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Determination of lattice parameters from 3D electron diffraction (3D ED) data

measured in a transmission electron microscope is hampered by a number of

effects that seriously limit the achievable accuracy. The distortion of the

diffraction patterns by the optical elements of the microscope is often the most

severe problem. A thorough analysis of a number of experimental datasets

shows that, in addition to the well known distortions, namely barrel-pincushion,

spiral and elliptical, an additional distortion, dubbed parabolic, may be observed

in the data. In precession electron diffraction data, the parabolic distortion leads

to excitation-error-dependent shift and splitting of reflections. All distortions

except for the elliptical distortion can be determined together with lattice

parameters from a single 3D ED data set. However, the parameters of the

elliptical distortion cannot be determined uniquely due to correlations with the

lattice parameters. They can be determined and corrected either by making use

of the known Laue class of the crystal or by combining data from two or more

crystals. The 3D ED data can yield lattice parameter ratios with an accuracy of

about 0.1% and angles with an accuracy better than 0.03�.

1. Introduction

Three-dimensional electron diffraction (3D ED) (Kolb et al.,

2007; Zhang et al., 2010) has been undergoing rapid devel-

opment in recent years (Gemmi et al., 2019). Structure solu-

tion is relatively easy, and dynamic refinement provides

accurate structure models (Palatinus et al., 2017) and also

enables absolute structure determination (Brázda et al., 2019).

However, the accuracy of the lattice parameters remains low,

with an order of magnitude or lower accuracy than single-

crystal X-ray data, and even worse than that compared with

powder X-ray data. The reasons for this poor accuracy are the

omission of the fact that magnification is dependent on lens

excitation, instrument-induced geometric distortions present

in the data, mechanical instabilities of the microscope goni-

ometer and, in the case of beam-sensitive samples, crystal

structure changes induced by electron beam damage (see the

example for borane at http://pets.fzu.cz/). In 2D diffraction

patterns, elliptical, barrel-pincushion and spiral distortions

caused by aberrations of electromagnetic lenses are well

known and have been analysed several times (Hall, 1966;

Williams & Carter, 2009; Capitani et al., 2006; Mugnaioli et al.,

2009; Mitchell & Van den Berg, 2016; Palatinus et al., 2019;

Bücker et al., 2021). Hüe et al. (2005) analysed the geometric

distortions in images. Disparate attempts to address some of

the distortion problems connected with the 3D reconstruction

of reciprocal space can be found (Kolb et al., 2008; Smeets et

al., 2018; Clabbers et al., 2018; Ångström et al., 2018; Mahr et

al., 2019). However, a thorough and deep analysis of thePublished under a CC BY 4.0 licence
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distortions in 3D ED data and their correlation with and

impact on the lattice parameters has not yet been reported.

The effects leading to inaccurate lattice parameters can be

divided into three main categories:

(i) Optical distortions: distortions of the diffraction pattern

introduced by the optics of the electron microscope.

(ii) Mechanical instabilities: distortions of the diffraction

pattern induced by the imperfect mechanics of the microscope,

mainly the goniometer, and possibly by the sample properties,

e.g. movement of the crystal on the support membrane during

the experiment.

(iii) Radiation damage: in this case the lattice parameters of

a beam-sensitive material often expand during the experi-

ment, which induces an apparent change in magnification.

The effect of the distortions is twofold. First, the determined

unit-cell geometry may be strongly distorted, with severe

consequences ranging from problems with identification of the

phase in databases or an inability to distinguish different

phases having similar lattice parameters simultaneously

present in the material, through problems with the determi-

nation of the crystal system, to the simple fact that one of the

crucial results of structure determination – the unit-cell

parameters – are not well determined. Second, the low accu-

racy of the predicted positions of the reflections on the

diffraction patterns leads to problems with intensity integra-

tion.

In three consecutive publications, we will analyse all these

effects and provide a pathway to accurate lattice parameter

determination from 3D ED data, as well as an assessment of

the limitations on the achievable accuracy. In this paper (Part

I), we focus on the effects of the microscope optics on the

distortions of the diffraction patterns and thus also on the

determination of the lattice parameters. We assume that the

optical distortions are constant within a given dataset. We

analyse the distortions in static-beam geometry and

precession-assisted diffraction patterns. When the distortions

do not change within a dataset, the static-beam geometry is

then also an accurate model for the continuous-rotation

geometry (Nederlof et al., 2013; Nannenga et al., 2014), which

is nowadays the most popular one for data acquisition. In the

next paper (Part II; Brázda & Palatinus, 2023a), we will discuss

the effect of mechanical instabilities, changes in geometry

during the experiment, which inevitably bring about changes

in distortions, and the effect of radiation damage. In the final

paper (Part III; Brázda & Palatinus, 2023b), the problem of

calibrating the distortions will be addressed and the applica-

tion of the calibrations for obtaining accurate lattice para-

meters even for low-quality data will be shown.

2. Experimental

All theoretical developments presented in this work are illu-

strated on experimental 3D ED data. We used lutetium

aluminium garnet (LuAG, Lu3Al5O12 , Ia3d, a = 11.9084 Å at

100 K), which is very stable in the electron beam and provides

high-quality data. A large monocrystal of LuAG was crushed

in an agate mortar and the powder was suspended in water. A

drop of the suspension was deposited on a Cu holey-carbon

transmission electron microscopy (TEM) grid.

Data were collected on an FEI Tecnai G2 20 transmission

electron microscope operated at 200 kV with an LaB6

cathode, equipped with an Olympus SIS Veleta CCD camera

(14 bit, 2048 � 2048 pixels) and a Nanomegas Digistar

precession unit. The tilt step during the data acquisition was

1.0� and the � tilt ranges are given in Table S1 in the

supporting information.

If precession electron diffraction (PED) was used, the

nominal precession angle was 1.0�. This value was more

precisely determined during data processing. The PED

method, which is often used in 3D ED experiments, is

performed with a double conical beam-rocking system that

uses double-deflection coils above (beam-deflection coils) and

below (image-deflection coils) the specimen (Vincent &

Midgley, 1994). In the process, the electron beam is precessed

under a certain tilt angle with respect to the optical axis using

the beam-deflection coils in the illumination lens system.

Below the specimen, the displacement of the electron beam

from the optical axis is compensated by using the image-

deflection coils in the image-forming lens system (Fig. 1).

Data were measured with a Gatan cryo-tomography holder

at 100 K to prevent contamination and to minimize possible

beam damage. Data were recorded in microdiffraction mode

with a 10 mm condenser lens aperture and at variable camera

lengths. All data were processed with the software PETS2

(Palatinus et al., 2019).

More details about individual datasets used in this article

are given in the supporting information, Section S1.

3. Optical distortions – theoretical aspects

A transmission electron microscope is an electron-optical

system. All elements of the system, be it lenses, apertures,

deflectors or stigmators, deviate from ideal optical elements

and introduce aberrations to the image. While in TEM

imaging the main concern caused by the presence of the

aberrations is the decreased resolution, in diffraction the main

concern is the shift in the position of the diffracted beams, i.e.

geometric distortions of the diffraction pattern.

In the most general terms, each point x, y in the ideal

diffraction pattern is shifted to x0, y0 in the experimental
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Figure 1
A schematic ray diagram of the two static electron beam experiments
simulating a precession experiment (beam tilt and image tilt). The phases
of the image tilt are 0� (tilt in the xz plane) and 90� (tilt in the yz plane).



pattern due to the distortions, and our aim is to determine

x0, y0 as a function of x, y with a small number of parameters

describing the optical distortions.

The literature on optical distortions is quite rich, but it is

mostly focused on distortions in the images (Williams &

Carter, 2009; Rose, 2008; Hawkes, 2015; Krivanek et al., 1999).

Work focusing on distortions in the diffraction patterns

commonly discusses only spiral, barrel-pincushion and ellip-

tical distortions (Fig. 2). In order to have the most general

description of the distortions, for which the common distor-

tions are simple special cases, we use a general description of

the distortions using trigonometric series. In this description,

the distortion is decomposed into its radial and tangential

component so that we have

x0 ¼ xþ ð�r cos ’��t sin ’Þ;

y0 ¼ yþ ð�r sin ’þ�t cos ’Þ;
ð1Þ

where �r is the radial component of the distortion and �t is

the tangential component of the distortion (Fig. S1). ’ is the

azimuth of the point x, y: ’ = arctan2(y, x). We also define r as

the length of the vector (x, y): r = (x2 + y2)1/2.

Both components of the distortions are periodic functions

of the azimuth, and they are thus conveniently expanded in a

cosine series:

�r ¼
XN

n¼0

�nðrÞ cos nð’� ’r;nÞ
� �

; ð2Þ

�t ¼
XN

n¼0

�nðrÞ cos nð’� ’t;nÞ
� �

: ð3Þ

The coefficient n in the expansion represents the periodicity of

the member of the series.

Finally, the functions �n(r) and �n(r) express the depen-

dency of the distortion on the length r of the vector (x, y).

They can be conveniently expressed as polynomials:

�nðrÞ ¼
XM

m¼1

�nmr m; ð4Þ

�nðrÞ ¼
XM

m¼1

�nmr m: ð5Þ

Such polynomial expansion (m is the degree of the poly-

nomial) is commonplace in the analysis of optical aberrations,

and it allows individual terms of the general expansion to be

related to established ‘pure’ distortion types (see below).

Combined together, the general expressions of the radial

and tangential distortions of a point (r, ’) become:

�r ¼
XN

n¼0

cos nð’� ’rnÞ
� �XM

m¼1

�nmr m

( )
; ð6Þ

�t ¼
XN

n¼0

cos nð’� ’tnÞ
� �XM

m¼1

�nmr m

( )
: ð7Þ

The parameters ’rn, ’tn, �nm and �nm need to be determined

either by calibration of the microscope or by refinement

against diffraction data.

