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A procedure is described for direct phase determination in protein crystal-

lography, applicable to crystals with high solvent content. The procedure

requires only the diffraction data and an estimate of the solvent content as input.

Direct phase determination is treated as a constraint satisfaction problem, in

which an image is sought that is consistent with both the diffraction data and

generic constraints on the density distribution in the crystal. The problem is

solved using an iterative projection algorithm, the Difference Map algorithm,

which has good global convergence properties, and can locate the correct

solution without any initial phase information. Computational efficiency is

improved by breaking the problem down into two stages; initial approximation

of the molecular envelope at low resolution, followed by subsequent phase

determination using all of the data. The molecular envelope is continually

updated during the phase determination step. At both stages, the algorithm is

initiated with many different and random phase sets, which are evolved subject

to the constraints. A clustering procedure is used to identify consistent results

across multiple runs, which are then averaged to generate consensus envelopes

or phase sets. The emergence of highly consistent phase sets is diagnostic of

success. The effectiveness of the procedure is demonstrated by application to 42

known structures of solvent fraction 0.60–0.85. The procedure works robustly at

intermediate resolutions (1.9–3.5 Å) but is strongly dependent on crystal solvent

content, only working routinely with solvent fractions greater than 0.70.

1. Introduction

Although crystallographic imaging of protein molecules has

become relatively routine, the problem of phase determina-

tion can still present difficulties. For X-ray crystallography,

phase determination based on isomorphous replacement and

anomalous diffraction (Taylor, 2010; Hendrickson, 2014) is

highly effective but can require substantial experimental

effort. For the emergent technique of electron crystallography,

experimental approaches for phase determination remain in

development (Martynowycz et al., 2020). Existing knowledge

of protein structure can often be leveraged to overcome the

phase problem, using the method of molecular replacement

(Scapin, 2013). However, this approach suffers from the

problem of model bias (Adams et al., 1999; DiMaio et al., 2011)

and may not always succeed.

Ab initio phasing in protein crystallography – the formation

of an image direct from the diffraction data, without requiring

any ancillary experimental measurements or detailed knowl-

edge of the target structure – is therefore a problem of both

practical and theoretical importance. In chemical crystal-

lography, where the molecules being characterized are much

smaller than proteins, ab initio phasing is routinely achieved

using computational ‘direct methods’ which are grounded inPublished under a CC BY 4.0 licence
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probability theory and exploit the truly atomistic character of

the image (Giacovazzo, 1999). Where atomic-resolution

diffraction data are available these methods can be used for

modestly sized proteins (Usón & Sheldrick, 1999), and other

novel methods of phase determination are enabled (see e.g.

McCoy et al., 2017; Coelho, 2021). Such methods are, however,

not generally applicable. A large body of early work focused

on ab initio determination of the molecular envelope at very

low resolution. While this was achieved using a variety of

approaches (Subbiah, 1991, 1993; David & Subbiah, 1994;

Urzhumtsev et al., 1996; Andersson & Hovmöller, 1996;

Podjarny & Urzhumtsev, 1997; Müller et al., 2006; Lunin et al.,

2007; Urzhumtsev et al., 2008; Lunin et al., 2012), this work was

not extended to provide a complete solution of the phase

problem.

While ab initio phase determination is uncommon in protein

crystallography, procedures for improving and extending

experimental phase estimates find near universal application.

In these ‘density modification’ procedures (Podjarny et al.,

1996; Zhang et al., 2012), an initial image, typically calculated

with experimentally derived phase estimates, is iteratively

modified, applying generic constraints on the density in real

space, and enforcing the measured diffraction amplitudes in

Fourier space. Among the constraints applied to the density,

the most ubiquitous are solvent flatness (the solvent region

should be effectively featureless) (Schevitz et al., 1981; Wang,

1985), histogram equivalence (the protein region should have

a characteristic density value distribution) (Lunin, 1988;

Harrison, 1988; Yong et al., 1990; Lunin & Skovoroda, 1991;

Lunin & Vernoslova, 1991) and symmetry equivalence (if

multiple copies of a molecule are present in the asymmetric

unit, their associated densities should be the same) (Main &

Rossmann, 1966; Crowther, 1967, 1969; Bricogne, 1974;

Colman, 1974). The application of solvent and histogram

constraints requires knowledge of the molecular envelope,

while application of symmetry constraints also requires

understanding the nature and position of any symmetry

elements present. Having some initial phase estimates allows

these issues to be resolved at the outset (Wang, 1985; Lawr-

ence, 1991; Kleywegt & Read, 1997). While generally effective,

iterative density modification (IDM) procedures have a small

radius of convergence, in the sense that they converge to a

good solution only if initiated with reasonably good phase

estimates. With poor initial phase estimates, conventional

algorithms may quickly reach a fixed point in which the

algorithm stagnates, and the true density cannot be derived

from the fixed point.

A fundamental question is whether the real-space image

constraints used in IDM could provide enough information to

overcome the absence of the phases in protein crystallography

and render a unique solution to the phase problem. If this

were the case, it should be possible to use these constraints for

ab initio phase determination, if a better algorithm for locating

the solution were devised. The problem of uniqueness has

been discussed by a number of authors (Crowther, 1969;

Bricogne, 1974; Baker et al., 1993; Millane, 1993; Miao et al.,

2000; Elser & Millane, 2008; Millane & Lo, 2013; Millane &

Arnal, 2015). Here we focus on the solvent flatness constraint.

In the simplest description, since the Fourier amplitudes and

phases are both necessary and sufficient to calculate the

density, and can be considered mutually independent at non-

atomic resolution, loss of the phases amounts to loss of half

the information required to reconstruct the density. Therefore,

at a minimum, a twofold redundancy in the density is needed

for the density to be uniquely related to the Fourier ampli-

tudes (i.e. the number of degrees of freedom of the density in

the asymmetric unit must be halved). For example, if the

molecular envelope were known, and the solvent volume

fraction exceeds one half, then the degrees of freedom of the

density function are halved by the solvent flatness constraint.

In this case the protein density should be uniquely determined

by the Fourier amplitudes alone. Of course, in the ab initio

case, the envelope is unknown. However, Millane (Millane &

Arnal, 2015) has shown that a unique solution is expected

even if only the volume of the molecular envelope is known,

and is greater than 50% of the unit-cell volume, although the

reconstruction problem is clearly more difficult in this case. In

practice, a phase retrieval algorithm would not be expected to

work at this theoretical limit. One reason for this is defi-

ciencies in the data. In particular, the ultra-low-resolution

diffraction data, central to the definition of the molecular

envelope, are prone to systematic artifacts, and are often left

unmeasured. However, ab initio phase determination, based

on the solvent flatness constraint, should be feasible for

diffraction data from crystals with a solvent volume fraction

somewhat greater that 50%. The challenge is to develop an

algorithm that can routinely find the solution, which is the

topic of this paper.

An approach to ab initio phasing similar to IDM should be

effective, if the radius of convergence could be extended, so

that convergence to the correct density is achieved when the

algorithm is initiated with random phases (Millane, 1990). This

idea has been pursued in the past decade, buoyed by the

success of such approaches in optical and single-particle

imaging (Miao & Sayre, 2000; Donatelli et al., 2015, 2017;

Ekeberg et al., 2015; Grant, 2018). The basis of the approach is

the use of iterative projection algorithms (IPAs). These are

algorithms resembling conventional IDM, that iterate

between real space and Fourier space, while incorporating

constraints in each domain. However, the operations

performed at each iteration are more complicated than those

performed in conventional IDM. The key advantage of these

algorithms is that they have good global, as opposed to local,

convergence properties. This makes them excellent candidates

for ab initio phasing in protein crystallography in cases where

there is sufficient real-space information [e.g. high solvent

content or non-crystallographic symmetry (NCS)] to define a

unique solution with only the diffraction amplitude data.

The general approach was first posited by Millane (Millane,

1990) and its potential demonstrated by successful ab initio

phasing from noisy, simulated diffraction amplitudes from an

icosahedral virus crystal with fivefold NCS (Millane & Stroud,

1997; van der Plas & Millane, 2000), building on earlier work

with virus crystals that used conventional IDM (Chapman et
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al., 1998; Rossmann, 1995). A formal presentation of these

kinds of algorithms as IPAs was given by Elser (Elser,

2003a,b), which put the approach on a more rigorous theor-

etical basis. Elser also described a generally applicable IPA,

termed the Difference Map (DM) algorithm (Elser, 2003b),

which we employ in this study (see Section 2.1, below).

