bonding for the A

cation. This geometric effect is conveniently captured by the

Goldschmidt tolerance factor (Goldschmidt, 1926),

t ¼
rA þ rXffiffiffi
2
p
ðrB þ rXÞ

; ð1Þ

where r is an ionic radius and subscripts A, B and X denote the

ion type. For t = 1, the perovskite crystallizes in the high-

symmetry cubic structure, whereas octahedral tilting is

expected for a t < 1 as it signifies that the A site cation is too

small to fill the void between the octahedra. In this paper we

will concentrate on the latter type of distortion.

Due to their corner-sharing geometry, the octahedra can tilt

collectively in several different patterns. By building macro-

scopic models of corner-shared rigid octahedra, Glazer was

able to describe all 22 different patterns in which the rigid

octahedra could collectively tilt and the resulting symmetry

space groups (Glazer, 1972, 1975). Later studies uncovered

details about these Glazer systems through group theory and

geometric considerations (Aleksandrov, 1976; O’Keeffe &

Hyde, 1977; Woodward, 1997a, 1997b; Howard & Stokes,

1998).

Depending on the Glazer tilt pattern of a perovskite, the

structure will have a different symmetry space group (Alek-

sandrov, 1976; O’Keeffe & Hyde, 1977; Woodward, 1997a,b;

Howard & Stokes, 1998). Modelling the structures of the these

low-symmetry phases is therefore often achieved using the

symmetry-broken crystallographic models and constraining

the allowed atomic displacements to those imposed by the

space group symmetries. However, in general, the symmetry

space group allows for more displacive degrees of freedom

than those strictly needed to describe the tilting of the octa-

hedra. Using these models for fitting scattering data leads to

structures where the octahedra are distorted in a way that

cannot be represented in terms of the pure Glazer tilt patterns

with rigid units even in the cases where the octahedra are not

geometrically required to distort (Howard & Stokes, 1998).

Here we explore a more direct approach to modeling

collective rotations using algebraic expressions that link

displacements of atoms in the Glazer tilt systems. Going

beyond purely symmetry constraints is surprisingly challen-

ging. Approximate Monte Carlo approaches have been

attempted (Sartbaeva et al., 2006, 2007), where atoms are

tethered to rigid-unit templates which do not distort, but are

allowed to relax away from the vertices. It has also been shown

(Campbell et al., 2018) that, for small rotations, a set of linear

equations on top of symmetry mode analysis (Perez-Mato et

al., 2010) can identify collective modes in a system of

connected rigid units that do not (or hardly) distort the units.

However, there is currently no straightforward way of incor-

porating this information into a refinement program for

quantitative modeling of data in terms of this collective mode

basis.

Our approach of explicitly building the geometric constraint

equations without assumed symmetries has the advantage that

it can be easily plugged into local structure modeling schemes

such as that used in the diffpy-CMI (Juhás et al., 2015)

program. The program works in the space group P1 by design,

allowing one to introduce structural distortions by moving

atoms at will. The approach greatly reduces the number of

refinable parameters in a physically meaningful way and can

help to build intuition about the structure and how it is likely

to distort. It also allows the user to directly test hypotheses

about the rigidity of the units or the type of tilting present in a

sample without the conceptual complexity of having to surf

between space groups. This can give new insight that might be

otherwise lost. Here we demonstrate the use of our code on

the compound CaTiO3, the archetypal perovskite with a well-

known Glazer tilt pattern �+����.

The approach described here has been made possible by

combining PDF methods, which can reveal local broken

symmetries such as collective tilts, and the diffpy-CMI

modeling code (Juhás et al., 2015), which is designed to have

the flexibility to build arbitrary mathematical constraints into
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Figure 1
Illustration of in-phase and out-of-phase tilt systems as viewed down the
tilt axis. The tilt systems shown here are �0�0�+ (top) and �0�0��

(bottom).



PDF refinements. Although demonstrated here using a simple

and relatively plain perovskite, it can be easily extended to

other perovskites, such as halides and nickelates. In the latter,

the approach could be beneficial for disentangling octahedral

tilting from breathing modes and other collective distortions.