Note that m runs from 1, i.e. the polynomial does not have a

constant term. This means that the point (0, 0) has no distor-

tion. This point corresponds to the position of the optical axis

of the microscope, where no geometric distortions are

expected, and we denote it as the centre of distortions. The

existence of a unique point with no distortion assumes that all

the optical elements in the microscope are well aligned and

share the same optical axis. In the following, we assume this

premise holds.

The centre of distortions does not, in general, coincide with

the position of the non-diffracted (primary) beam. The values

r and ’ in equations (1)–(7) thus need to be calculated from

the centre of distortions and not from the position of the

primary beam. When the primary beam does not follow the

optical axis, the distortions also affect its position. The position

of the centre of distortions in the experimental data used in

this work is stable and very close to the centre of the detector,

although not exactly on the centre (Fig. 3). Its position is

reproducible at different excitations of the lenses and varying

beam and image tilts.

The coefficients of the distortions �nm and �nm as defined in

equations (4) and (5) have units of Å�(m�1). However, as the

numbers are small, it is more convenient – and in the case of

elliptical distortion also customary – to provide the values in

percent, without explicitly stating the units. We therefore

adopt the convention of dropping the units and giving the

values of the coefficients in percent. Formally, this

can be introduced by defining normalized coefficients

�norm
nm ¼ �nm=�

ref
nm, with �ref

nm = 1 Å�m�1, and analogously for

�nm. �norm
nm is then dimensionless and its value can be given in

percent. In the following we drop the superscript ‘norm’ from

the labelling of the coefficients.

The common image aberrations on one hand and diffraction

pattern distortions on the other originate from the same
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Figure 2
Distortions present in static beam electron diffraction data (blue denotes
the undistorted pattern and orange the distorted pattern). (a)
Magnification error, (b) in-plane rotation, (c) barrel-pincushion distor-
tion, (d) spiral distortion, (e) elliptical distortion and (f) parabolic
distortion.



physical effects and their mathematical descriptions are

related. However, traditionally, the corresponding effects are

named differently in imaging and in diffraction. These well

known distortions correspond to specific values of n and m in

equations (6) and (7), and possibly to a specific relationship

between the coefficients, and they are summarized in Table 1.

To the best of our knowledge, the distortion known in the field

of imaging as coma (Smith, 2007) has not yet been described in

the context of diffraction patterns and thus it does not have a

commonly accepted name. In line with the tradition of naming

the geometric distortions in diffraction by the typical shape

they induce, we suggest naming this distortion parabolic

distortion, because it changes a line perpendicular to the axis

of the distortion to a parabola [Fig. 2(f)].

We have analysed the residual errors between the observed

and expected positions of the reflections in our data after the

refinement of the distortions listed in Table 1. Fig. S2

demonstrates the drop in the residual distances between

expected and observed peak positions in dataset 1 (DS1) by

more than an order of magnitude when the distortions are

refined. Within the residuals, we have not been able to identify

any other distortion with an amplitude higher than its esti-

mated uncertainty. The next distortion, which is allowed for

systems with a centre of symmetry, is n = 2, m = 3. This

distortion should have the radial and tangential components

equal in magnitude. The refinement in DS1 resulted in a radial

amplitude equal to 0.008 (6)% and a tangential part equal to

0.003 (6)%, i.e. insignificant and much smaller than the

amplitude of the other distortions. Interestingly, Hüe et al.

(2005) seem to have identified a distortion with n = 2, m = 3 in

their analysis of the transmission electron micrographs, thus in

the imaging mode. Other distortions might be present in

diffraction data from other microscopes. We also did not

analyse the distortions potentially caused by image correctors

or energy filters. The formulation given above [equations (6)

and (7)] is, however, designed to be sufficiently general to

allow for the description of these distortions too. In the

following, we limit the discussion only to the six distortions

presented in Table 1 and observed in our data. First, the well

established distortions are briefly illustrated, then the para-

bolic distortion is introduced, and finally the effect of these

distortions on PED data is revealed.

3.1. The ‘standard’ distortions

The first five distortions in Table 1, i.e. magnification,

rotation, barrel-pincushion, spiral and elliptical, are well

known. They can be related to the settings of the microscope

(as will be discussed in detail in Part III of this article series),

and they are always present to some extent in the data. If the

lattice parameters are known, they can all be refined simul-

taneously against a single 3D ED dataset. See Section 4 for a

discussion of a refinement with unknown lattice parameters.

As an illustration, Table 2 shows the parameters of these

distortions refined against the datasets DS1, DS2 and DS3 (see

Section 2 and Section S1 for a description of the datasets).

These are three standard datasets collected during one session

on three different crystals with careful alignment of the

microscope, but without any specific attempt to minimize the

distortions.

Without correction of these distortions, the lattice para-

meters differ from the expected cubic unit cell by up to 0.07 Å

and 0.40� (see Section 5.1 for more details). This is because the
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Table 1
Relationship between standard distortions and the coefficients of the general description.

Name of the distortion in
the diffraction pattern

Name of the equivalent aberration
in the image Radial component Tangential component

Magnification correction – n = 0, m = 1 –
In-plane rotation – – n = 0, m = 1
Barrel-pincushion Spherical aberration n = 0, m = 3 –
Spiral – – n = 0, m = 3
Elliptical Second-order astigmatism n = 2, m = 1 n = 2, m = 1, �21 = �21, ’t2 = ’r2 � �/4
Parabolic Coma n = 1, m = 2 n = 1, m = 2, �12 = �12/3, ’t1 = ’r1 � �/2

Figure 3
The centres of distortions refined against tens of 3D ED datasets for
diffraction lens excitations equal to eucentric focus (green), 102.8% of the
eucentric focus (orange) and 105.6% of the eucentric focus (blue) for
camera lengths of 1000 mm (empty circles) and 1200 mm (full circles).
The average position is marked by a red dot. The physical pixel size is
7.4 � 7.4 mm and the number of pixels is 1024 � 1024. The outer red
rings mark distances of 0.03 Å�1 from the average position of the
distortion centre for the two camera lengths.



2D distortions deform the reconstructed reciprocal space

(Fig. S3).

A few notes on the individual distortions follow.

(i) The magnification distortion correlates completely with

the scaling of the lattice constant and cannot be determined

without knowing the lattice parameters. This is due to the very

short wavelength of electrons and thus a very flat Ewald

sphere.

(ii) The rotation distortion is equivalent to a change in the

orientation of the tilt axis. Refinement of the tilt axis is part of

the data reduction step in most data processing programs, and

this distortion is therefore in general not even considered as a

distortion. However, as the orientation of the tilt axis is a

result of the microscope setting and alignment, it is useful to

consider it as a separate distortion that can be calibrated.

Moreover, it correlates with the spiral distortion. Thus,

without correcting for the spiral distortion, the refined posi-

tion of the tilt axis will not be correct. Rotation distortion also

correlates with the orientation of the unit cell in reciprocal

space, and thus it correlates with the orientation matrix

(Section 4.1), so simultaneous refinement of the rotation

distortion and the orientation matrix may give biased results.

Our experience is that the best results are obtained when the

unit cell (orientation matrix) is refined with the spiral distor-

tion while the rotation distortion is fixed. The correction for

the spiral distortion then allows for the correct determination

of the tilt axis. This workflow will be used in both worked

examples presented with this article (detailed manuals for the

examples are presented in the supporting information,

Section S4). However, if we cannot or do not want to refine the

orientation matrix, it is necessary to refine the rotation and

spiral distortions together to arrive to the correct geometry.

(iii) The barrel-pincushion and spiral distortions are cubic

distortions (m = 3). Thus, they are very small at low resolution,

while increasing very steeply at higher resolution. As an

example, the amplitudes �03 = 0.21 (1)% and �03 = 0.47 (1)%

obtained for DS1 (calibration constant 0.003693 Å�1 pixel�1)

mean that a reflection with a resolution of 0.5 Å�1 would be

shifted by 0.07 pixels radially and by 0.16 pixels tangentially,

while a reflection with a resolution of 1.5 Å�1 would be shifted

already by 1.92 pixels radially and 4.31 pixels tangentially.

(iv) The elliptical distortion is, in general, the main source of

errors in the lattice parameters apart from mechanical

instabilities. It is a linear distortion (m = 1). Even relatively

small amplitudes of this distortion lead to appreciable changes

in the lattice parameters (Section 4).

3.2. The parabolic distortion

The distortions described in the previous section are

essentially always present in the data to some extent. This is

not the case for the parabolic distortion. This distortion, being

the diffraction counterpart of the coma, appears only when

two conditions are met simultaneously:

(i) A shift of the beam away from the optical axis or the

image tilt is applied to the ray path through the microscope

column.

(ii) The diffraction lens is not exactly focused on the back

focal plane.

The first condition is met typically when the crystal is

tracked by the beam during a 3D ED experiment (Plana-Ruiz

et al., 2020), but it may also appear in techniques within the 4D

scanning tunnelling electron microscopy (STEM) family

(Ophus, 2019), serial ED (Bücker et al., 2021; Smeets et al.,

2018; Wang et al., 2019) or automated crystal orientation

mapping (ACOM) (Rauch et al., 2010; Rauch et al., 2021).

Image tilt is applied and hence this distortion is also induced in

PED (Vincent & Midgley, 1994; Plana-Ruiz et al., 2018). The

second condition arises frequently in the micro- or nano-

diffraction modes or in STEM mode, when a small probe size

is used. The focus of the diffraction lens then needs to be

adjusted to compensate for beam convergence and focus the

diffraction pattern properly.

Both beam shift and image tilt lead to similar types of

distortion. We discuss the beam-shift-induced distortions in

the main text of this article, because it is present in all 3D ED
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Table 2
Refined distortion parameters for datasets DS1, DS2 and DS3.