Another widely used IPA is the Hybrid Input Output (HIO)

algorithm, first described by Fienup (Fienup, 1982). A review

of IPAs, and their potential applications in protein crystal-

lography, including their connections with IDM, was

presented by Millane and Lo (Millane & Lo, 2013). The first

applications to experimental diffraction data from protein

crystals used solvent flatness constraints in conjunction with

the HIO algorithm (Liu et al., 2012) or solvent flatness and

NCS constraints in conjunction with the DM algorithm (Lo et

al., 2015, 2016) to successfully recover the electron density for

previously determined test cases. However, while these

approaches began with random phases, they are not truly ab

initio, as they assumed some low-resolution envelope infor-

mation. A very significant advance was made by Su et al. who

incorporated envelope determination and refinement into the

HIO algorithm and showed successful recovery of the electron

density for a number of protein crystals with solvent volume

fractions around 0.70 or greater (He & Su, 2015; Jiang et al.,

2018; He & Su, 2018; Jiang et al., 2019). These studies repre-

sent the current state-of-the-art using this approach, but it has

been unclear how generally this procedure could be made to

work, and the dependencies on resolution or other factors.

In this paper, we present a practical method to routinely

phase diffraction data of modest resolution (1.9–3.5 Å) from

protein crystals with high solvent content (solvent volume

fraction greater than �0.70). The procedure works in an

unsupervised fashion, requiring only the diffraction data, and

an estimate of the solvent content as input. The method

successfully addresses the difficult problem of envelope

determination and incorporates several differences from

previous approaches. Firstly, we employ the DM algorithm,

which can accommodate restraints more flexibly than the HIO

algorithm. Secondly, we employ a computationally efficient

two-stage procedure, in which an approximate molecular

envelope is determined from calculations at low resolution,

facilitating subsequent phase determination using all available

data. Finally, for both envelope and phase determination, the

algorithm is initiated multiple times with random phase sets,

and clustering procedures are used to identify and combine

consistent results from multiple runs. This is a key aspect of

the procedure, as conventional metrics may not indicate that a

solution has been found, whereas clustering reliably identifies

solutions. The emergence of highly consistent phase sets

during the second step of the procedure effectively confirms

the solution has been located. The method was tested through

application to a total of 42 diffraction data sets from the

Protein Data Bank (PDB), from crystals in a variety of space

groups, and having solvent fractions 0.60–0.85. As currently

parameterized, the algorithm successful recovered the elec-

tron density for 87% of the data sets with solvent fraction

>0.75 (13/15 cases) and 73% of the data sets with solvent

fraction >0.70 (22/30 cases). Our study establishes the

approach as a viable phase determination technique, and the

creates a critical benchmark, against which future develop-

ment of the algorithm can be measured. Code implementing

the procedure has been made publicly available on GitHub

(https://github.com/rlkingston/IPA).

2. Methods

2.1. Iterative projection algorithms

Given the measured Fourier amplitudes and sufficient

constraints on the density, the solution to the phase problem

will be unique. However, a phase retrieval algorithm may fail

to find the solution because the associated optimization

problem is highly non-convex and location of the correct

density is nontrivial. Our approach is to use iterative projec-

tion algorithms with good global convergence properties to

find a unique solution, if it exists. Here, we briefly review IPAs

and the DM algorithm that we use. The reader is referred to

(Millane & Lo, 2013) for more information.

It is convenient to represent the electron density as a point

in an N-dimensional Euclidean vector space, where the

elements of a vector x are the values of the density at the N

grid points in the unit cell (or the asymmetric unit). The

reconstruction problem is cast as a constraint satisfaction

problem. In the case at hand, we have constraints in both

Fourier space (that the calculated and measured Fourier

amplitudes should agree) and in real space (that the density

should conform to the expected distributions in the protein

and solvent regions). These are the only real-space constraints

used in this study, though obviously others might be employed.

If the solution to the problem is unique, then a density that

satisfies all the constraints (or lies in the intersection of the

corresponding constraint sets in the vector space) is the

correct density. The problem then is to find a point in the

intersection of the constraint sets. This is referred to as a

constraint satisfaction problem. Solving the problem is diffi-

cult because one of the constraints, the Fourier magnitude

constraint, is non-convex (Elser, 2003a; Millane & Lo, 2013).

Iterative projection algorithms have been shown to be effec-

tive in solving non-convex constraint satisfaction problems

(Elser et al., 2007).

The constraints for our problem are collected into two sets,

one in real space, denoted A, and one in Fourier space,

denoted B. IPAs make use of projections. The projection of a

density x onto a constraint set C, denoted PC x, is the density

that is closest (in the Euclidean, or least-squares, sense) to x

and satisfies the constraint C. The projection then corresponds

to making the smallest change to the (current) density such

that is satisfies the constraint.

Once initiated, in our case with a random density, an IPA

generates a sequence of densities, with the objective of

converging to the true density. The sequence is defined by an

update rule that takes the density at iteration n, xn, to that at

iteration n + 1, xn + 1, and the update rule consists of a combi-

nation of projections of xn.
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It can be seen immediately that the iterative density-

modification procedure commonly used in protein crystal-

lography is an IPA with update rule

xnþ1 ¼ PBPAxn ð1Þ

i.e. the density is adjusted to exactly satisfy the real-space

constraints, then to exactly satisfy the Fourier space

constraints, and the cycle repeated. This algorithm is often

termed the Error Reduction (ER) algorithm (Fienup, 1982).

The ER algorithm, however, does not have good global

convergence in the presence of non-convex constraints, and

will quickly stagnate at a density that does not satisfy both

constraints. This is the reason that conventional phase

improvement algorithms are successful only if started with

good initial phase estimates and are not useful for ab initio

phasing.

There are various other more sophisticated IPAs that have

better global convergence properties in the presence of non-

convex constraints (Marchesini, 2007; Millane & Lo, 2013).

One of these is the Difference Map (DM) algorithm (Elser,

2003a), which we employ in this paper. The update rule for the

DM algorithm is

xnþ1 ¼ xn þ � PA 1þ
1

�

� �
PBxn �

1

�

� �
xn

� ��

� PB 1�
1

�

� �
PAxn þ

1

�

� �
xn

� ��
ð2Þ

where � is an adjustable parameter with �1 < � < 1. The

parameter � controls the ‘relaxation’ of the projections and

affects the behavior of the algorithm in terms of both speed of

convergence and the degree to which it searches the para-

meter space. Its value, however, cannot be simply related to

algorithm performance. Suitable values for � are problem

dependent, and we detail the values used in our application

below. Note that changing the sign of � effectively reverses the

order in which the projections PA and PB are applied in (2).

At each iteration, the DM algorithm generates two solution

estimates

xA
n ¼ PA 1þ

1

�

� �
PBxn �

1

�

� �
xn

� �
ð3aÞ

xB
n ¼ PB 1�

1

�

� �
PAxn þ

1

�

� �
xn

� �
ð3bÞ

which satisfy the constraints A and B, respectively, but not

necessarily both. If the two solution estimates are equal, then

the algorithm has converged, and either is a solution to the

constraint satisfaction problem. These two solution estimates

are combined via (2), to generate the updated density, xn + 1,

which is not itself an estimate of the solution.

At any iteration, the root-mean-square deviation between

the two solution estimates (�DM) can be evaluated, which

provides a simple measure of algorithm convergence.

2.2. Apodization of the Fourier amplitude data

As in our previous work (Lo et al., 2015), the effective

resolution of the reconstruction is controlled by apodizing the

Fourier amplitude data with a Gaussian function. The

weighting function applied is

�ðsÞ ¼ exp
�s2

2�2

� �
ð4Þ

where s is the distance from the origin in Fourier space (the

magnitude of the scattering vector = 1/resolution, Å�1), and �
is the standard deviation of the Gaussian function (Å�1). For

convenience we often express the width of the Gaussian

function in terms of the half width at 1/100th of maximum

height = 3.03� (Å�1), or the corresponding resolution.