It can also be extended to other nearby structures such as the

cuprate high-temperature superconductors, a perovskite-

derived structure that also consists of corner-shared octahedra

and polyhedra.

2. Glazer tilt definitions

The Glazer tilt systems, as laid out by Glazer (1972), describe

the complete set of collective rotations allowed in a network of

corner-shared octahedra as found in perovskites (shown in

Table 1). These tilt patterns can all be described using a 2 � 2

� 2 (or smaller) supercell of the cubic perovskite unit cell, and

collective distortions requiring larger supercells are unlikely.

For clarity we use the naming scheme, as introduced by

Glazer. An octahedron can be tilted around one, two or all

three of the cartesian axes, x, y and z. The nature of each

rotation is indicated by three Greek letters with superscripts,

where the first letter denotes the rotation around x, the second

around y and the third around z. Repeating letters (e.g.

�+�+�+) indicate that the amplitudes around the specific axes

are the same, whereas different letters (e.g. �+�+�+) indicate

that the tilts differ in amplitude around the different axes.

The superscripts can take the value 0, + or � to indicate a

zero-tilt amplitude or a non-zero amplitude with tilts in

adjacent layers along the tilt axis being either in-phase (+) or

out-of-phase (�). For example, the tilt pattern �0�0�+ has no

tilt around the x and y axes and a non-zero in-phase tilt around

the z axis. Because of the connectivity of the octahedra at their

corners, neighbouring octahedra in the plane perpendicular to

the tilt axis rotate in the opposite direction to the central

octahedron, leading to a doubling of the unit cell in that plane.

In the example of �0�0�+, the unit cell is therefore doubled in

the ab plane, but not along the z axis. On the other hand, an

out-of-phase tilt, for example along the z axis in the pattern

�0�0��, will double the unit cell also along the tilt axis. Fig. 1

illustrates the difference between the in-phase and out-of-

phase tilt pattern of the �0�0�+ and �0�0�� tilt systems, as

viewed down the tilt axis.

3. Approach

Here we describe the method for building constrained Glazer

tilt pattern models. The code may be found at https://

github.com/sandraskj/glazer_fitting.

Models are built using the diffpy-CMI program (Juhás et al.,

2015), which has powerful and flexible methods for specifying

constraints between model parameters. This allows, in prin-

ciple, large numbers of parameters to be expressed in terms of

a much smaller number of variables from analytic or numer-

ical expressions. We first generate the constraints as symbolic

expressions relating multiple atoms’ fractional coordinates.

These expressions are then captured into the diffpy-CMI

constraint handling interface.

For the rotation of the octahedra, we set up the code such

that the user only has to input the Glazer system number and

the tilt amplitudes related to that tilt system. The rotations are

then created by rotating three of the oxygens in each octa-

hedron around the crystallographic axes (clockwise, anti-

clockwise or none) according to the chosen Glazer tilt pattern

and the tilt amplitudes. In performing these rotations, simple

rotation matrices would not do as they would lead to different

bond lengths to the two nearby B cations. To mitigate this

issue, each oxygen is displaced in straight lines perpendicular

to the line between two nearby B cations. The increased bond

lengths to the B cations resulting from this operation are fixed

when the lattice parameters are rescaled, as described below.

For all the Glazer tilt systems listed in Table 1 the

constraints have been constructed such that the shortest B—X

distances are all kept rigid. Since, for most of the systems,

there is a small coupling between the rotation modes around

the three axes, these constraints will lead to a small octahedral

distortion with octahedral angles deviating slightly from 90�,

so the tilts are not strictly rigid. However, the tilt equations

result in almost rigid octahedral tilting, where the collective

modes may be described in terms of tilt angles around each

axis which are the only refinable parameters for the modes

when fitting to data, in addition to the cubic lattice parameter.

The collective octahedral rotations do not include A site ion

structural parameters since the A atoms are not directly part

of the octahedral tilting network. However, their positions are

still refined, as they do indirectly respond to the octahedral

tilts by displacement. We chose to constrain the A cation

displacements in such a way as to respect the expected

symmetry of the tilted structure, which in the case of CaTiO3 is

the space group Pnma.