DS1 DS2 DS3

Distortion Amplitude (%) Phase (�) Amplitude (%) Phase (�) Amplitude (%) Phase (�)

Magnification �0.016 (9) – 0.031 (10) – 0.020 (11) –
Barrel-pincushion 0.211 (7) – 0.201 (8) – 0.200 (8) –
Spiral 0.463 (7) – 0.446 (7) – 0.452 (8) –
Elliptical 0.394 (4) 67.7 (3) 0.391 (4) 67.0 (3) 0.382 (4) 67.3 (3)

Figure 4
(Left) A diffraction frame and (right) its simulation, taken from dataset
DS4. The arrows indicate an aperture limiting the field of view of the
diffraction pattern, and the white cross with coordinates shows the
refined position of the optical axis of the microscope (distortion centre)
on the 2 k � 2 k detector.



geometries (static frames, continuous rotation, precession

assisted). Beam-tilt-induced distortions give us a precious

insight into the problems of precession-induced distortions. A

thorough analysis of them may be found in the supporting

information, Sections S2 and S3.

For an illustration of the beam-shift-induced distortions we

used DS4 collected to a very high resolution (>3 Å�1) and

with a very high excitation of the diffraction lens (see Section

2 and Section S1 for details of DS4). Fig. 4 shows a diffraction

pattern obtained in this experiment.

During the collection of this dataset, the crystal was moving

and the primary beam was shifted to follow the crystal (Fig. 5).

As a result, the primary beam runs parallel to but away from

the optical axis. We have divided the dataset into eight subsets,

each containing 20 frames. The position of the primary beam

within these subsets changed only to a limited extent and each

subset can be approximately considered as coming from one

shifted position of the primary beam. The refinement of

distortions shows that, as the beam is shifted away from the

optical axis, additional distortions appear as a function of the

displacement of the primary beam from the optical axis. These

distortions are (i) a change in magnification, (ii) parabolic

distortion and (iii) additional elliptical distortion. The phases

of the parabolic and elliptical distortions are very well aligned

with the azimuth of the shift in the primary beam from the

optical axis. Fig. 6(a) shows the evolution of the amplitudes of

the magnification correction and parabolic and elliptical

distortions as a function of the distance of the primary beam

from the optical axis, and Figs. 6(b) and 6(c) show the

dependence of the phases of the parabolic and elliptical

distortions as a function of the azimuth of the shift vector.

3.3. Distortions in PED

It was shown in Section 3.2 and Section S2 that the distor-

tions (parabolic, elliptical and magnification correction) may

change their amplitude and phase with the shift in the beam or

tilt of the image. The changes are amplified by the excitation

of the diffraction lens out of its eucentric focus. If PED mode

is used, the beam and image tilt are constantly changing. As a

result, the distortions are also changing. In particular, the

phases of the elliptical and parabolic distortions change

together with the phase of the precessing beam. It is shown in

Appendix A that, if the phase of the parabolic distortion is

exactly equal to the phase of the image tilt, the image tilt

dependent parabolic distortion leads to a specific distortion of

the precession data, which shifts and splits the reflection

position as a function of its excitation error according to the

formulae

rSgPara ¼ �12

rSg

�
ð8Þ

tSgPara ¼ ��12r 2 1�
Sg

r�

� �2
" #1=2

; ð9Þ

where Sg is the excitation error of the reflection, � is the

precession angle expressed in radians and r is the distance of

the reflection from the centre of distortions. rSgPara and

tSgPara are the radial and tangential components, respectively,

of the shift in reflection position induced by the parabolic

distortion. The radial distortion thus changes linearly with

excitation error, while the tangential term causes tangential
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Figure 5
The movement of the crystal during data acquisition for DS4.

Figure 6
(a) The amplitudes of the magnification correction (orange), parabolic (blue) and elliptical (grey) distortions as a function of distance between the
primary beam and the optical axis. (b) and (c) The dependence of the phases of (b) the parabolic (blue) and (c) the elliptical (grey) distortions on the
azimuth of the difference vector of the primary beam from the optical axis.



splitting of the reflection. The splitting effect is clearly visible

in the high-resolution part of the precession diffraction data

(Fig. 7), and is often mistakenly attributed to wrong alignment

of the precession itself. If the phase offset between the para-

bolic distortion and image tilt were 90�, the splitting would be

caused by the radial part of the parabolic distortion (and thus

it would be along the radial direction) and the tangential

component would induce tangential reflection shift. Any other

phase offset would cause both reflection shift and splitting

originating from both radial and tangential parts of the

parabolic distortion. Note that the amplitude of the tangential

part of the parabolic distortion is three times smaller than the

amplitude of the radial part (Table 1). Therefore, the effects

caused by the radial part are three times more pronounced

than those caused by the tangential part.

The image tilt dependent elliptical distortion in the data

leads to a distortion given by the formulae (Appendix A)

rSgElli ¼ �21r 2
Sg

r�

� �2

�1

" #
ð10Þ

tSgElli ¼ � 2�21

Sg

�
1�

Sg

r�

� �2
" #1=2

: ð11Þ

This term introduces a radial distortion, which is parabolic

with excitation error, and reflection splitting that has opposite

signs for the negative and positive excitation errors. In the case

of elliptical distortion, a phase offset of 90� with respect to the

image tilt phase would cause a change in the signs of the shift

and splitting. A phase offset of 45� causes the splitting to occur

in the radial direction and the shift in the tangential direction.

In the case of a zero phase offset for both parabolic and

elliptical distortion, a combination of the terms arising from

the parabolic and elliptical distortions results in an asymmetric

splitting of the reflections, with smaller splitting for one sign of

Sg (negative if both �12 and �21 are positive) and larger split-

ting for the other sign of Sg (Fig. 8). As the average �r is not

zero for a symmetric interval of Sg, the elliptical distortion also

introduces a net change in the average reflection position,

which results in an additional magnification correction of

��21r/3 (Appendix A).

To illustrate these findings we analyse dataset DS8 collected

with PED, precession angle 0.92�. The refined distortions are

summarized in Table S2 (parts A and C). The experiment was

done on the same crystal and with the same settings as dataset

DS5 (no PED). Comparing these experiments, we can see that

the magnification changed in the precession experiment, while

the elliptical distortion remained the same. Because the

observed beam shift induced parabolic distortion is small, the

elliptical distortion corresponds almost entirely to the intrinsic

one in both datasets.

In addition to these distortions, Sg-dependent terms have

appeared (Table S2 part C). These distortions have significant

amplitudes, and an appreciably improved fit to the data can be

obtained when the distortions are corrected (Fig. 7). This

result shows the importance of distortion compensation and

the general correctness of the applied model.

Further discussion of the relationship between the distor-

tions induced in the beam tilt and image tilt (double tilt)

experiment and in the precession-assisted data may be found

in Section S3.
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Figure 7
Comparisons of simulation (green) and experimental data (purple) for
PED data (DS9) when parabolic distortion effects are (a) omitted and (b)
considered. The overlaid brown circle outlines a resolution of 1 Å�1.

Figure 8
Excitation error (Sg)-dependent effects of the image tilt induced
parabolic and elliptical distortions on the position of a reflection, with
the distance from the centre of the distortions equal to 1.5 Å�1 and with
the amplitudes of the induced distortions the same as those found
experimentally for the PED experiment DS8. For the sake of clarity, the
phases of the distortions are set exactly to 0� so the radial components
cause only reflection shifts and the tangential components cause only
reflection splitting. The left-hand column shows the shift effects of the
radial components of (a) the parabolic distortion, (c) the elliptical
distortion and (e) their combination. Similarly, the right-hand column
shows the splitting effects of the tangential parts of (b) the parabolic
distortion, (d) the elliptical distortion and (f) their combination. Blue
lines correspond to phases of the precessed electron beam between 0 and
�, red lines correspond to phases between �� and 0, and purple lines
correspond to phases between �� and �.



4. Distortions and lattice parameters

Optical distortions introduce deformations of the recon-

structed 3D reciprocal space and thus they influence the

obtained lattice parameters. Examples of these effects are

demonstrated on a deformation of a cube in Fig. S3. It is

possible to compensate for the effects of the distortions by

calibration using a suitable material like LuAG. Thanks to this

procedure it is possible to break the correlation between

optical distortions and lattice parameters and obtain accurate

lattice parameters even for materials with compromised

diffraction data quality. The calibration procedures and the

application of the obtained calibrations to the data will be

described in Part III of this series. In this section we investi-

gate the relationship and correlations between the distortions

and lattice parameters, and show procedures which allow

simultaneous refinement of the distortions and lattice para-

meters. We discuss three distinct cases: known lattice

parameters and unknown distortion coefficients, unknown

lattice parameters, unknown crystal system and unknown

distortion coefficients, and finally unknown lattice parameters

and unknown distortion coefficients, but known crystal

system.

4.1. Case 1. Known lattice parameters

In this case the orientation matrix can be determined under

the constraint of known lattice parameters. The coefficients of

the distortions can then be determined to a good accuracy, as

demonstrated in Section 5.1.

This is an ideal case, however, which is not always available.

There are two main problems which do not allow lattice

parameters to be obtained from other sources like powder

X-ray diffraction. First, the material of interest may only be

available in a very small quantity or it may only be a minor

phase in the sample. Second, the lattice parameters may

change during the experiment due to the accumulated elec-

tron dose, which is often observed for molecular crystals and

other very beam-sensitive materials. These effects will be

discussed in Part II of this series.

4.2. Case 2. Unknown lattice parameters, unknown crystal
system and unknown distortions

This is the most challenging case. We need to determine

simultaneously the orientation matrix and the coefficients of

the distortions. This is a difficult task which is, in some cases,

impossible to solve. Nevertheless, it is worth investigating it in

detail. Two subcases are shown here, which differ in the

number of crystals for which diffraction data are available.

4.2.1. Only one crystal available. The distortions, if

uncorrected, will result in the deformation of reciprocal space

and, consequently, in distortion of the orientation matrix. An

important question to answer is whether or not the defor-

mation of reciprocal space due to the distortions is sufficiently

nonlinear to be decoupled from refinement of the orientation

matrix.