The use of a Gaussian apodization function avoids intro-

ducing ringing artifacts into the Fourier synthesis that would

accompany the use of a simple step function to limit resolu-

tion. During phase determination we find that gradually

increasing the value of �, and hence the effective resolution of

the reconstruction, aids convergence to the solution.

2.3. Fourier space constraints, projections and agreement
metrics

In Fourier space, the constraints are the measured Fourier

amplitudes. The corresponding projection onto the constraint

is simple and consists of Fourier transforming the current

density; replacing the Fourier amplitudes with the measured

Fourier amplitudes (after applying the apodization function,

and scaling, as appropriate); and transforming back to real

space. We also need to consider treatment of the Fourier

amplitudes for which data are not available (the unmeasured

or ‘missing’ diffraction data) – termed the unconstrained

modes in the image processing field. If these amplitudes are

allowed to evolve without constraint, excessively large values

may result which can produce severe distortions in the

reconstructed density. To prevent the evolution of physically

unrealistic Fourier amplitudes, checks are performed on the

amplitudes of the missing data during each projection opera-

tion, based on Wilson intensity statistics (Rogers, 1965). If a

reconstructed Fourier amplitude is improbably large (prob-

ability <5 � 10�6), it is reset near the expected value at the

relevant resolution.

At each iteration, the agreement between the relevant

solution estimate (3a) and the Fourier space constraints is

evaluated in the usual way, by computing a correlation coef-

ficient, or R factor, between measured and reconstructed

Fourier amplitudes.

2.4. Real-space constraints, projections and agreement
metrics

In real space, the constraints utilized are the expected

density distributions in the protein and solvent regions. The

protein region has a generic density distribution which can be

reliably predicted, while the solvent region is essentially

featureless, and should have a one–point distribution. The

corresponding projection onto the constraint set consists of
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making the minimum change to the density required to

transform the distributions in both regions into the expected

distributions. Hence, the constraints are those routinely

applied in conventional crystallographic phase refinement –

‘solvent flattening’ in the solvent region (Schevitz et al., 1981;

Wang, 1985), and ‘histogram matching’ in the protein region

(Lunin, 1988; Harrison, 1988; Yong et al., 1990; Lunin &

Skovoroda, 1991; Lunin & Vernoslova, 1991). However, while

the projections are the same, the way they are incorporated

into the phase retrieval algorithm is fundamentally different

[compare equations (1) and (2)].

Application of these constraints requires definition of the

molecular envelope, i.e. a binary partitioning of the image into

protein and solvent regions, consistent with the overall solvent

fraction. Since the molecular envelope is a priori unknown, it

must be determined as part of the reconstruction procedure.

Simple thresholding algorithms based on local averaging of

the density function (Wang, 1985; Leslie, 1987) are frequently

used to define the molecular envelope in protein crystal-

lography. For direct phase determination, we find that deter-

mining the molecular envelope based on the local variance of

the density (Abrahams & Leslie, 1996), rather than the local

mean density, gives uniformly better results, and we have

adopted this procedure throughout. To define the envelope,

the variance map is filtered using a triweight function of

defined radius (r0),

KðrÞ ¼
h

1�
� r

r0

	2i3

0 < r � r0

KðrÞ ¼ 0 r > r0

ð5Þ

where r is the distance to the current grid point. The filtered

map is thresholded to generate an envelope with the desired

volume fraction. The envelope is updated at each iteration of

the algorithm, based on one of the solution estimates (3b).

With the envelope defined, the projection is carried out by

setting the density in the solvent region equal to its mean

value. The density in the protein region is transformed to

achieve the desired distribution (Harrison, 1988; Lunin &

Vernoslova, 1991), shifting the overall mean to its expected

value, while preserving the variance.

The ‘histogram matching’ operation carried out in the

protein region requires that the expected density distribution

is known. While it is well established that electron density

distributions for proteins are generic they are strongly influ-

enced by both data resolution, and the overall isotropic

displacement parameter (B factor) of the data (Yong et al.,

1990; Lunin & Skovoroda, 1991). Our approach is to select a

suitably matched reference structure from the PDB, in a case-

dependent fashion, for calculation of the expected distribu-

tion. This requires robust estimation of the overall B factor of

the target structure, which is a priori unknown. The overall

isotropic B factor is estimated from the diffraction data using

an approach based on the Patterson origin function (Blessing

& Langs, 1988). Note that the experimental data are some-

times apodized to control the effective resolution of the image.

In this case the data used to calculate the reference distribu-

tion are apodized in an equivalent fashion.

At each iteration, the agreement between the relevant

solution estimate (3b) and the real-space constraints is eval-

uated. In the solvent region, the variance of the reconstructed

density is used as a measure of solvent flatness. In the protein

region, the Wasserstein distance (‘Earth-Movers distance’)

between the reconstructed and target density value distribu-

tions is used as a measure of histogram agreement. The first

Wasserstein distance, denoted W1(P,Q) for two random vari-

ables P and Q, is a true distance metric for probability

distributions (Panaretos & Zemel, 2019), and is conveniently

evaluated from the cumulative distribution functions of the

two distributions, FP and FQ as

W1 P;Qð Þ ¼

Z
all x

FP xð Þ � FQ xð Þ


 

dx: ð6Þ

2.5. Metrics for evaluating algorithm performance on test
cases

Testing and evaluation of the envelope and phase deter-

mination procedures requires suitable metrics for computing

agreement with the known envelope or phase set.

To compare two binary-valued molecular envelopes, the

correlation coefficient is used, which can be calculated as

(Warrens, 2008),

CC ¼
f00f11 � f01f10

f00 þ f01ð Þ f00 þ f10ð Þ f10 þ f11ð Þ f01 þ f11ð Þ
� �1=2

ð7Þ

where f00 and f11 are the proportions of grid points that match

in the solvent and protein regions, respectively, and f01 and f10

are the proportions that do not match. The correlation coef-

ficient (for binary-valued functions often termed the

Matthews correlation coefficient, or the Pearson or Yule Phi

coefficient) has a value of 1 if the envelopes match exactly and

a value of 0 if the two envelopes are statistically independent.

For measuring agreement between two phase sets, we

employ the weighted mean absolute phase difference, where

the weights are derived from any apodization scheme (4)

being applied to the Fourier amplitudes. Fourier coefficients

calculated from refined atomic models incorporated no

correction for the scattering of the bulk solvent.

2.6. Origin ambiguity and inversion ambiguity

For direct phase determination, initiated with a random

phase set, the crystallographic origin is effectively selected

arbitrarily, and both binary envelopes and density functions

(or the correspondent phases in Fourier space) need to be

referenced to a common origin before comparative statistics

are calculated, or any form of averaging performed (Lunin et

al., 2012). The alternate origin choices have been tabulated for

all space groups (see e.g. Giacovazzo, 1999) and FFT-based

image registration [the ‘phased translation function’ (Read &
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Schierbeek, 1988)] is used to identify the permitted origin shift

that results in the best agreement in both cases.

A related problem is that the image constraints being

applied are equally well satisfied by the true density, or the

map obtained by inversion of the true density. The same issue

manifests in many experimental phase determination proce-

dures [discussed in Matthews (2007); Wang et al. (2007);

McCoy & Read (2010)]. Hence, any solution generated may

have the incorrect hand. In any one of the 22 chiral space

groups, inversion of the density function is associated with a

change in space group (and hence generation of a density map

with incorrect hand is diagnostic of an incorrect space group

choice, see below). In the remaining 43 achiral space groups

relevant to protein crystallography (Nespolo et al., 2018),

either the solution or its inverse may be generated, and both

possibilities must be checked when comparing either binary-

valued envelopes or real-valued density functions. In an

unknown case, potential solutions to the phase determination

problem would need to be visually inspected to determine the

correct hand This step may be amenable to automation

(Condado et al., 2022).

2.7. Procedures for algorithm optimization

To test and optimize our methods, we selected 42 test cases

for study from existing PDB depositions. The selection was

made at the outset of the investigation before the phasing

procedure was fully developed. Data sets were selected to

provide a range of relevant solvent contents (60–85%), and a

variety of space groups, but otherwise the selection was

essentially random. Relevant details of the test cases are given

in Supplementary Table S1.