Activating tilt modes leads to well-defined reductions in the

lattice parameters, and therefore for a full description, we

need to find the appropriate scaling parameters expressed in
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Table 1
For each of the different Glazer tilt patterns we provide the index as
assigned by Glazer (1972, 1975), the tilts given with Glazer notation and
the space group symmetry of the resulting phase.

Note we have only included the tilt systems that are symmetry-nonequivalent.

Tilt system Tilts Space group

23 �0�0�0 Pm3m (No. 221)
22 �0�0�� I4/mcm (No. 140)
21 �0�0�+ P4/mbm (No. 127)
20 �0���� Imma (No. 74)
19 �0���� C2/m (No. 12)
17 �0�+�� Cmcm (No. 63)
16 �0�+�+ I4/mmm (No. 139)
14 ������ R3c (No. 167)
13 ������ C2/c (No. 15)
12 ������ P1 (No. 2)
10 �+���� Pnma (No. 62)
8 �+���� P21/m (No. 11)
5 �+�+�� P42/nmc (No. 137)
3 �+�+�+ Im3 (No. 204)
1 �+�+�+ Immm (No. 71)



terms of the Glazer tilt amplitudes and the lattice parameter of

the cubic parent structure. We start with the interatomic

vectors from the B atom at the origin to its three unique X

neighbors in the octahedron, rB�X1, rB�X2 and rB�X3,

jrB�X1j ¼ a0=4ð Þ
2
þ b0yX1ð Þ

2
þ c0zX1ð Þ

2
h i1=2

; ð2Þ

jrB�X2j ¼ a0xX2ð Þ
2
þðb0=4Þ2 þ c0zX2ð Þ

2
h i1=2

; ð3Þ

jrB�X3j ¼ a0xX3ð Þ
2
þ b0yX3ð Þ

2
þðc0=4Þ2

h i1=2

; ð4Þ

where a0, b0 and c0 are the lattice parameters of the distorted

supercell for a given set of Glazer tilts. Keep in mind that the

fractional coordinates yX1, zX2 etc. are all expressions

containing the Glazer tilt variables and the lattice parameter

of the cubic parent structure ah. Next, we set each of the bond

lengths to be a quarter of the parent unit cell ah,

jrB�X1j ¼ jrB�X2j ¼ jrB�X3j ¼ ah=4: ð5Þ

Since the rotations are assumed to be those of rigid octahedra,

these lengths will not change after the rotation. This allows us

to relate the lattice parameters of the Glazer tilt distorted

supercell to those of the cubic parent cell through scaling

parameters sa, sb and sc,

a0 ¼
2ah

sa

; b0 ¼
2ah

sb

; c0 ¼
2ah

sc

: ð6Þ

Substituting for a0, b0 and c0 in Equations (2)–(4), we get a set

of three equations,

jrB�X1j ¼
1

4s2
a

þ
2yX1

sb

� �2

þ
2zX1

sc

� �2
" #1=2

¼
1

4
; ð7Þ

jrB�X2j ¼
2xX2

sa

� �2

þ
1

4s2
b

þ
2zX2

sc

� �2
" #1=2

¼
1

4
; ð8Þ

jrB�X3j ¼
2xX3

sa

� �2

þ
2yX3

sb

� �2

þ
1

4s2
c

" #1=2

¼
1

4
; ð9Þ

that can be solved for sa, sb and sc,

sa ¼

1�256x2
X2 y2

X1�16y2
X3z2

X1

� �
�256 y2

X3z2
X2þx2

X3 z2
X1�16y2

X1z2
X2

� �� �
1�16y2

X1þ16 �1þ16y2
X3

� �
z2

X1þ256ðy2
X1�y2

X3Þz
2
X2

( )1
2

;

ð10Þ

sb ¼

1�256x2
X2 y2

X1�16y2
X3z2

X1

� �
�256 y2

X3z2
X2þx2

X3 z2
X1�16y2

X1z2
X2

� �� �
1þ16x2

X2 �1þ16z2
X1

� �
�16z2

X2þ256x2
X3 �z2

X1þz2
X2

� �
( )1

2

;

ð11Þ

sc ¼

�1�256x2
X2 y2

X1�16y2
X3z2

X1

� �
þ256 y2

X3z2
X2þx2

X3 z2
X1þ16y2

X1z2
X2

� �� �
�1þx2

X3ð16�256y2
X1Þþ256x2

X2ðy
2
X1�y2

X3Þþ16y2
X3

	 
1
2

:

ð12Þ

Setting these as constraints in the refinement allows the unit

cell to change size according to the tilt amplitude without

introducing any extra refinable parameters.