The standard approach to the determination of the orien-

tation matrix is the least-squares refinement of its parameters

that minimizes the distance between the predicted and

experimental reflection positions. We minimize the function S,

S ¼
X

i

xi;obs �Uhi

�� ��2; ð12Þ

where the vectors xi, obs are calculated from the reflection

positions on the diffraction patterns and the positional angles

of the crystal. U is the orientation matrix and hi are the vectors

of the reflection indices. If distortions are present, the correct

vectors xi, obs are not available, but distorted vectors xi, dist are

available instead. The refined matrix Udist will be different

from the correct matrix U. The difference can be expressed as

Udist = LU, where the matrix L describes the deformation due

to distortions.

In practice, the above general expression needs to be

modified slightly. Because the accuracy of the reflection

position is much higher in the plane of the diffraction pattern

than perpendicular to it, the distortions and also the unit cell

can be most accurately determined if only the reflection

positions in the plane of the diffraction pattern are considered.

This means that before the vectors xi, obs and Uhi are

compared, they are projected onto the plane of the diffraction

pattern. Appendix B describes the derivation of the matrix L

for the case of general distortion as well as for particular types

of distortion.

The general expression for the deformation matrix L in the

case of a single crystal is

L ¼ Iþ
15

8r5
max

�

2d11 d12
2 sin�max

�max þ
1
2 sin 2�max

0

d21
4 sin �max

�max þ
1
2 sin 2�max

d22 0

0 0 d22

0
BB@

1
CCA;

ð13Þ

with di j being elements of the matrix D that contains the

distortion coefficients,

D ¼
XN

n¼0; n even

8r4
max

ðn2 � 9Þ ðn2 � 1Þ

�

" XM

m¼1

�nm

rm
max

mþ 4

 !
1
2 ð3� n2Þ cos n’rn �n sin n’rn

�n sin n’rn 3 cos n’rn

� �

þ
XM

m¼1

�nm

rm
max

mþ 4

 !
n sin n’tn 3 cos n’tn

1
2 ð3� n2Þ cos n’tn �n sin n’tn

� �#
:

ð14Þ

In the above expressions, rmax is the maximum resolution of

the experimental data and �max is the maximum tilt, i.e. the

crystal is tilted between ��max and �max during the experi-

ment. Although apparently complicated, the expression

simplifies substantially for the typical distortions. As an

example, for pure elliptical distortion with amplitude �21 and

phase ’r 2 we obtain
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L ¼ Iþ �21

cos 2’r 2
ðsin 2’r 2Þ ð2 sin �maxÞ

�max þ
1
2 sin 2�max

0
ðsin 2’r 2Þ ð2 sin�maxÞ

�max þ
1
2 sin 2�max

� cos 2’r 2 0

0 0 � cos 2’r 2

0
B@

1
CA:
ð15Þ

This matrix equals the unit matrix only in the (unrealistic) case

of �max = � and ’r2 = �
4 ðmod �

2Þ. In all other cases it introduces

an appreciable error. An example with �max = 60�, �21 = 0.2%

and ’r 2 ¼
�
4 yields

L ¼

1 0:00234 0

0:00234 1 0

0 0 1

0
@

1
A: ð16Þ

Despite the very moderate amplitude of the elliptical distor-

tion, this matrix introduces an error of 0.27� between vectors

(1 0 0) and (0 1 0). It also introduces a difference of 0.0071 in

the length of Cartesian vectors (1 1 0) and (1 �1 0), i.e. a

difference of 0.46%.

Matrices for other types of distortion are summarized in

Appendix B, together with a discussion of their impact on the

lattice parameters.

It is of the utmost practical importance to know whether the

distortions are sufficiently nonlinear to allow a simultaneous

determination of the orientation matrix and distortion co-

efficients.

The distortions are, in general, a nonlinear function of the

coordinates xi , while the deformation matrix L is linear. Thus,

in principle, the distortion parameters and the orientation

matrix U should be refinable simultaneously from the

diffraction data. In practice, however, the distortions are

correlated with the elements of L . It is desirable to have a

means of quantification of this correlation, so that it can be

estimated whether simultaneous refinement of the orientation

matrix (and thus unit-cell parameters) and distortion coeffi-

cients is possible and reliable, or if the correlation prevents a

reliable combined refinement. The correlation can be

expressed by means of the standard Pearson correlation

coefficient �(L, d). This coefficient is derived in Appendix B

for the general form of matrix L .

The second important quantity is the residual error in

reflection positions that cannot be explained by the matrix L .

If this error is very small, then the refinement will not be

sensitive to the simultaneous refinement of the distortions and

the orientation matrix. This error can be expressed as the root-

mean-square deviation (RMSD) of the reflection positions for

a given distortion. RMSDs for various types of distortion are

also derived in Appendix B.

Individual distortions lead to the correlation coefficients

and RMSDs shown in Tables 3 and 4, with least-squares-

optimized matrix L .

Although the differences between the correlation coeffi-

cients may seem small and all of them appear high, in practice

a distortion with a correlation coefficient as high as 99% can

be refined against good 3D ED data, as long as the residual

RMSD is a sufficiently high fraction of the RMSD induced by

experimental noise. Thus, Tables 3 and 4 indicate that most

distortions can be refined. However, the magnification

distortion is perfectly correlated; it cannot be refined and

magnification must be calibrated. A particular case is the
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Table 3
Correlation coefficient �(L, d) for individual standard distortions.

Distortion General expression for �(L, d) Value for �max = 60�

Magnification 1 1

Rotation 2 sin2 �max

�maxð�max þ
1
2 sin 2�maxÞ

� �1=2

0.984

Barrel-pincushion 0.958 0.958

Spiral 90

49

2 sin2 �max

�maxð�max þ
1
2 sin 2�maxÞ

� �1=2

0.943

Elliptical cos2 2’r 2 þ
2 sin2 �max

�maxð�max þ
1
2 sin 2�maxÞ

sin2 2’r 2

� �1=2
cos2 2’r 2 þ 0:968 sin2 2’r 2

� �1=2

Figure 9
Correlation coefficients between the elliptical distortion and refinement
of the orientation matrix, plotted for elliptical distortion phases 0� (blue),
20� and 70� (yellow), and 45� (grey).



elliptical distortion. Fig. 9 shows a plot of the dependence of

the correlation coefficient on the maximum tilt angle �max and

the phase of the elliptical distortion. The plot illustrates that

�(L, d) is very high in all cases, and for ’r 2 = 0 it remains 100%

regardless of �max . Because the phase of the elliptical distor-

tion is not fixed, a component with ’r 2 = 0 always correlates

with the refinement of the orientation matrix, and elliptical

distortion can never be reliably refined together with the

unconstrained refinement of the orientation matrix.

4.2.2. Multiple crystals available. If multiple crystals of the

same phase (i.e. with identical lattice parameters) are

measured at different orientations of the crystal with respect

to the microscope, then the data can be combined and the

effect of distortions can be, to a large extent, decoupled from

the refinement of the orientation matrix. Expressed quanti-

tatively, assume that the orientation of crystal n is related to

the reference orientation by a rotation matrix Rn such that the

orientation matrices are related by Un = RnU1. Assuming the

microscope distortions are equal for both experiments, the

deformation matrices L1 and Ln will be related by

Ln ¼ RnL1RT
n . A deformation matrix resulting from a

combined refinement against all crystals can be obtained in a

way analogous to the case of only one crystal [Appendix B,

equation (46)]. The correlation coefficient can also be eval-

uated for such a combined deformation matrix.

Intuitively, if the orientations of the crystals involved in the

refinement are sufficiently different, the correlation between

the (common) lattice parameters and the distortions will be

substantially decreased. We illustrate this quantitatively for

the case of two crystals mutually rotated by 90� around z. The

matrix L for this case is derived in Appendix B, equation (64).

Fig. 10 shows a plot of the correlation coefficient as a

function of �max and the phase of the elliptical distortion. In

this particular case, the correlation coefficient never exceeds

0.65 and is essentially independent of the tilt range. The

refinement of lattice parameters and distortions is thus easily

possible and robust. Section 5.1 shows an example of such a

combined refinement.

4.3. Case 3. Known or reasonably assumed crystal system

Here U can be determined under the constraints of the

known crystal system. The strength of such constraints

depends, obviously, on the crystal system, and also on the

orientation of the investigated crystal and the nature of the

distortions.

Mathematically, this case is similar to the previous case, but

with the function S minimized under the constraint that the

lattice parameters must obey the restrictions given by the

crystal system. This can be achieved by applying the method of

undetermined Lagrange multipliers as shown in Appendix B.

A simple illustrative example is the case of an orthorhombic

crystal system with the lattice vector c parallel to z, and vectors

a and b rotated in the xy plane by an angle �. Although the

deformation matrix can be determined analytically, the

expressions are very complicated. Here we therefore give only

the plots of the resulting correlation coefficient for the phase

of elliptical distortion 0� and 45� and �max of 60�, and for
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Table 4
Root-mean-square deviations RMSD(L, d) for individual standard distortions.