Our aim was to develop a common phasing procedure that

could be applied to all test cases without user intervention. To

do this we optimized various parameters associated with the

envelope and phase determination steps on a small subset of

the test cases. Some of the more critical parameters investi-

gated were the values of � used in the DM algorithm; the low-

resolution cutoff applied to the diffraction data; the nature of

the apodization scheme applied to the diffraction data; the

filter radius used for determination of the molecular envelope;

and the total number of iterations. Because of the complex

and multivariate nature of the problem, we made extensive

use of factorial experiments and orthogonal-array-based

experimental designs (Hedayat et al., 1999) to identify the

most productive regions of the parameter space. These

experiments consisted of running envelope or phase deter-

mination repeatedly, using the same set of pseudo-random

starting points, while varying the parameters according to the

experimental design.

In general terms we found that schemes in which � is

systematically alternated between two values are more effec-

tive than schemes in which � is held fixed throughout; that

omission of the ultra low-resolution data aids convergence to

the solution, as previously noted (Jiang et al., 2018); and that

gradual shrinking of the filter radius (5) during envelope

determination aided coalescence of the molecular envelope.

In addition, we found that once a solution is located, executing

the DM algorithm with a negative � value (which amounts to

reversing the order in which the constraints are applied),

generally results in some additional phase improvement.

The experiments resulted in development of a common

protocol (described below) that was subsequently applied to

all test cases without variation, generating the results

described in the paper.

2.8. Parameterization of the algorithm for envelope
determination

For envelope determination the DM algorithm, initiated

with a fully random phase set, is run 50 times for each test case.

Each of these 50 runs consists of 1475 iterations followed by 25

iterations of the ER algorithm, for a total of 1500 iterations.

The parameter � of the DM algorithm is assigned one of two

values (0.72 or 0.78) alternating between them at each itera-

tion. The Fourier amplitude data are heavily apodized with a

Gaussian function that is unchanged throughout (� =

0.091 Å�1, hence reaching 1/100th of maximum height at 3.6 Å

resolution). A low-resolution cutoff of 25 Å resolution is

applied to the dataset, with the lower resolution terms being

treated as missing throughout. The molecular envelope is

updated at each iteration, with the radius of the triweight filter

function (5) shrinking from 10.8 to 8.0 Å across the first 1000

iterations of the DM algorithm, and a constant 8.0 Å there-

after.

Conservatively, we consider 3.6 Å to be the effective reso-

lution limit of the data, and grid the density maps at 2/5 of this

limit, allowing for relatively rapid evaluation of the Fast

Fourier Transform during envelope determination.

2.9. Parameterization of the algorithm for phase
determination

For phase determination the DM algorithm, initiated with a

fully random phase set and a consensus molecular envelope

(see below), is run 20 times for each test case. The molecular

envelope is held fixed for the first 10 iterations and subse-

quently updated at each iteration, using a fixed radius of 8.0 Å

for the triweight filter function (5). A low-resolution cutoff of

25 Å is again applied to the diffraction data, with the lower

resolution terms being treated as missing.

Over 7200 iterations of the DM algorithm, the effective

resolution of the reconstruction is gradually increased by

apodizing the diffraction amplitude data with a steadily

broadening Gaussian function (4). This occurs over a total of

30 steps (240 iterations of the DM algorithm at each step). At

the first step, the apodization function has � = 0.16 Å�1 (hence

reaching 1/100th of maximum height at 2.1 Å resolution). At

each subsequent step, the area under the Gaussian function

(evaluated up to the full resolution of the dataset) is increased

by a fixed increment, so that by the final step, the data are

essentially unmodified (Supplementary Fig. S1). Throughout,

the parameter � is assigned one of two values (0.675 or 0.800),

alternating between them every 60 iterations.
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After the first 7200 iterations, the DM algorithm is run for a

further 200 iterations using the diffraction data with no

apodization applied. The first 100 of these iterations are

performed with � = 0.75 and the second 100 with � = �0.55.

Then 25 iterations of the ER algorithm are performed. This

sequence of 225 iterations is repeated a total of four times, and

the run then concludes.

Hence overall, each run extends for 8100 iterations, the first

7200 with steady removal of the apodization and involving

only the DM algorithm, and the last 900 with no apodization,

interspersing the DM and ER algorithms.

2.10. Clustering algorithms, and the computation of
consensus envelopes and phase sets

Clustering of both molecular envelopes and phase sets is

used to identify similar outputs resulting from multiple runs of

the algorithm. From clusters of similar solutions, a ‘consensus’

envelope or phase set is produced by averaging all members of

the cluster. Details of the procedure differ for binary-valued

envelopes and phases sets, but we begin with some general

comments

The pairwise distances (d) between all inputs are first

calculated, providing the basis for the clustering procedure.

With N inputs, there are a total of N(N � 1)/2 unique

distances. For binary envelopes we take d = (1 � CC2)1/2,

where CC is the map correlation coefficient (7). For phase sets,

we take d = the mean absolute phase difference. At the same

time, the translations required to put each pairing on a

common origin are also evaluated. The standard data clus-

tering algorithm DB-SCAN (Schubert et al., 2017) is then used

to cluster the inputs. DB-SCAN has two parameters, the

minimum number of points (minPoints) required to form a

dense region, and the threshold distance (") for the clustering

procedure.

2.10.1. Envelopes. For clustering of the molecular envel-

opes, minPoints is set to 5 (i.e. 10% of the input set size, which

was the 50 envelopes) while the threshold distance, ", is set to

the 4th percentile of the distribution of pairwise distances.

This is because the values of the correlation coefficient vary

widely across the tested diffraction data sets, and there is no

absolute threshold which will work for all cases.

Once the clustering has been performed, the translational

shifts needed to bring the envelopes onto a common origin are

applied, and the consensus envelope is calculated for each

cluster by taking the modal value for each sample point in the

envelope, across all members of the cluster. The consensus

envelope is subsequently edited using a previously published

connectivity algorithm (Hunt et al., 1997), erasing small

islands, and filling small voids, that can sometimes be created

by the averaging procedure.

2.10.2. Phases. For clustering of phase sets, minPoints is set

equal to 2, while the threshold distance, ", is set to 40�–50�

mean absolute phase difference. These settings discriminate

correct from incorrect solutions for all test cases.

A consensus phase set is obtained by calculating the mean

phase across all members of the cluster, applying any needed

origin shifts. The consistency of the phases sets within a cluster

is evaluated using the sample circular variance (Fisher, 1993).

2.11. Practical implementation

The procedures described here have been implemented in a

program called IPA (Iterative Projection Algorithms for

protein crystallography) using the Clipper C++ crystal-

lographic library (Cowtan, 2003) for all the core crystal-

lographic tasks. The program is written in C++ with some

ancillary routines in modern Fortran. Our implementation

automates the procedures described in this paper, and

requires only the measured diffraction data and the solvent

content as compulsory input. The procedure has been paral-

lelized (see Discussion) which can greatly reduce time to

completion when multiple CPUs and cores are available for

the calculation. The behavior of the program IPA is controlled

by a single experimental parameter file. Use of the default

parameter file will reproduce the protocol described in the

paper exactly, however the user may elect to vary the protocol

by editing the parameter file. The code is available on GitHub

(IPA version 1.0.0, https://github.com/rlkingston/IPA). The

details of the implementation will be described in a subse-

quent publication.

3. Results

3.1. Preliminaries

The 42 test cases employed in the study are detailed in

Supplementary Table S1, arranged in order of decreasing

solvent fraction (0.85–0.60). Our intent was to establish a

general procedure for directly phasing diffraction data from

high-solvent content protein crystals. As described above,

initial development work suggested that a two-stage proce-

dure would be the most computationally efficient, in which a

molecular envelope was approximated using calculations at

low resolution, and subsequently used to initiate phase

determination at higher resolution. Following this initial

development work, we applied a common protocol to all test

cases to benchmark the procedure.

The DM algorithm is used both to coalesce an envelope in

the first stage, and to locate a complete solution to the phase

problem in the second stage. During both stages, the

constraints on the density are those used in conventional

density-modification procedures, although the way that the

constraint satisfaction problem is attacked is dramatically

different (see Methods). In the solvent region the density

should be featureless (i.e. have a one-point distribution), while

in the remainder of the image the density distribution should

be characteristic of proteins. The molecular envelope,

required for application of these real-space constraints is

continually updated, based on one of the solution estimates at

each iteration of the algorithm.