We present the full constraints for Glazer system 10, as

generated from the code, in the project code repository on

GitHub (https://github.com/sandraskj/glazer_fitting). In the

GitHub repository we also provide the code that generates the

constraints for all the Glazer systems and brief instructions for

how the reader can download them and how to set it up for

their own refinements using diffpy-CMI.

4. Experimental measurements

To obtain experimental pair distribution functions (PDFs) for

CaTiO3, total scattering measurements were carried out at the

28-ID-1 (PDF) beamline at the NSLS-II at Brookhaven

National Laboratory on a commercially purchased powder

sample of CaTiO3 (Strem Chemicals Inc. CAS 12049-50-2). A

2D Perkin Elmer amorphous silicon detector was placed

380 mm behind the sample, which was loaded in a 0.5 mm glass

capillary. The wavelength of the incident X-rays was

0.16635 Å. Data were collected at 200 K for 60 s in a flowing

nitrogen cryostream.

The data were processed using standard methods (Egami &

Billinge, 2012). The instrument geometry was calibrated using

data from a fine Ni powder using pyFAI (Kieffer et al., 2020).

2D diffraction patterns were processed by applying masks to

remove the beam stop as well as outlier-saturated and dead

pixels using a home-written automasking protocol. After

correction for polarization effects, intensities were integrated

azimuthally along circles of constant scattering vector

magnitude, Q, also using pyFAI. The background signal from

an empty glass capillary was subtracted and the data were

normalized and corrected to obtain the reduced total scat-

tering structure function, F(Q), which was Fourier trans-

formed to obtain the PDF. This was achieved using PDFgetX3

(Juhás et al., 2013). The maximum range of data used in the

Fourier transform was Qmax = 23.6 Å�1.

For both the measured and the simulated PDFs we use the

correlation function G(r) (PDF), based on its close relation to

the experimental data as it is the Fourier transform of the

scattering function with no external information such as

density, and also because it has a constant uncertainty in r

(Keen, 2001; Egami & Billinge, 2012).

Modelling the experimental PDF data was carried out using

both the space group Pnma and the Glazer model. The Pnma

model is a
ffiffiffi
2
p
�

ffiffiffi
2
p
� 2 supercell of the cubic aristotype,

while the Glazer model is a 2� 2� 2 supercell (all our Glazer

models use a 2 � 2 � 2 supercell basis regardless of the final

symmetry). Isotropic Uiso values were defined for each

element, giving three variables Uiso(Ca), Uiso(Ti) and Uiso(O).
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5. Results
Our initial robustness tests of the approach are carried out on

simulated PDF data of CaTiO3 with a well-defined tilt pattern

according to the known ground-state structure.

The structure was created in Glazer system No. 10 with an

in-phase tilt around one axis of � = 9� and out-of-phase tilt

around the other two axes of � = 10�. For simplicity, in the

constructed structure there was no displacement of the Ca

atoms from their cubic positions. The isotropic atomic

displacement parameters for all the ions were set to Uiso(Ca) =

0.0030 Å2, Uiso(Ti) = 0.0046 Å2 and Uiso(O) = 0.011 Å2, similar

to those obtained from fitting an experimentally measured

PDF of CaTiO3 with a conventional Pnma model between 1.6

and 50 Å (discussed below), as shown in Table 2.

The PDF was simulated from the structure using diffpy-

CMI (Juhás et al., 2015), with damping and broadening para-

meters set to the values 0.029 Å�1 and 0.010 Å�1, respectively,

obtained from the calibration sample in our measurement and

Qmax = 23.6 Å�1, the same value we used for the experimental

data.

We then fit constrained Glazer models from each of the 22

Glazer tilt patterns to the data from 1.6 < r < 15 Å. The

starting values for the tilt amplitudes in the refinement models

were set to values that were roughly 70% of the true values in

the structure for the simulated dataset.