Distortion General expression for RMSD(L, d) Value for �max = 60�

Magnification 0 0

Rotation �01rmax

3

5
1�

2 sin2 �max

�maxð�max þ
1
2 sin 2�maxÞ

� �	 
1=2 0:1392 �01rmax

Barrel-pincushion 0:1648 �03r3
max 0:1648 �03r3

max

Spiral �03r3
max

1

3
�

30

49

sin2 �max

�maxð�max þ
1
2 sin 2�maxÞ

� �	 
1=2 0:1925 �03r3
max

Elliptical

rmax�21�

3

5
1� cos2 2’r 2 �

2 sin2 �max

�maxð�max þ
1
2 sin 2�maxÞ

sin2 2’r 2

� �	 
1=2

rmax�21�

3

5
1� cos2 2’r 2 � 0:9677 sin2 2’r 2

� �� �1=2

Figure 10
The correlation coefficient for the elliptical distortion as a function of the
phase of the elliptical distortion in the case of two crystals mutually
rotated by 90� for �max of 20� (blue) and 60� (orange).



various orientations of the crystal axes with respect to the

reference coordinate system (Fig. 11). The plot shows that if

the crystal axes are perfectly aligned with the reference

coordinates (� = 0�) and the phase of the elliptical distortion is

0�, then the correlation coefficient is still 100%. However, as

soon as the crystal is rotated by only a few degrees, the

correlation drops. Thus, under symmetry constraints, the vast

majority of crystal orientations allow the refinement of ellip-

tical distortion, and only extremely special circumstances lead

to perfect correlation.

Some examples of this case are shown and discussed in

Section 5.1.

5. Case studies

5.1. Example 1. Breaking of the correlation between elliptical
distortion and lattice parameters

Accurate lattice parameters using single- and multi-crystal

approaches.

A detailed description of the refinements may be found in

Example 1 in the supplementary information. Datasets DS1,

DS2 and DS3 from three different crystals were measured

under the same conditions. Lattice parameters for the

distorted unit cells (no distortion corrections were applied

during the refinement) are summarized in Table 5.

Using single datasets for the determination of accurate

lattice parameters does not lead to convergence because of the

almost perfect correlation between lattice parameters and

elliptical distortion. We need either to use known lattice

parameters from X-ray powder diffraction (XRPD) (Section

5.1.1), assume a Bravais lattice (Section 5.1.2), or combine

these crystals into one dataset and refine the elliptical distor-

tion (Section 5.1.3) to determine the correct lattice para-

meters.

5.1.1. Known lattice parameters. Application of the known

cell from XRPD, which was fixed during the distortion

refinement, yielded the distortions for the three crystals given

in Table 2. The distortions were then fixed and the unit cell was

refined without any restrictions (Table 6) to show that the

deviations of the lattice constant a from 11.9084 Å and of the

angles from 90� as shown in Table 5 are due to optical

distortions.

5.1.2. Assumed Bravais lattice. We have assumed a mono-

clinic Bravais lattice to show the power of the unit-cell

symmetry constraint (monoclinic angle �). The unit-cell

setting was chosen on purpose in each dataset so that the angle

with the largest deviation from 90� was selected as the

monoclinic angle. This is the worst-case scenario – a poorly

fitting angle is not constrained by the monoclinic symmetry.

The last step in the unit-cell refinement was fixing the obtained

distortion corrections and refining the unit cell without any

constraint. Monoclinic constraint on the unit-cell symmetry

(Table 7) produced only slightly worse lattice parameters than

the very strong constraint using a known unit cell (Table 6).

When we compare the elliptical distortion parameters

(Table 8) obtained from the monoclinic cell constraint and

known cell constraint we can see that for DS1 and DS2 the

values of the amplitude differ by less than 10%, while for DS3

it differs by about 20%. Thus, using a much less strong

monoclinic symmetry constraint is enough to bring the value

of the elliptical distortion very close to its correct value.

However, note that, for some crystal orientations, even quite

high symmetries (all except cubic) do not warrant a successful

refinement of the elliptical distortion (See Section 4.2)
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Figure 11
The correlation coefficient for the elliptical distortion for refinement
under constraint of an orthorhombic crystal system. The horizonal axis
represents the rotation of the crystal lattice vectors away from the
orientation a || x. The phases of elliptical distortion 0� (blue) and 45�

(orange) are shown and �max was 60�.

Table 5
Lattice parameters from unconstrained refinement without distortion
compensation.

a (Å) b (Å) c (Å) � (�) � (�) � (�)

DS1 11.848 (1) 11.858 (3) 11.907 (1) 90.21 (1) 90.33 (1) 89.97 (1)
DS2 11.842 (1) 11.881 (2) 11.888 (2) 89.77 (2) 89.75 (1) 89.75 (1)
DS3 11.854 (1) 11.863 (3) 11.890 (1) 89.80 (1) 90.40 (1) 90.11 (1)

Table 6
Lattice parameters from unconstrained refinement with distortion
compensation obtained from known unit-cell constraint.

a (Å) b (Å) c (Å) � (�) � (�) � (�)

DS1 11.909 (1) 11.910 (2) 11.908 (1) 90.00 (1) 90.00 (1) 90.02 (1)
DS2 11.908 (1) 11.914 (2) 11.908 (2) 90.03 (2) 90.00 (1) 89.98 (1)
DS3 11.907 (1) 11.912 (2) 11.909 (1) 90.001 (3) 90.00 (1) 90.00 (1)

Table 7
Free unit-cell refinement with distortions obtained from monoclinic unit-
cell symmetry constraint induced during simultaneous unit-cell and
distortion refinement.

a (Å) b (Å) c (Å) � (�) � (�) � (�)

DS1 11.917 (1) 11.913 (3) 11.903 (1) 90.00 (1) 90.02 (1) 90.00 (1)
DS2 11.899 (1) 11.915 (2) 11.909 (2) 90.02 (2) 90.03 (1) 89.99 (1)
DS3 11.900 (1) 11.910 (3) 11.909 (1) 90.00 (1) 90.08 (1) 90.01 (1)



5.1.3. Combination of crystals. Combination of the three

crystals into one dataset.

The combination proceeded as follows. Each dataset was

processed separately, and its orientation matrices were refined

without any distortion correction. The datasets were then

merged into one using a procedure in PETS2, ‘Merge

projects’. This procedure uses the known orientation matrices

and the positional angles of frames to transform all but the

first dataset (in this case DS2 and DS3) so that they corre-

spond to the orientation matrix of the first data set (DS1 in this

case). After the merging, all frames could be processed jointly.

The simultaneous refinement of the lattice parameters and

distortions against this merged dataset without any constraints

resulted in a = 11.904 (1) Å, b = 11.902 (1) Å, c = 11.907 (1) Å,

� = 89.92 (1)�, � = 90.07 (1)� and � = 89.89 (1)�. The elliptical

distortion was equal to 0.351 (4)% and 65.9 (3)�, barrel-

pincushion distortion equalled 0.202 (6)% and spiral distor-

tion refined to 0.462 (4)%. This result is much better than the

free refinement against a single dataset, but it is not perfect.

The reason is that the merging of the datasets is based on

knowledge of the orientation matrices, which in turn depends

on the distortions. Without distortion corrections, the

orientation matrices are inaccurate and the merging of the

datasets is affected by this inaccuracy. The significant devia-

tions of the lattice angles from 90� are caused by this inac-

curacy. The result can be substantially improved by using the

obtained distortion parameters as calibration values for the

reprocessing of individual datasets. This leads to improved

orientation matrices and an improved merging process. This

iterative approach results in the lattice parameters a =

11.906 (1) Å, b = 11.910 (1) Å, c = 11.907 (1) Å, � = 90.03 (1)�,

� = 90.01 (1)� and � = 89.99 (1)�, i.e. essentially perfect cubic

parameters. The elliptical distortion refined to 0.388 (3)% and

67.3 (2)�, barrel-pincushion distortion to 0.204 (4)% and spiral

distortion to 0.409 (3)%.

Another, simpler, possibility to improve the accuracy of the

lattice parameters without the need for iterative refinement of

the optical distortions and the orientation matrix is to improve

the orientation angles of the particular diffraction frames

directly in the merged dataset. This can be done using the

frame orientation procedure, which compensates for the

imperfections introduced in the frame orientations by the

distorted orientation matrices. This option will be extensively

discussed and demonstrated in Part II of this article series.
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Table 8
Comparison of elliptical distortion parameters obtained from two different constraints: monoclinic symmetry of the unit cell and known unit-cell
parameters from X-ray powder diffraction.

Elliptical distortion from monoclinic cell constraint Elliptical distortion from known cell constraint

Amplitude (%) Phase (�) Amplitude (%) Phase (�)

DS1 0.416 (14) 64.8 (10) 0.395 (4) 67.7 (3)
DS2 0.384 (10) 70.5 (18) 0.391 (4) 67.1 (3)
DS3 0.313 (18) 67.5 (20) 0.383 (4) 67.3 (3)

Figure 12
Rocking curves (blue – experimental, red – calculated) of DS9 data treated (a) without compensation of the parabolic distortion effects and (b) with
compensation.



5.2. Example 2. Distortions in precession data

Effects of distortions in precession data with a diffraction

lens excited from its eucentric focus.

This example uses dataset DS9. The measured crystal was

placed at the eucentric height of the stage, on the goniometer

tilt axis, and it was focused with the objective lens. Because the

beam was slightly convergent, the spots were broadened into

very small discs. The diffraction lens (DL) was excited to

105.7% of its eucentric focus to focus the diffraction pattern

and turn the discs into sharp spots. The precession unit was

carefully aligned. A detailed description of the dataset

refinement may be found in Example 2 in the supplementary

information.

Without the correction for the Sg-dependent distortions, the

refinement of the distortions under the cubic symmetry

constraint results in a barrel-pincushion distortion of

�0.201 (5)% instead of the expected �0.444 (6)%. Elliptical

and spiral distortions converge close to the expected values.

The incorrect value of the barrel-pincushion distortion, toge-

ther with the image demagnification caused by the parabolic

distortion induced by the precession (see Section 3.3), result in

an incorrect lattice parameter a = 12.001 Å instead of the

correct 11.908 Å. The predicted positions of the diffraction

maxima do not match well with the experimental data when

the Sg-dependent distortions are omitted, especially at larger

resolution [Fig. 7(a)]. After the refinement of the radial SgPara

coefficient, which describes the decisive majority of the

diffraction position shifts due to the parabolic distortion, the

match becomes much better [Fig. 7(b)]. Fig. 12 shows that

without the compensation of the effects of the parabolic

distortion it is not possible to integrate the diffraction data

properly. The radial SgPara coefficient converged to

�1.016 (3)% and the barrel-pincushion coefficient converged

to �0.418 (5)%. Based on our experience, the amplitude of

the magnification correction of the precession data in

comparison to the data without precession is approximately

equal to one half of the radial SgPara coefficient. For this

dataset the magnification correction is equal to �0.587 (6)%

(thus 0.58 times the rSgPara) as determined by the refinement

with lattice constants obtained from X-ray powder diffraction.