The solvent fraction assumed for each test case is calculated

from the molecular structure. In an unknown case, this would

need to be estimated through analysis of the crystal packing

density (Weichenberger et al., 2015). Besides the diffraction
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data, the solvent fraction is the only other information

required as input to the phase determination procedure.

To establish the expected protein density distribution for

each test case, the overall isotropic B factor is estimated from

the experimental diffraction amplitudes, using an approach

based on the Patterson origin function (Blessing & Langs,

1988). This procedure returns values consistent with refined

atomic models (Supplementary Table S1). Based on the esti-

mated B factor and the resolution limit of the data set, a

reference structure is automatically selected for calculation of

the expected electron-density distribution (histogram). In

practice, electron-density histograms calculated from one of

10 reference structures were used for all the calculations

described here (Supplementary Table S1).

3.2. Envelope determination

3.2.1. Envelope generation. To generate a set of molecular

envelopes, the DM algorithm, initiated with a fully random

phase set, was executed 50 times for each test case. The

diffraction amplitude data are heavily apodized to strongly

downweight the high-resolution data (all datasets were

multiplied with a Gaussian function with � = 0.091 Å�1, hence

reaching 1/100th of maximum height at 3.6 Å resolution).

Each run extends for 1475 iterations of the DM algorithm,

followed by 25 iterations of the ER algorithm, with the

apodization unchanged throughout.

Some typical trajectories for the DM algorithm during

envelope generation are shown in Fig. 1 [test case 5b2c

(Kubota et al., 2016), resolution 2.2 Å, solvent fraction 0.73].

Displayed as a function of iteration are the measure of algo-

rithm convergence (�DM); the agreement measures with the

real-space constraints (the solvent variance, and the Wasser-

stein distance between image and reference density value

histograms), and the agreement measure with the Fourier

space constraints (the correlation between measured and

reconstructed Fourier amplitudes). These are the metrics that

could be routinely followed during determination of an

unknown structure. In addition, since refined atomic models

are available for all test cases, we also follow the agreement
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Figure 1
Molecular envelope generation for PDB entry 5b2c (Kubota et al., 2016) (resolution 2.2 Å, solvent fraction 0.726). (a) The trajectory of a successful run.
(b) The trajectory of an unsuccessful run. The two runs were initiated with different random phase sets. Plotted from top to bottom, as a function of
iteration, are the convergence indicator of the DM algorithm (�DM); the variance in the solvent region; the Wasserstein distance between reconstructed
and reference histograms in the protein region; the correlation between reconstructed and measured Fourier amplitudes; the weighted mean absolute
difference between reconstructed and model phases; and the correlation between the reconstructed and model envelopes. The metrics that could be
followed during determination of an unknown structure are shown in black, while the metrics that assess agreement with the known solution are shown
in blue.



between the reconstructed and model phases (evaluated using

the weighted mean absolute phase difference) and the

agreement between the reconstructed and model envelope

(evaluated using the correlation coefficient). These latter

metrics allow us to track algorithm performance across the

runs.

These metrics vary in an erratic and apparently random

fashion as the DM algorithm aggressively searches the para-

meter space for the vicinity of the solution. Irrespective of

whether the system is in the vicinity of the solution or not,

application of the ER algorithm at the end of each run gives

rapid convergence to the nearest local minimum. These

behaviors are quite typical of the DM and ER algorithms.

However, the results shown in Fig. 1 also illustrate three more

specific points, which are key to understanding the approach

that has been adopted.

Firstly, a substantially correct molecular envelope

frequently coalesces before a full solution to the phase

problem is located. This is shown by the trajectory in Fig. 1(a).

The agreement between the reconstructed and model

envelope advances to a correlation coefficient of 0.57, which

indicates the envelope is substantially correct. At the same

time the weighted mean absolute difference from the

model phases remains close to 90�, indicating that a solution

to the phase retrieval problem has not yet been

located.

Secondly, conventional metrics that can be calculated when

determining an unknown structure, fail to robustly indicate

that the envelope is evolving toward the correct answer. In the

successful runs for test case 5b2c [e.g. Fig. 1(a)] neither the

agreement with the Fourier space constraints (the correlation

with Fourier amplitudes), nor the agreement with the real-

space constraints (the variance of the density values in the

solvent region, and the Wasserstein distance between the

observed and reference density value histograms in the

protein region) indicate any progression toward a solution,

even though a substantially correct envelope has formed by

the end of each run.
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Figure 2
Molecular envelope generation and low–resolution phase determination. (a) The trajectory of a successful run for test case 3als (Hatakeyama et al., 2011)
(resolution 3.0 Å, solvent fraction 0.79). (b) The trajectory of a successful run for test case 4bex (Klejnot et al., 2013) (resolution 2.8 Å, solvent fraction
0.73). Not only does a substantially correct molecular envelope coalesce over the course of each run but a satisfactory solution to the phase problem is
located in both cases, with the weighted mean absolute difference with the model phases reducing to �75�. Plotted from top to bottom, as a function of
iteration, are the convergence indicator of the DM algorithm (�DM); the variance in the solvent region; the Wasserstein distance between reconstructed
and reference histograms in the protein region; the correlation between reconstructed and measured Fourier amplitudes; the weighted mean absolute
difference between reconstructed and model phases; and the correlation between the reconstructed and model envelope. The metrics that could be
followed during determination of an unknown structure are shown in black, while the metrics that assess agreement with the known solution are shown
in blue.



Finally, the algorithm may or may not progress to a good

envelope, dependent on the point at which it is randomly

initiated. For the unsuccessful run shown in Fig. 1(b), a correct

envelope does not coalesce over the course of the run, with a

final correlation close to 0, which means the envelope is

effectively unrelated to the true envelope.

Across all tested data sets, there is considerable variation in

both the accuracy of the final envelopes, and the frequency

with which accurate envelopes form, given a random starting

point. Notwithstanding, in all cases the procedure generates

some reasonable approximations to the molecular envelope.

Some summary statistics (median and maximum agreement

with the model envelope) are reported in Supplementary

Table S2. In the case of novel structure determination, the

challenge is to identify the accurate envelopes generated by

the procedure, from the many inaccurate envelopes that are

also generated.

In favorable cases the procedure generates some very

accurate envelopes (correlation coefficient with the model

envelope of 0.75–0.87, Supplementary Table S2). In some of

these instances (2rha, 3als, 4asn, 4bex, 4fzn), not only does

the envelope coalesce, but a good solution to the phase

problem is located at very low-resolution (some run trajec-

tories for 3als and 4bex are displayed in Fig. 2). This is

indicated by the clear progression away from random phase

agreement. Interestingly, even in these favorable circum-

stances, the metrics that can be followed in an unknown

structure determination give no indication that a solution

has been located. The emergence of a correct low resolution

phase set, as shown in Fig. 2 is quite uncommon, observed

to occur for only 5 of the 42 test cases. Generally, despite

the formation of a reasonable approximation to the

envelope, a complete solution to the phase problem is not

located at very low-resolution (see e.g. Fig. 1), even if the

calculations are extended for many iterations. It is for this

reason the first stage of our procedure is focused on the

problem of binary envelope determination.

3.2.2. Envelope clustering and averaging. The failure of

conventional metrics to indicate the progression of the

molecular envelope toward the correct result, coupled with

the stochastic nature of that progression from a random

starting point (Fig. 1, Supplementary Table S2), means that

some novel method is required for identifying good approx-

imations to the envelope. We solve this problem by introdu-

cing a clustering procedure to identify, and subsequently

combine, the consistent results from the envelope determi-

nation runs. The underpinning principle is that good approx-

imations to the envelope will agree with each other. In

contrast, there are a multiplicity of incorrect envelopes

capable of satisfying the volume fraction constraint, which

should generally agree poorly with each other.