The fits with the one-tilt and two-tilt models were poor in

most cases, whereas all three-tilt systems gave fit residuals

below 10%. Tilt system 10 (the ground-truth result) is one of

the three-tilt systems so this gives confidence that the

approach can easily differentiate the presence or absence of

tilts. However, within the subset of three-tilt systems, different

families of tilt combinations can be found which refine to

significantly different Rw values, as shown in Fig. 2. Interest-

ingly, the fits can differentiate cases that have +++, ++�, +��

and ��� tilts, but within those families it can only weakly

distinguish between different Glazer systems. This may be

because the tilt amplitudes we chose for the test, coming from

the observed values in CaTiO3, are close to each other.

The best overall fit was found for Glazer system 10, the

correct one, as well as Glazer system 8 that has qualitatively

the same tilt pattern but with an extra degree of freedom that

allows the two out-of-phase tilts to be of different amplitudes.

This shows that the collective mode refinements are working

in diffpy-CMI.

Next, we performed refinements on an experimental dataset

of CaTiO3. We performed the refinements with two models:

one using our formulation based on Glazer tilt system 10 and,

for comparison, a model with constraints consistent with the

crystallographic space group Pnma, which allows tilt distor-

tions but does not impose the constraint of those tilts to be

rigid. The Ca sites were constrained the same way in both

models, according to the space-group symmetry of Pnma. The

space-group model has ten structural degrees of freedom,

whereas the Glazer model has only five. The variables,

including explicitly refined as well as post-calculated ones, and

their values after refinement over 1.6–50 Å are listed in

Table 2.

Fitting both models over this wide-r range (Fig. 3), we can

see that the space-group model provides a significantly smaller

fit residual (space group gives Rw = 0.087 while the Glazer

model gives Rw = 0.245), which is not surprising given its larger

number of refinable variables. Comparing the refined struc-

tural parameters from the two models, we see that all except

for the tilt angles and the lattice parameters are in quite good

agreement, as shown by comparing the values in Table 2.

The information of interest to us is the presence and

amplitude of rigid Glazer tilt modes. For the Glazer model

these are a direct output of the program. For comparison, we
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Figure 2
Comparison of the fit of the 14 three-tilt Glazer systems to a simulated
PDF of CaTiO3 with octahedral rotations but without Ca displacements.

Table 2
Comparison of parameters from the space-group and Glazer model
refinements over the r range 1.6–50 Å.

Two values are given each for � and � in the space-group model because
different octahedra tilt by different amounts. We note that the space-group
model Pnma is a

ffiffiffi
2
p
�

ffiffiffi
2
p
� 2 supercell of the cubic aristotype while the

Glazer model is a 2 � 2 � 2 supercell. To aid comparison of the values, we
converted the lattice parameters of the Glazer model to a

ffiffiffi
2
p
�

ffiffiffi
2
p
� 2 basis.

delta1 accounts for correlated atomic motion effects that sharpen the nearest
neighbor PDF peak (Egami & Billinge, 2012).

Pnma space-group model Glazer model

Variable Value Variable Value

Scale 0.18 Scale 0.17
delta1 1.03 delta1 2.47

ah 3.907
a 5.428 a† 5.402
b 7.620 b† 7.594
c 5.366 c† 5.402
xCa 0.0357 xCa 0.0216
zCa 0.0031 yCa 0.0069
�† (�) 9.6, 10.1 � (�) 7.6
�† (�) 7.1, 10.6 � (�) 9.7
xO1 0.2059
yO1 0.0335
zO1 0.2073
xO2 0.0155
zO2 0.5784
Uiso(Ca) 0.005 Uiso(Ca) 0.004
Uiso(Ti) 0.003 Uiso(Ti) 0.004
Uiso(O) 0.010 Uiso(O) 0.011

Rw 0.087 Rw 0.245

† Parameters were not explicit variables of the respective models, and their values were
calculated post-refinement using the optimized atomic positions of the structure.



also calculate the tilt angles from the space group by finding

the angle that each vector between opposite pairs of oxygen

atoms on an octahedron makes with the pseuodocubic axes.