6. Conclusions

Accurate determination of the orientation matrix from 3D ED

data is crucial for obtaining accurate lattice parameters, as well

as for accurate integration of the intensity data. In this work

we have analysed thoroughly the effect of optical distortions

induced by the optical elements of the transmission electron

microscope on the reflection positions and thus also on the

accuracy of the lattice parameters. A new type of distortion,

the parabolic distortion, is described, and it is shown to be

important under some circumstances. The parabolic distortion

induces excitation-error dependent reflection shift and split-

ting when electron diffraction data are collected with PED.

The shifts in reflection positions caused by optical distor-

tions lead to inaccurate lattice parameters. A detailed analysis

of the relationship between the optical distortions and the

distortion of the orientation matrix shows that all distortions

except for magnification and elliptical can be easily deter-

mined from a single 3D ED dataset, together with the para-

meters of the orientation matrix. However, the magnification

distortion correlates perfectly with scaling of the lattice

parameters, and the magnification thus always needs to be

carefully calibrated. Similarly, the component of the elliptical

distortion parallel to the rotation axis correlates perfectly with

the deformation of the orientation matrix when both are

simultaneously refined without any constraints, and the ellip-

tical distortion thus cannot be refined freely together with

unrestrained refinement of the orientation matrix. However, if

knowledge of the crystal system is used, or if more than one

crystal is used for the refinement, the elliptical distortion can

also be determined and corrected for and, consequently, the

lattice parameters can be determined to a good accuracy.

Optical distortions are not the only possible reason for

inaccurate values of the lattice parameters. In the second part

of this miniseries, we will analyse other sources, especially the

mechanical instabilities of the instrument and the effects of

radiation damage. Optical distortions may also be calibrated

to a good accuracy. The calibration then allows an accurate

determination of lattice parameters even from data which, due

to their limited quality, may not permit a full independent

determination of all distortion coefficients. The calibration of

all distortions discussed in this paper will be described in the

last part of the miniseries.

APPENDIX A
Effect of distortions on precession diffraction data

Our input assumptions are that the image tilt induces distor-

tions with phase dependent on the direction and amplitude of

the deflection.

For simplicity, let us consider only the most prominent

distortions, parabolic (radial and tangential components �12 ,

�12), elliptical (radial and tangential components �21 , �21) and

their corresponding phases. Let us define the deflection (tilt)

in the x direction as a tilt with zero phase. Then the radial and

tangential first-order distortions are defined as

r1 ¼ �12 r 2 cosð’� ’r1Þ; ð17Þ

t1 ¼ �12 r 2 cosð’� ’t1Þ: ð18Þ

Similarly, the second-order distortions are given by

r2 ¼ �21 r cos ½2ð’� ’r 2Þ�; ð19Þ

t2 ¼ �21 r cos ½2ð’� ’t 2Þ�: ð20Þ

As the beam precesses, the direction of the tilt precesses

around the central axis, and its momentary direction is defined

by the precession phase �. The distortions of a reflection with

distance from the optical axis r and azimuth ’ are, for a given

�, defined by

r1 ¼ �12 r 2 cosð’� ’r1 � �Þ; ð21Þ
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t1 ¼ �12 r 2 cosð’� ’t1 � �Þ; ð22Þ

r2 ¼ �21 r cos ½2ð’� ’r 2 � �Þ�; ð23Þ

t2 ¼ �21 r cos ½2ð’� ’t 2 � �Þ�: ð24Þ

The change in the excitation error of a reflection with the

precession is

�Sg ¼ �r� cos ð� � ’Þ; ð25Þ

where � is the precession angle. Assuming very sharp reflec-

tions, the reflection with excitation error Sg is in the diffraction

position only if

r� cos ð� � ’Þ ¼ Sg; ð26Þ

i.e. for

� ¼ ’� arccos
Sg

r�

� �
: ð27Þ

Inserting this expression for � into the expressions for the

distortions, we get the final general expressions,

rSgPara ¼ �12 r 2 cos � arccos
Sg

r�

� �
� ’r1

� �
; ð28Þ

tSgPara ¼ �12 r 2 cos � arccos
Sg

r�

� �
� ’t 1

� �
; ð29Þ

rSgElli ¼ �21 r cos 2 � arccos
Sg

r�

� �
� ’r 2

� �	 

; ð30Þ

tSgElli ¼ �21 r cos 2 � arccos
Sg

r�

� �
� ’t 2

� �	 

: ð31Þ

The � term in front of the arccos causes splitting of the

reflections. The average position is obtained as the average of

the two branches. We then get the average distortions in this

form:

rSgPara ¼ �12 cos ð’r1Þ r
Sg

�
; ð32Þ

tSgPara ¼ �12 cos ð’t 1Þ r
Sg

�
: ð33Þ

These two expressions are dominant in the observed data.

For the elliptical distortion, we obtain:

rSgElli ¼ �21 cos ð2’r 2Þ r 2
Sg

r�

� �2

� 1

" #
; ð34Þ

tSgElli ¼ �21 cos ð2’t 2Þ r 2
Sg

r�

� �2

� 1

" #
: ð35Þ

Note that the amplitude and phase terms can be combined

into an effective single parameter. That means that the

distortions in precession do not allow (and also do not need)

the determination of the amplitude and phase term separately.

However, if the radial and tangential parts of the distortion

have a known relationship, as is the case for the parabolic and

elliptical distortions, the amplitude and phase of the distortion

can be calculated from the refined r and t coefficients.

If the phases of the distortions have special values, these

general expressions simplify further, namely if

’r1 ¼ 0 then rSgPara ¼ �12r
Sg

�
; ð36Þ

’r 2 ¼ 0 then rSgElli ¼ �21r 2
Sg

r�

� �2

� 1

" #
: ð37Þ

For the tangential phases equal to 90� and �45� the

respective average tangential distortions vanish.

The rSgPara and tSgPara terms are symmetrical about Sg =

0, and thus they do not induce any overall change in magni-

fication or rotation when averaged over Sg . This is not the case

for the rSgElli and tSgElli terms. The average radial shift of a

reflection subject to the distortion by rSgElli is given by

h�ri ¼
1

2r�

Zr�
�r�

�21 cos ð2’r 2Þ r 2
Sg

r�

� �2

�1

" #
dSg

¼ �
1

3
�21r cos ð2’r 2Þ: ð38Þ

Thus, the non-zero rSgElli coefficient also induces an

additional magnification distortion with amplitude

� 1
3 �21 r cos 2’r 2 . Analogously, a non-zero tSgElli coefficient

would induce an additional rotation distortion with amplitude

� 1
3 �21 r cos 2’t 2 .

APPENDIX B
Derivation of relationships for the correlation of
distortions and cell deformation

B1. Introduction

Any optical distortion shifts the positions of reflections on

the diffraction pattern and thus also shifts the recalculated

coordinates in 3D reciprocal space. If a lattice is least-squares-

fitted into such a deformed set of coordinates, deformation of

the lattice or its orientation may follow. In this appendix we

will investigate the effects of distortion on the deformation of

the fitted lattice.

B2. Notation

In the following, vectors are considered as 3�1 matrices.

Transposed vectors (e.g. vT) are considered a row vector, i.e. a

1�3 matrix.

u : A general vector in the diffraction pattern plane. u is

considered a vector with three components, x and y corre-

sponding to the coordinates on the diffraction image and z

equal to 0. This corresponds to ignoring the curvature of the

Ewald sphere in the calculation. This approximation simplifies

the calculations and it does not introduce any significant error

to the result.

Rc : A rotation matrix rotating the crystal c to such a

position that the orientation of its reciprocal lattice coincides

with the reference reciprocal lattice. If only one crystal is
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analysed Rc is irrelevant and can be set to the identity matrix,

but it needs to be considered if the effect of combining more

crystals is investigated.

R� : A rotation matrix by an angle � around the x axis.

Brings the coordinates on the diffraction plane to the coor-

dinates in the reference Cartesian coordinate system.

ui : An ideal positional vector of a reflection in the

diffraction plane, with no deformation.

ud : A distorted vector in the diffraction plane. ud = ui + �u,

or, using the definitions from the main text [equations (1)–(5)],

ud = (x0, y0, 0).

xi : An ideal positional vector of a reflection in the 3D

Cartesian coordinate system. xi ¼ RcR�ui.

xd : A distorted vector in 3D reciprocal space. xd ¼ RcR�ud.

Ui : The ideal orientation matrix. Would be obtained by

least-squares fitting to the set of xi .

Ud : The distorted orientation matrix. Would be obtained by

least-squares fitting to the set of xd .

L : The deformation matrix due to the distortion. Defined as

Ud = LUi . Finding the matrix L for various types of distortion

is the main purpose of this appendix.

�L : The deviation of L from the unit matrix; �L = L � I.

xL : A reflection position in 3D reciprocal space after

application of L . xL ¼ LRcR�ui . This is the approximation of

xd obtained by the linear deformation of xi by L .

uL : A positional vector of a reflection in the diffraction

plane after the application of matrix L . uL = PRT
�RT

c LRcR�ui .

P is a projection matrix that projects the vector onto the xy

plane. uL is the approximation of ud after the linear defor-

mation by L .