Envelopes are clustered based on the distance measure

d = (1 � CC2)1/2, where CC is the correlation coefficient

between a pair of envelopes (7), using the algorithm DB-

SCAN (Schubert et al., 2017). A consensus envelope is then

generated for each cluster (see Methods). The results of

clustering and averaging for all test cases are presented in

Supplementary Table S2. These data show that the procedure

effectively groups the best approximations to the envelope

based on the pairwise distances. In all cases there is at least

one cluster for which the accuracy of the consensus envelope

closely approaches or exceeds the maximum accuracy of the

individual envelopes. In many cases (21/42) that cluster is

either unique (i.e. there is only one cluster), or unique with

allowance for inversion (i.e. there are two clusters, related by

inversion symmetry). An example is test case 3lii (Dvir et al.,

2010). For the 50 input envelopes the maximum correlation

with the model envelope is 0.39. A single cluster of 16

envelopes is generated by DB-SCAN, with the consensus

envelope having a correlation of 0.56 with the model envelope.
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Figure 3
Overall results of envelope clustering. (a) The distribution of the correlation coefficient between the best consensus molecular envelope and the model
envelope, for all 42 test cases (allowing for envelope inversion). (b) Scatter plot showing the correlation coefficient between the best consensus envelope
and the model envelope as a function of crystal solvent content. PDB identifiers of the 42 test cases are indicated. Points colored black are the 22 data
sets for which phases were subsequently successfully retrieved, points colored red are the 20 data sets for which phase retrieval was unsuccessful.



In other cases, one or two additional clusters are also

generated. These can represent minor variations of the known

envelope (e.g. 2vuh). Occasionally, they also represent

envelopes with near–random correlation with the known

envelope (e.g. 4gbe). In the latter case, the algorithm is

repeatedly generating similar but incorrect envelopes. None-

theless, clustering is still effective, as from 50 indiscriminable

input envelopes, at most three consensus envelopes result, at

least one of which is a fair to excellent approximation to the

true envelope [Fig. 3(a)]. Some consensus envelopes gener-

ated by the procedure are compared to the model envelopes in

Fig. 4. Interestingly, the accuracy of the final envelope is only

weakly related to the solvent content [Fig. 3(b)].

Since our objective was to establish the feasibility of direct

phase determination, we used only the best of the consensus

envelopes [Supplementary Table S2, highlighted in light gray;

Figs. 3(a) and 4] to initiate the phase determination step. For a

real problem, if more than one envelope were generated

(making allowance for inversion), then the phase determina-

tion step could be initiated using each candidate envelope in

turn, and the solution would emerge with the correct

envelope, as described below. Furthermore, there are several

criteria that suggest which of the candidate envelopes is the

best approximation, which could be used to put the envelopes

in rank order. Among these criteria are the conformity with

the desired volume fraction (due to the averaging process the

consensus envelope may not have exactly the desired volume

fraction) and the connectivity of the protein region (a good

molecular envelope will be completely or nearly completely

connected and should not contain disconnected ‘islands’).

Inspection of the results in Supplementary Table S2 shows that

many of the poorer envelopes are readily discriminated on this

basis.

In summary, even though good approximations to the

molecular envelope are routinely generated by the algorithm

for almost all test cases, this is never indicated by conventional

metrics, and many poor approximations to the envelope are

also generated (Figs. 1 and 2). This problem is overcome by

using clustering procedures to identify the consistent results

from multiple runs, exploiting the uniqueness of the solution.

Consistent envelopes are combined to generate a consensus

envelope (Figs. 3 and 4), which is then used to aid phase

determination.

3.3. Phase determination

Once the consensus envelope is generated, it is employed in

the second stage of the procedure, to initiate phase determi-

nation at high resolution. The phase determination step

employs the same basic DM algorithm as the envelope

determination step but is parameterized quite differently (see

Methods). The phase determination step involves more

iterations (7200) than the envelope determination step, during

which the resolution of the reconstruction is gradually

increased, via the apodization function that is applied to the

Fourier amplitudes (see Methods). In general, the efficiency of

the phase determination procedure is sensitive to the apod-

ization scheme. In particular, if the effective resolution of the

image is set either too low or too high at the outset, the

frequency with which solutions are located reduces. The

algorithm is initiated with a random phase set, and the

consensus envelope from the envelope determination step.
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Figure 4
Comparison of consensus molecular envelopes with model envelopes. (a) Test case 5b2c (Kubota et al., 2016) (solvent fraction 0.73, space group P61), CC
= 0.67, simple match between envelopes 87%. (b) Test case 5hk7 (Arrigoni et al., 2016) (solvent fraction 0.83, space group I222), CC = 0.60, simple match
between envelopes 90%. (c) Test case 4bex (Klejnot et al., 2013) (solvent fraction 0.73, space group P3221), CC = 0.77, simple match between envelopes
92%. (d) Test case 2rha (Joint Center for Structural Genomics, unpublished work) (solvent fraction 0.80, space group P43212), CC = 0.86, simple match
between envelopes 95%. Displayed in surface representation is the volume associated with 4 adjacent unit cells, from a single viewpoint. The consensus
envelopes generated by the clustering and averaging procedure are shown in gold, and the model envelopes are shown in light blue. Figs. 4, 5 and 6 were
prepared with the aid of UCSF ChimeraX (Pettersen et al., 2021).



The envelope is held fixed for only the first 10 iterations, after

which it is updated at each iteration based on the current

solution estimate (see Methods). The initiation of high-

resolution phase determination with an approximately correct

envelope biases the starting phase set at low resolution in a

way that makes the location of the solution much more likely.

At the conclusion of the main procedure (7200 iterations of

the DM algorithm), the DM algorithm and the conventional

ER algorithm are alternated for an additional 900 iterations,

with no apodization applied to the data, as described in

Methods, and the run concludes. The first 7200 iterations serve

to search the parameter space and bring the solution estimate

into the vicinity of the true solution, while the last 900 itera-

tions give convergence to the final solution.

Behavior typically observed during the phase determination

step is illustrated in Fig. 5. This shows the trajectories of two

successful [Figs. 5(a) and 5(b)] and one unsuccessful [Fig. 5(c)]

phasing runs for test case 5hk7 (Arrigoni et al., 2016) . In the

two successful runs, the solution is located near iteration 2200

and 3500 respectively, as indicated by the steady reduction in

the mean phase error over the next 300 iterations. Unlike the

envelope determination step, location of the solution is indi-

cated by relatively clear perturbations in the agreement

metrics for the real and Fourier space constraints, and in the

convergence measure for the DM algorithm itself. Char-

acteristically, the location of the solution is preceded by a

steady increase in the fidelity of the molecular envelope. In the

unsuccessful run [Fig. 5(c)], the algorithm begins to advance

toward a solution at iteration 3330, and then again at iteration

7500, but in each case regresses, and the solution is not ulti-

mately located. This instability is an inevitable consequence of

the good global convergence properties of the algorithm.

While arrival at the true solution is generally indicated by

the usual agreement metrics, there are occasional counter

examples. For test case 2ja1 (Kosinska et al., 2007) the solution

is rapidly located (often within the first 1000–2000 iterations)

and with relatively high frequency (14/20 phase determination

runs locating the solution). However, the progression to the

solution is not clearly indicated by the conventional agree-

ment metrics, or by the algorithm convergence measure

(Supplementary Fig. S2). Hence for determining unknown

structures, a clustering procedure is also useful to robustly

identify true solutions to the phase retrieval problem.

Clustering of phase sets to determine if the solution has

been located is straightforward, with subsequent averaging of

the cluster members producing a consensus phase set. As a

specific example, we again consider test case 5hk7 [for which

three run trajectories are shown in Figs. 5(a)–5(c)]. In this

case, clustering of the phase sets with DB-SCAN (threshold

mean absolute phase difference " = 40�, MinPoints = 2)
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Table 1
Results of phase set clustering for the 22 successful test cases.

A dash means that no result was generated. N/A means a result cannot be generated because the symmetry does not allow it.