This gives two values for each of the tilt angles due to octa-

hedral distortion, in contrast with previous studies that only

reported one value for each (Kennedy et al., 1999; Yashima &

Ali, 2009). Our choice to present both values obtained for

each tilt angle highlights the difference in rigidity and

robustness of the space-group and Glazer-mode constrained

models.

The Glazer model results in values of in-phase tilt � = 7.6�

and out-of-phase tilt � = 9.7�. The space-group model gives the

values � = 9.6 and 10.1� and � = 7.1 and 10.6�. The average

value of the in-phase � tilt is higher in the space-group model

by almost 2� than in the Glazer model, and that of the out-of-

phase � tilt is lower by about 1�. In the case of � the two

different octahedra in the space-group model are quite

different and actually straddle the value obtained in the

Glazer fit.

Addressing the difference in fit quality, we believe that a

significant contribution to the poorer fit can be attributed to

the tighter constraints on the lattice parameters in the Glazer

fits. The space-group model is orthorhombic, with three

different lattice parameters. For the Glazer model, the shape

of the unit cell changes in strict accordance with the chosen tilt

pattern, and only one lattice parameter variable (the initial

cubic lattice parameter) is refined. We note that, for the

particular tilt pattern �+���� the unit cell is tetragonal, not

orthorhombic (Table 2). The a = c parameters for the Glazer

model lie between those of the space-group model, but are not

able to separate into short and long values allowed by the

orthorhombic crystallographic model due to the Glazer model

constraints, whereas clearly structural relaxations beyond the

rigid tilts are present in the actual material.

If the difference in Rw between the two models in the wide-

range fits is due to the difference in model rigidity, the models

would be expected to perform more comparably when fitting

only the most local structure, and for the Glazer model to

perform worse at higher values of r. The Glazer model only

allows for the degrees of freedom that are strictly necessary

for the tilt pattern �+����, and comparing the two fits at

different length scales therefore allows us to separate contri-

butions to the PDF signal that come from rigid tilts and

additional non-rigid relaxations. It is also interesting to

consider if the refined values of the Glazer tilts vary with the

r range that is fit over, as might be the case if the tilts become

damped with increasing r. We therefore performed a series of

fits where an r range of a fixed size (referred to as a box) is

shifted incrementally up to higher values, an approach we call

a ‘boxcar’ fit. The r-dependence of the refined variables are

shown in Fig. 4.

As evident in Figs. 4(b) and 4(c) the values of the tilt

amplitudes vary more smoothly in the Glazer model than in

the space-group model indicating that refinement of these

variables is more stable in the more highly constrained Glazer

fits. Also, whilst the � tilt is fairly r-independent, there is a

marked tendency for the � tilt to decrease with increasing r in

the Glazer fit. We also see a similar trend in the total displa-

cement of Ca from cubic positions [�Ca, Fig. 4(d)], with the

Glazer model trending downwards, while the space-group

model stays at the same value throughout the r range. One

possible explanation for the downwards trends of these

structural parameters is a loss of structural coherence with

increasing r due to a non-rigidity, for example in cases where

local tilts survive in a material but are not present globally.