B3. Derivation of matrix L – case without symmetry
constraints

A naı̈ve approach to finding the matrix L could be mini-

mizing the total sum of squared differences between xL and xd ,

S ¼
P
jxL � xdj

2, where the sum runs over all measured

reflections. This approach, however, requires knowledge of the

3D position of each reflection. While the position on the

diffraction pattern plane is known to a very good accuracy, the

position perpendicular to the plane is known to a much lower

accuracy, due to many effects ranging from crystal imperfec-

tions through the uncertainties in crystal orientation to the use

of PED. More accurate results can thus be obtained if only the

positions in the diffraction plane are used in the minimization.

Thus, we minimize the function

S ¼
X
juL � udj

2: ð39Þ

Inserting the definitions of the vectors uL and ud we get

S ¼
X

PRT
�RT

c LRcR�ui � ud

� �T
PRT

�RT
c LRcR�ui � ud

� �
¼ min; ð40Þ

S ¼
X

uT
i RT

�RT
c LTRcR�PRT

�RT
c LRcR�ui

� 2uT
d PRT

�RT
c LRcR�ui þ uT

d ud

¼ min : ð41Þ

Function S is a function of the elements of L and can be

minimized by setting its derivative over all elements equal to

zero:

@S

@L
¼
X

2RcR�PRT
�RT

c LRcR�uiu
T
i RT

�RT
c

� 2RcR�uduT
i RT

�RT
c

¼ 0 ð42Þ

X
RcR�PRT

�RT
c LRcR�uiu

T
i RT

�RT
c ¼

X
RcR�uduT

i RT
�RT

c :

ð43Þ

Using the notation �L = L� I and ud = ui + �u, this can be

rewritten as

Rc

X
R�PRT

�RT
c �LRcR�uiu

T
i RT

�

h i
RT

c

¼ Rc

X
R��u uT

i RT
�

h i
RT

c : ð44Þ

We denote the first part in brackets, on the left-hand side of

this equation, as A and the second part in brackets as B.

The above matrix equation constitutes a set of nine linear

equations for the nine elements of �L, from which �L can be

solved and subsequently L can be obtained as L = I + �L .

If only one crystal is considered, Rc can be set to the unit

matrix and removed from the equation. If, however, more than

one crystal is included in the calculation, each with its own

matrix Rc , then the minimized function runs over all reflec-

tions of all crystals:

S ¼
X

c

X
uL � ud

�� ��2: ð45Þ

The resulting equation is equivalent to equation (44), just

with both sides summed over the involved crystals, i.e.X
c

RcART
c ¼

X
c

RcBRT
c : ð46Þ

In the following we will find explicit expressions for A and

B. Their exact values depend on the lattice parameters and

crystal orientation. However, we may find useful crystal-

independent approximations by considering the limit of an

infinitely large unit cell, which is equivalent to replacing the

sums in A and B by integrals. The expressions for A and B

then become

Að�LcÞ ¼

Z
R�PRT

�RT
c �LRcR�uiu

T
i RT

� dV ð47Þ

and

B ¼

Z
R��u uT

i RT
� dV: ð48Þ

The integration runs over a circle in the diffraction pattern

plane up to the maximum resolution rmax and over the angular

range covered by the experiment. For simplicity, we will

assume that the angular range is symmetric around 0 and runs

from��max to �max . Generalization to nonsymmetric ranges is

straightforward through the application of a suitable rotation

matrix Rc .
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It is convenient to express the integral in spherical coordi-

nates. The integral A can then be explicitly written as

A ¼

Z�max

�¼��max

Z2�
’¼0

Zrmax

r¼0

1 0 0

0 cos2 � cos� sin �

0 cos � sin � cos2 �

0
B@

1
CA

��Lc

1 0 0

0 cos � � sin �

0 sin � cos �

0
B@

1
CA

r cos ’

r sin ’

0

0
B@

1
CA

� r cos ’ r sin ’ 0
� � 1 0 0

0 cos� sin �

0 � sin � cos�

0
B@

1
CA

� r2
j sin ’j d� d’ dr: ð49Þ

Here, for simplicity of notation, we have introduced

�Lc ¼ RT
c �LRc.

To simplify the representation of the result, we further

define

q20 ¼

Z�max

��max

cos2 � d� ¼ �max þ
1

2
sin 2�max; ð50Þ

q02 ¼

Z�max

��max

sin2 � d� ¼ �max �
1

2
sin 2�max; ð51Þ

q22 ¼

Z�max

��max

cos2 � sin2 � d� ¼
1

4
�max �

1

4
sin 4�max

� �
; ð52Þ

q40 ¼

Z�max

��max

cos4 � d�

¼
1

4
3�max þ 2 sin 2�max þ

1

4
sin 4�max

� �
; ð53Þ

q04 ¼

Z�max

��max

sin4 � d�

¼
1

4
3�max � 2 sin 2�max þ

1

4
sin 4�max

� �
: ð54Þ

We can then write

Að�LcÞ ¼
8

15
r5

l11�max l12q20 l13q02
1
2 l21q20 l22q40 þ l33q22 ðl23 þ l32Þq22
1
2 l31q02 ðl23 þ l32Þq22 l22q22 þ l33q04

0
@

1
A:
ð55Þ

Here, li j are the elements of �Lc . We can see that elements l23

and l32 occur only as a sum and they thus cannot be deter-

mined independently. This is an expected result. As we are

projecting onto the diffraction plane, a small rotation around

the rotation axis does not change uL. We thus have to fix this

rotation.

When evaluating the integral B, we use the relationship

�u ¼

�r cos’��t sin ’
�r sin’þ�t cos’

0

0
@

1
A: ð56Þ

Inserting this explicit form into the expression for B and

expressing the integral in spherical coordinates by analogy

with A results in

B ¼

Z�max

�¼��max

R�

" Z2�
’¼0

Zrmax

r¼0

�r cos2 ’��t sin ’ cos ’ �r sin ’ cos ’��t sin2 ’ 0

�r sin ’ cos ’þ�t cos2 ’ �r sin2 ’þ�t sin ’ cos ’ 0

0 0 0

0
B@

1
CA

� r3
j sin ’j d’ dr

#
RT
� d�: ð57Þ

The integrals in square brackets can be evaluated if expres-

sions for �r and �t [equations (6) and (7)] are used. Because

the third row and third column of the inner matrix are zero, we

will consider only the 2�2 matrix of non-zero coefficients. We

will denote this matrix D. The evaluation of D is lengthy but

not complicated. The result is

D ¼XN

n¼0;n even

8r4
max

ðn2 � 9Þ ðn2 � 1Þ

�
XM

m¼1

�n;m

r m

mþ 4

 !
1
2 ð3� n2Þ cosðn’r;nÞ �n sinðn’r;nÞ

�n sinðn’r;nÞ 3 cosðn’r;nÞ

 !"

þ
XM

m¼1

�n;m

r m

mþ 4

 !
n sinðn’t;nÞ �3 cosðn’t;nÞ

1
2 ð3� n2Þ cosðn’t;nÞ �n sinðn’t;nÞ

� �#
:

ð58Þ

Finally, using elements of matrix D, the integral B can be

expressed as

B ¼

2d11�max 2d12 sin �max 0

2d21 sin �max d22q20 0

0 0 d22q02

0
@

1
A: ð59Þ

For one crystal we can solve the equation A = B for the

elements of DLc . We obtain

�Lc ¼RT
c �LRc

¼
15

8r5

2d11 2d12
sin�max

�max þ
1
2 sin 2�max

0

4d21
sin �max

�max þ
1
2 sin 2�max

d22 l23

0 �l23 d22

0
BB@

1
CCA
ð60Þ

If more than one crystal is used, equation (46) needs to be

used to construct the equations and solve them for �L .

For only one crystal, the value of l23 is not determined by

the equations, which corresponds to the non-determined
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rotation around the tilt axis. With only one crystal and with Rc

= I, the value of l23 can be set arbitrarily and we set it equal to

zero. With more than one crystal with different mutual

orientations, the ambiguity can be solved.

If the distortion coefficients are known, matrix L can be

used to ‘undo’ the effect of distortions from the orientation

matrix refined against distorted data.

In the following, we will consider the case of only one

crystal. It is very instructive to investigate the form of the

matrix L for specific distortions. Here we provide some of

them. Some results are trivial, while others provide useful

insights.

(i) Parabolic distortion (n = 1, m = 2).

Matrix D is zero for odd n. Thus, the odd-order distortions,

including the parabolic distortion, do not induce deformation

of the unit cell.

(ii) Scaling error (radial only, n = 0, m = 1),

L ¼ Iþ �01I: ð61Þ

As expected, a radial linear distortion scales the unit cell by

1 + �01 .

(iii) Barrel-pincushion distortion (radial only, n = 0, m = 3),

L ¼ Iþ
5

7
�03r 2

maxI: ð62Þ

This distortion increases the diagonal elements of L if �03 > 0,

effectively scaling down the direct-space lattice parameters,

and vice versa for �03 < 0. The change is proportional to r 2
max

and can become significant for high-resolution data.

(iv) Rotation axis offset (tangential only, n = 0, m = 1),

L ¼ Iþ �01

0 �
2 sin �max

�max þ
1
2 sin 2�max

0
2 sin�max

�max þ
1
2 sin 2�max

0 0

0 0 0

0
B@

1
CA: ð63Þ

(v) Spiral distortion (tangential only, n = 0, m = 3),

L ¼ Iþ
5

7
�03r2

max

0 �
2 sin�max

�max þ
1
2 sin 2�max

0
2 sin �max

�max þ
1
2 sin 2�max

0 0

0 0 0

0
B@

1
CA: ð64Þ

These two distortions lead to deformation matrices which,

for small distortion amplitudes, are very close to pure rotation

matrices and thus do not introduce any deformation of the cell

dimensions.