True solution Inverse of true solution

PDB ID/
solvent
fraction/
resolution (Å)

Space
group

Total no.
of phase
determination
runs

Cluster
size

Sample
circular
variance

Mean
absolute
difference
between
consensus
and
model
phases (�)

Cluster
size

Sample
circular
variance

Mean
absolute
difference
between
consensus
and
inverted
model
phases (�)

Successful
runs†

6p72/0.84/3.28 P65 20 20 0.25 44 N/A N/A N/A 100
5hk7/0.83/2.95 I222 20 10 0.20 52 – – – 50
4c94/0.83/3.00 C2221 20 5 0.13 41 13 0.15 39 90
2w88/0.81/2.89 P3112 20 19 0.18 47 N/A N/A N/A 95
2x0l/0.81/3.00 I222 20 3 0.09 41 16 0.12 40 95
3lii/0.80/3.20 P61 20 19 0.18 40 N/A N/A N/A 95
4fzn/0.80/2.86 P6322 20 9 0.14 49 – – – 45
2rha/0.80/2.10 P43212 20 14 0.15 41 N/A N/A N/A 70
3als/0.79/3.00 P65 20 20 0.23 44 N/A N/A N/A 100
2w4m/0.77/2.60 P3221 20 17 0.18 46 N/A N/A N/A 85
2ja1/0.77/2.80 I4122 20 14 0.26 49 – – – 70
4asn/0.76/3.50 H32 20 – – – 11 0.13 48 55
4pqe/0.75/2.90 P3112 20 13 0.18 40 N/A N/A N/A 65
4c5h/0.75/3.20 P3121 20 15 0.15 42 N/A N/A N/A 75
2vvx/0.75/2.75 H3 20 14 0.16 43 6 0.15 44 100
3u6u/0.74/1.92 P65 20 12 0.13 34 N/A N/A N/A 60
4bsj/0.74/2.50 P3121 20 5 0.20 53 N/A N/A N/A 25
3me2/0.74/2.80 P63 20 10 0.13 47 10 0.13 40 100
4bex/0.73/2.80 P3221 20 16 0.20 47 N/A N/A N/A 80
5b2c/0.73/2.24 P61 20 17 0.20 42 N/A N/A N/A 85
4tpl/0.73/2.90 P321 20 – – – 4 0.19 52 20
3mf0/0.71/3.10 P3121 20 5 0.17 48 N/A N/A N/A 25

† Expressed as a % of the total number of runs.
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Figure 5
Phase determination for test case 5hk7 (Arrigoni et al., 2016) (solvent fraction 0.833, 2.95 Å resolution). (a) and (b) The trajectories of two successful
runs. (c) The trajectory of an unsuccessful run. These runs were initiated with the same molecular envelope [Fig. 4(b)] but with different random phase
sets. Across the first 7200 iterations, the discontinuities apparent every 240 iterations are associated with the steady reduction in data apodization, while
the discontinuities apparent every 60 iterations are associated with switching of the DM algorithm parameter � between two values. In parts (a)–(c),
plotted from top to bottom, as a function of iteration, are the convergence indicator of the DM algorithm (�DM); the variance in the solvent region; the
Wasserstein distance between reconstructed and reference histograms in the protein region; the correlation between reconstructed and measured
Fourier amplitudes; the weighted mean absolute difference between reconstructed and model phases; and the correlation between the reconstructed and
model envelope. The metrics that could be followed during determination of an unknown structure are shown in black, while the metrics that assess
agreement with the known solution are shown in blue. (d) Consensus electron-density map determined from 10 independent runs, with the molecular
structure of the bacterial sodium channel (5hk7) shown in ribbon representation.



produces a single cluster of size 10, from a total of 20 runs. As

imposed by the distance threshold, the phase sets within this

cluster are all very similar (sample circular variance = 0.20,

Table 1). The 10 members of the cluster correspond to the true

solution, and have mean differences from the model phases of

54–56� [see e.g. Figs. 5(a) and 5(b)]. The remaining 10 runs did

not locate the true solution, and their mean differences with

model phases are all close to 90� [see e.g. Fig. 5(c)]. Although

the space group (I222) is achiral, only the solution with the

correct hand is generated in this instance. Averaging across the

cluster members produces a consensus phase set with mean

difference with model phases of 52�, indicating that small

residual random errors in the solution estimate are removed

by averaging. Fig. 5(d) shows the reconstructed density,

together with the refined atomic model from the PDB.

The solution was located for 22 of the 42 test cases, with

final mean differences between the consensus and model

phases ranging from 34 to 53� (Table 1). A maximum of one

cluster was generated in the chiral space groups (corre-

sponding to the true density), and a maximum of two clusters

generated in the achiral space groups (corresponding to the

true density, and the inversion of the true density). No false

positives were generated (i.e. no clusters corresponding to an

incorrect solution were identified). Hence if the phase deter-

mination procedure generates two or more highly consistent

phase sets, having mean absolute phase difference < 40–50�, this

unambiguously indicates that the phase retrieval problem has

been solved. This provides a simple and reliable diagnostic of

success, useful in the determination of unknown structures.

While conventional metrics, like the correlation between

measured and reconstructed Fourier amplitudes, do some-

times indicate that a solution the phase problem has been

located (Fig. 5), the consistency of the final phase sets

produced by the algorithm is a much more robust indicator of

success.

In the achiral space groups, if the low-resolution molecular

envelope is well discriminated from its inverse (e.g. 5hk7, 4fzn,

4asn, 4tpl, Supplementary Table S2) then the hand of the

reconstruction is fixed by the initial imposition of the

envelope. In contrast, if the low–resolution molecular

envelope is similar to its inverse (e.g. 4c94, 2xol, 2vvx, 3me2,

Supplementary Table S2), densities with either hand emerge.

Solutions obtained at varying resolution are illustrated in

Fig. 6. In contrast to the envelope determination step, the

success of the phase determination step is clearly tied to the

solvent content. Across the 42 test cases, the breakdown is

given in Table 2 [see also Fig. 3(b)].

If the phase determination step is initiated without initial

imposition of a low-resolution molecular envelope (i.e. a

single-stage phase determination procedure is adopted) the

result is always a net reduction in efficiency (i.e. the solution is

located with lower frequency). We executed a single-stage

phase determination procedure for three test cases presenting

varying levels of overall difficulty. The comparative results are

shown in Table 3. While in some cases, the loss in efficiency

will be tolerable, in other cases the loss in efficiency is likely to

be severe and could preclude location of the solution in a

reasonable amount of time.

Finally, we note that for some test cases where our proce-

dure is presently unable to determine a solution, there are

indications that the problem is tractable. One example is 4zmx

(Kudo et al., 2016) (solvent fraction 0.71), where a correct low-
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Table 2
Overall success rate for the phase determination procedure as a function
of solvent content.

Solvent fraction
Raw number of
structures determined Success rate (%)

0.75 < solvent fraction < 0.85 13/15 87
0.70 < solvent fraction < 0.75 9/15 60
0.60 < solvent fraction < 0.70 0/12 0

Figure 6
Details of the reconstructed electron density for selected test cases at
varying resolution. (a) 3u6u (Sundaresan et al., 2012) (solvent fraction
0.74, 1.92 Å resolution). (b) 4bsj (Leppänen et al., 2013) (solvent fraction
0.74, 2.50 Å resolution). (c) 3als (Hatakeyama et al., 2011) (solvent
fraction 0.79, 3.00 Å resolution). (d) 4asn (Aylett & Löwe, 2012) (solvent
fraction 0.76, 3.50 Å resolution). In each instance a portion of the
reconstructed density is displayed together with the refined atonic model
in stick representation. Zoning was applied to visualize the relevant
subregion of each map.



resolution phase set repeatedly starts to form during the phase

determination step, but the solution is lost as the resolution of

the image reconstruction increases throughout the runs.

Across the 20 runs, the smallest final mean difference with

model phases is 81�. It is likely that further improvements in

the parameterization of the procedure will bring such cases

within scope of the method.

3.4. Practical issues: space group ambiguity and errors in the
estimation of the solvent fraction

In real cases there are several additional issues to be dealt

with.

One of these is space group ambiguity. There are 11 enan-

tiomorphic space group pairs (Nespolo et al., 2018) that cannot

be discriminated based on the diffraction data alone. In such a

case it is necessary to run the calculations in just one of the

possible space groups. If the wrong space group is selected, a

solution may be located, but the density map will have the

wrong hand. For example, if envelope and phasing calculations

for test case 3als (Hatakeyama et al., 2011) (space group P65)

are carried out in the enantiomorphic space group P61 an

envelope coalesces which is the mirror image of the true

envelope. At the phase determination step a consistent solu-

tion is found, however inspection of the density map shows

that the helices are left-handed, indicating that the true space

group is P65.

Potentially more problematic is the issue of the unknown

solvent content. In some cases, particularly with small unit

cells, there may be no ambiguity in this parameter, as any

reasonable assumptions about the crystal packing density will

lead to a unique answer (Weichenberger et al., 2015).