The range of coherence of the collective motions may then be

measured by this approach. Another explanation is that the

unit-cell shape of the model is too constrained to adequately

describe even the local structure, a constraint that is exacer-

bated at higher r. To check which of these two scenarios is the

case for CaTiO3, we also performed boxcar fits on a simulated

PDF of CaTiO3. We constructed two versions of the structure,

both with well defined tilts of � = 9� and � = 10� and A site

displacements similar to those found for the space group fit in

Table 2, but one in which the lattice parameters were

constrained by the tilt pattern (tetragonal cell) and one with

orthorhombic lattice parameters similar to the known ground-

state structure. The results, provided in the supporting infor-

mation, show that both the Glazer and space-group models

perform similarly over the entire r range for the simulated

PDF of the tetragonal, ‘pure’ Glazer tilted structure, whereas

the fits of the PDF of the orthorhombic structure give trends in

Rw that strongly match the data in Fig. 4(a). It is therefore

reasonable to conclude that the imposed tetragonality of the

Glazer model does not adequately allow for the orthorhom-

bicity in the measured CaTiO3. Presumably other structural

degrees of freedom in the structure such as A site displace-

ments cause the global unit cell to relax from tetragonal to

orthorhombic, though this is not imposed by the tilts.
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Figure 3
Plots of measured (blue) and best-fit (red) PDFs of CaTiO3 with the
difference curve plotted in green offset below over the r range 1.6–50 Å.
The model for the best-fit PDF is from (a) the constrained Glazer tilt
model in Glazer system 10 and (b) allowing all the structural degrees of
freedom of the Pnma space-group model.



As the tetragonal constraint of the Glazer model is

expected to be exacerbated with increasing r, we expect a

good agreement between the Glazer and space-group models

at low r. A comparison for the fits over the range r = 1.6–14 Å

is shown on an expanded scale in Fig. 5, where the Rw values

are indeed comparable.

We note that for the case we studied, CaTiO3 at room

temperature, the tilts are long-range ordered and so are

expected to persist over large distances, asymptotically

approaching the crystallographic values. This kind of boxcar

analysis can be expected to be more interesting in materials

where no tilts are observed in the average structure but are

observed locally (Skjærvø et al., 2019; Bozin et al., 2019; Koch

et al., 2021; Yang et al., 2020; Wang et al., 2020; Senn et al.,

2016). Expanding the Glazer model to accommodate changes

in unit-cell shape beyond that predicted by the tilt pattern

would allow us to keep the benefits of a highly constrained

model while mitigating poorer fits at high r due to too strict

lattice parameters and therefore allow us to explore any

potential effects of loss of coherence on the fit residual.

6. Conclusions

We have developed sets of constraint equations that explicitly

model octahedral tilts (Glazer tilts) in perovskites. The model

allows refinements of collective atomic motions by geome-

trically connecting atoms in the lattice, allowing rigid rotations

to be modeled directly. We have implemented the constraints

directly in the PDF modeling program diffpy-CMI.

We have demonstrated the use of our code on the canonical

tilted perovskite system CaTiO3, which has a known long-

range ordered Glazer tilt system �+����. We found that our

Glazer model fits comparably to the known space-group

model Pnma below r = 14 Å. We further observed that the

Glazer model performed progressively worse at higher r due

to the rigidity of the model. In this case the rigid tilts alone

broke the cubic symmetry to tetragonal, whereas the observed

symmetry is orthorhombic, which explains the discrepancy in

the fit residuals. Presumably, non-rigid relaxations and

relaxations of atoms not involved in the tilts are responsible

for the additional reduction in symmetry.

Our Glazer model could be used to study a wide range of

perovskite systems to better understand whether their struc-

ture is well explained in terms of pure octahedral rotations,

how the rotations vary with parameters such as temperature

and pressure, and what additional structural relaxations are

needed to explain the structure beyond the simple picture of

octahedral rotations. The highly constrained fits can be

expected to give stable refinements even when data quality is
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Figure 5
Plots of measured (blue) and best-fit (red) PDFs of CaTiO3 with the
difference curve plotted in green offset below over the r range 1.6–14 Å.
The model for the best-fit PDF is from (a) the constrained Glazer tilt
model in Glazer system 10 and (b) allowing all the structural degrees of
freedom of the Pnma space-group model.

Figure 4
Comparison of the (a) fit residual Rw, the octahedral tilt amplitudes (b) �
and (c) �, (d) the total Ca displacements (�Ca), and (e) the Uiso values
from boxcar fits with the space-group model and the Glazer model of
CaTiO3 at 200 K. The r range (or ‘the box’) was set to 8 Å and
incrementally shifted to higher r values in steps of 2 Å. The labels on the x
axis correspond to the highest value in the box, rmax. The dotted lines
represent the values obtained from a fit over the 1.6–50 Å range. We note
that, for the space-group model, the tilt angles � and � differ depending
on which octahedra were used to calculate them, and such are
represented by two different lines.



limited, for example, from small nanoparticles or powders in a

diamond anvil cell. The work also highlights the strengths and

limitations of the geometric approach in building rigid-body

constraints.
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