However, in general, there may be some uncertainty about the

exact number of molecules in the asymmetric unit, and hence

the total solvent fraction. We have performed some preli-

minary exploration of this issue with test case 3als (Hata-

keyama et al., 2011) (space group P65, with four molecules in

the asymmetric unit, and solvent fraction 0.791). When using

the correct solvent fraction, the solution was easy to locate for

3als, with all of the phase determination runs converging to the

correct result (Table 1). The envelope and phasing calculations

were repeated using solvent fractions based on the incorrect

assumption of three molecules in the asymmetric unit (solvent

fraction 0.84) or five molecules in the asymmetric unit (solvent

fraction 0.74), both of which are physically plausible.

With the solvent fraction set too low, phase determination

was essentially unaffected with 10/10 runs converging to the

solution, and a mean absolute difference between consensus

and model phases of 39�. This is in fact better than the 44�

achieved using the correct solvent fraction (Table 1). Under-

estimation of the solvent fraction is consistent with the solu-

tion, and hence the result is unsurprising, although the lower

solvent fraction does provide a weaker constraint on the

density.

With the solvent fraction set too high, phase determination

was severely impacted, with only 1/10 runs progressing toward

the solution (and that run stalling with a mean absolute

difference of 67� with model phases). Since overestimation of

the solvent fraction is inconsistent with the solution (it must

suppress density in the protein region), this is also expected.

The result is diagnostic of overestimation of the solvent

fraction.

4. Discussion

Solvent flatness has long been known to provide a powerful

phase constraint in protein crystallography. We have shown

here that the solvent flatness constraint, coupled with infor-

mation on the protein density value distribution, is strong

enough to effectively solve the phase problem ab initio, for the

majority of high-solvent-content crystals, providing that an

algorithm with good global search capabilities is employed.

The feasibility of directly phasing diffraction data from high-

solvent-content protein crystals has been predicted theor-

etically (Millane & Arnal, 2015) and demonstrated practically

(He & Su, 2015; Jiang et al., 2018; He & Su, 2018; Jiang et al.,

2019), but so far no general method has emerged. This study

establishes the practicality of direct phasing for high-solvent-

content crystals, subject to a reasonable estimate for the

solvent fraction. The procedure we have implemented is

unsupervised and does not require tuning or case–based

decision making. Tested on a randomly selected set of 42

structures at modest resolution, it routinely succeeds when the

solvent fraction is greater than 0.70, and is extremely likely to

succeed when the solvent fraction is greater than 0.75. Preli-

minary tests suggest that the procedure is robust to errors in

the assumed solvent content of the crystal.

While already providing a viable method for structure

determination, it is probable that the approach can be further

improved. The results reported here provide a benchmark

against which future developments can be evaluated. In

particular, the success of the algorithm, at both the envelope

determination and phase determination steps, is quite sensi-

tive to the apodization scheme; the parameter � which

controls the behavior of the Difference Map algorithm; and
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Table 3
The effect of initial imposition of the molecular envelope of the efficiency of the phase determination step.

Frequency of convergence to the correct solution (allowing for inversion)

PDB ID/solvent fraction/
resolution (Å)

With imposition of the estimated
envelope (two-stage procedure)

Without imposition of the estimated
envelope (single-stage procedure)

4bex/0.73/2.80 16/20 4/20
4bsj/0.74/2.50 5/20 1/20
4tpl/0.73/2.90 4/20 0/20



the filter radius used during molecular envelope determina-

tion, amongst other variables. Developing and testing more

sophisticated schemes for controlling these parameters is one

focus of our current work.

Exactly how far the reach of this algorithm can be extended,

without introducing stronger constraints on the density func-

tion is presently unclear. About 4.5% of protein crystals are

expected to have solvent fraction greater than 0.7, but 19%

will have solvent fraction greater than 0.6, and 52% will have

solvent fraction greater than 0.5 (Weichenberger & Rupp,

2014). Hence, even a small lowering of the threshold solvent

content for applicability of the method would bring many

more structures into reach. There are more powerful image

constraints that might be applied in the protein region, the

most obvious of these being non-crystallographic symmetry

(NCS). NCS is commonplace (Kleywegt, 1996) and is

frequently exploited for conventional phase refinement

(Kleywegt & Read, 1997). This can be seen in Supplementary

Table S1, where 57% (24/42) of the test cases have NCS, which

was not used as a constraint in our phase determination

protocol. However, it is challenging to implement a symmetry

constraint in any general fashion, because the nature of any

symmetry present, and the position and orientation of any

symmetry elements, are all a priori unknown. While it might

be possible to deduce the order of the rotational symmetry

prior to phasing (Blow, 1976; Sawaya, 2007), translational

parameters, in particular, would need to be co-determined

with a symmetry-constrained density, significantly increasing

the complexity and difficulty of the problem. There has been

some work in this area (He et al., 2019), but the resulting

algorithm was very complicated, and appears unlikely to be

generally applicable. If better methods for detecting and

exploiting molecular symmetry can be devised, that would

greatly increase the reach of the algorithm. However, there

may be other constraints, reflecting generic properties of the

protein density, that will also prove effective in this regard.

Because of dramatic recent advances in protein structure

prediction (Jumper et al., 2021; Lupas et al., 2021), molecular

replacement is becoming the predominant method for

obtaining initial phase estimates in protein crystallography.

However, particularly at modest resolution (<2.5 Å) there is

the potential for significant model bias (Adams et al., 1999;

DiMaio et al., 2011) when using this approach. We have shown

that ab initio phase determination using iterative projection

algorithms can be effective with this kind of data, and will

produce solutions free of any model bias. It may be that a

hybrid procedure, where the algorithm we described is initi-

ated with model-based phase estimates, subject to some

limited randomization, would also be effective in reducing or

eliminating bias.

Some computational aspects of our approach deserve

comment. The procedure employed for ab initio phase

determination is obviously decomposable into many identical

and fully separable subtasks. These are the individual runs,

initiated with random phase sets, that are performed during

both the envelope and phase determination steps. Parallel-

ization of these steps makes the procedure relatively rapid to

perform. The implementation of the approach we have

publicly released is fully parallelized.

A two–stage procedure has been adopted for reasons of

computational efficiency (i.e. because it decreases the overall

number of iterations of the algorithm required to locate the

solution). For some test cases the phase determination

problem is relatively easy, and a separate envelope determi-

nation step is not strictly necessary, as a randomly initiated

phase-determination step, with gradual resolution extension,

would converge to the solution often enough to be viable

(Table 3). However, in more difficult cases a single-stage

algorithm may converge to the solution extremely sporadically

from a completely random starting point. This results in the

execution of many lengthy phase-determination runs, the vast

majority of which are unsuccessful. However, if an approx-

imate molecular envelope is first determined, and imposed at

the very start of the phase determination procedure, efficiency

is always improved (Table 3). A key observation is that a

correct envelope often coalesces at low resolution before a full

solution to the phase problem is located (Fig. 1). Hence, the

envelope can be efficiently computed at low resolution, and

used to effectively bias the initialization of the phase deter-

mination procedure at a higher resolution. The envelope

determination calculations can be carried out quite rapidly,

because a coarse grid can be used to represent the density, and

an envelope typically coalesces in a relatively small number of

iterations (Fig. 1).

In summary, we present a general-purpose, unsupervised, a

priori phasing procedure for diffraction data of modest reso-

lution, applicable to protein crystals with a solvent content

greater than about 70%. The method is based on the use of an

iterative projection algorithm to solve the global constraint

satisfaction problem, with rigorous incorporation of solvent

flatness and histogram constraints. Computational efficiency is

improved by breaking the problem down into separable

envelope-determination and phase-determination stages.

Clustering procedures are used to identify and promote

correct solutions. At the phase determination step, the emer-

gence of highly consistent phase sets (mean absolute phase

difference < 40–50�) from different randomly initiated runs, is

a simple and reliable indicator of success. Such phase sets

always correspond to the solution. Tests on 42 previously

determined structures (solvent fraction 0.60–0.85, resolution

1.9–3.5 Å), selected at random, demonstrate the effectiveness

of the algorithm. The implementation is based on the Clipper

crystallographic library (Cowtan, 2003) and the code is

publicly available. The algorithm has immediate practical

application to crystals with high solvent content. With the

incorporation of additional constraints on the protein density,

the approach has potential to be effective for crystals with

much lower solvent content.
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