(vi) Elliptical distortion (n = 2, m = 1, �21 = �21 , ’t 2 =

’r 2 �
�
4),

L ¼ Iþ �21

cos 2’r 2
ðsin 2’r 2Þ ð2 sin�maxÞ

�max þ
1
2 sin 2�max

0
ðsin 2’r 2Þ ðsin�maxÞ

�max þ
1
2 sin 2�max

� cos 2’r 2 0

0 0 � cos 2’r 2

0
B@

1
CA:
ð65Þ

This matrix equals the unit matrix only in the (unrealistic) case

of �max ¼ � and ’r 2 ¼
�
4 ðmod �

2Þ. In all other cases it intro-

duces an appreciable error. An example with �max = 60�, �21 =

0.2% and ’r 2 ¼
�
4 yields

L ¼

1 0:00234 0

0:00234 1 0

0 0 1

0
@

1
A: ð66Þ

This matrix introduces an error of 0.268� between vectors

(1 0 0) and (0 1 0). It also introduces a difference of 0.0066 in

the length of the Cartesian vectors (1 1 0) and (1 �1 0), i.e. a

difference of 0.46%.

B4. Derivation of matrix L – case of two crystals

A derivation for a general case of two crystals would be

complicated. For the sake of illustrating the effect we give here

the result for the particular case of two crystals rotated with

respect to each other by 90�around z, i.e. the rotation matrices

R1 = I and

R2 ¼

0 �1 0

1 0 0

0 0 1

0
@

1
A: ð67Þ

Solving equation (46) for L yields these general expressions

for the elements of L :

l11 ¼ l22 ¼ 1þ
2d11�maxq02 þ d22ðq40q04 � q2

22Þ

ðq40q04 � q2
22Þ þ �maxq04

; ð68Þ

l33 ¼ 1þ
2d11�maxq22 þ d22ðq40q04 � q2

22 þ �maxq02Þ

ðq40q04 � q2
22Þ þ �maxq04

; ð69Þ

l12 ¼
4

3

sin �maxðd12 � d21Þ

q20

; ð70Þ

l21 ¼
4

3

sin �maxðd21 � d12Þ

q20

; ð71Þ

l13 ¼ l23 ¼ l31 ¼ l32 ¼ 0: ð72Þ

Some consequences of this result are discussed in the main

text, Section 4.2.2 and Fig. 11. Here we note just that the

matrix L does not go to the unit matrix in this case, not even

for pure elliptical distortion. Thus, the combination of more

crystals does not, without further measures, warrant an

unbiased determination of the lattice parameters if distortions

are not refined.

B5. Derivation of matrix L – case with symmetry constraints

Frequently the crystal system of the investigated crystal is

known or can be reasonably estimated. In that case the matrix

L can be constrained to comply with the symmetry restrictions.

We will assume the case of one crystal here for simplicity, and

drop the subscript c.

Let us assume that the symmetry restrictions can be

expressed as a set of functions vi, i = 1 . . . Nc , in the form vi(L)

= 0. We may then use the method of indeterminate Lagrange

multipliers to obtain the constrained minimum of S,

@S

@L
�
X

	i

@vi

@L
¼ 0: ð73Þ
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Here, 	i needs to be set so that the conditions vi(L) = 0 are

fulfilled.

Using the results for unconstrained minimization of S, we

can write directly

A ¼ Bþ
X

	i

@vi

@L
: ð74Þ

The functions vi can be conveniently defined using the

properties of the metric tensor G. The crystal system imposes

restrictions on the elements of G. For example, a restriction of

the unit-cell angle � to 90� is equivalent to setting g23 = 0.

Using matrix notation, an element gi j can be obtained as

dT
i Gdj , where di is a vector with 1 at the i th position and 0

elsewhere. As the metric tensor can be obtained from the

orientation matrix U as G = UTU, we get

gij ¼ dT
i UTLTLUdj

¼ dT
i UTðIþ�LTÞ ðIþ�LÞUdj

¼ dT
i UT
ðIþ�LT

þ�Lþ�LT�LÞUdj: ð75Þ

As the elements of �L are typically smaller than 0.01, the last

term in the sum can be neglected with little impact on the

accuracy.

The functions vi(L) are of two types. Angle restraints to an

angle �restr are expressed as v(L) = gi j � (gi i gj j)
1/2 cos�restr = 0,

with a much simpler version v(L) = gi j = 0 for �restr = 90�, and

restraints on the equality of two cell lengths are of the form

v(L) = gi i � gj j = 0.

In both cases @vi /@L can be obtained from @gi j /@L . Using

the linearized form of gi j we obtain

@gi j

@L
¼
@dT

i UT�LUdj

@L
þ
@dT

i UT�LTUdj

@L

¼Udjd
T
i UT þUdid

T
j UT: ð76Þ

We can write the result explicitly in terms of the elements ui j

of U as

@gi j

@L
¼ a�j a�Ti þ a�i a�Tj

¼

u1ju1i u1ju2i u1ju3i

u2ju1i u2ju2i u2ju3i

u3ju1i u3ju2i u3ju3i

0
B@

1
CAþ

u1iu1j u1iu2j u1iu3j

u2iu1j u2iu2j u2iu3j

u3iu1j u3iu2j u3iu3j

0
B@

1
CA;
ð77Þ

where a�j is the vector of the Cartesian coordinates of the

lattice basis vector a�j . Using this result we obtain simple

expressions for @vi /@L as a function of only U. Inserting these

expressions into equation (74) we obtain a set of nine linear

equations with 9 + Nc unknowns. Together with Nc equations

of the form vi(L) = 0 we obtain a set of 9 + Nc equations with

9 + Nc unknowns, which can be directly solved for L and 	i , i =

1 . . . Nc .

B6. Correlation between L and distortions

The distortions are, in general, a nonlinear function of the

coordinates xi, while the deformation matrix L is linear. Thus,

in principle, the distortion parameters and the orientation

matrix U should be refinable simultaneously from the

diffraction data. In practice, however, it turns out that the

coefficients of some distortions, notably of the elliptical

distortion, are strongly correlated with the elements of L . It is

desirable to have a means of quantification of this correlation,

so that it can be estimated if simultaneous refinement of the

orientation matrix (and thus unit-cell parameters) and

distortion coefficients is possible and reliable, or if the corre-

lation prevents a reliable combined refinement. The latter

scenario means that either the unit-cell parameters or the

distortion coefficients must be known from external sources in

order to refine the other one reliably.

Two values are useful to quantify the degree of correlation.

The correlation can be expressed by means of the standard

Pearson correlation coefficient �,

�ðL; dÞ

¼

R
ðud � uiÞ

T
ðuL � uiÞ dVR

ðuL � uiÞ
T
ðuL � uiÞ dV

� �1=2 R
ðud � uiÞ

T
ðud � uiÞ dV

� �1=2

¼
covðL; dÞ


L
d

: ð78Þ

Furthermore, the root-mean-square deviation between ud

and uL [RMSD(L, d)] gives an estimate of the absolute value

of the differences, which can then be compared with the

experimental RMSD to estimate whether the expected

deviation is larger or smaller than the experimental noise.

RMSD(L, d) can be estimated as

RMSDðL; dÞ ¼
S

V

� �1=2

¼

2

L þ 

2
d � 2covðL; dÞ

V

� �1=2

; ð79Þ

where V is the volume of reciprocal space sampled in the

experiment. For a single symmetric tilt series,

V ¼
8

3
�max r3

max: ð80Þ

If the matrix L is obtained as a result of unconstrained least-

squares minimization, the equation covðL; dÞ ¼ 
2
L holds and

the correlation coefficient attains the simple form

�ðL; dÞ ¼

L


d

ð81Þ

and

RMSDðL; dÞ ¼

2

d � 

2
L

V

� �1=2

: ð82Þ

However, for the general matrix L the full versions of the

correlation coefficient and RMSD are needed. The integralR
ðuL � uiÞ

T
ðuL � uiÞ is the simplest to evaluate. Using the

same steps as for the evaluation of integral A [equation (49)],

i.e. transformation into spherical coordinates, we obtain an

explicit form of the integral,
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2
L ¼

Z�max

�¼��max

Z2�
’¼0

Zrmax

r¼0

r cos ’ r sin ’ cos� r sin ’ sin �
� �

�LT

�

1 0 0

0 cos2 � cos� sin �

0 cos � sin � cos2 �

0
B@

1
CA�L

r cos ’

r sin ’ cos �

r sin ’ sin �

0
B@

1
CA

� r2j sin ’j d� d’ dr: ð83Þ

Using the previously defined shortcut notation q20, q02 etc.

[equation (49)], this can be evaluated to


2
L ¼

8r5
max

15

�
l2
11�max þ l2

22q40 þ l2
33q04 þ 2l22l33q22

þ
1

2
l2
21 þ l2

12

� �
q20 þ

1

2
l2
31 þ l2

13

� �
q02 þ l23 þ l32ð Þ

2
q22

�
:

ð84Þ

This expression simplifies greatly if the matrix �L has the

least-squares optimized form [equation (60)]. Then, using the

matrix D [equation (58)], we obtain


2
L ¼

15

4r5
max

�
2d2

11 þ d2
22

� �
�max

þ 2d2
21 þ d2

12

� � 2 sin2 �max

�max þ
1
2 sin 2�max

�
: ð85Þ

Using the definition of ud in terms of the radial and

tangential distortions [equations (1)–(5)], the integral for


d ¼
R
ðud � uiÞ

T
ðud � uiÞ dV attains a particularly simple

expression, 
2
d ¼

R
�r2 þ�t2.

Using the definition of �r, we obtain an explicit expression,

Z
�r2 dV ¼

Z�max

�¼��max

Z2�
’¼0

Zrmax

r¼0

�X
n1

X
n2

	
cos n1 ’� ’r;n1

� �� �

� cos n2 ’� ’r;n2

� �� �X
m1

X
m2

�n1m1
�n2m2

r m1þm2


�

� r2j sin ’j d� d’ dr; ð86Þ

which evaluates toZ
�r2 dV

¼ 4�max

X
n1;n2; n1þn2 even

("
cosðn2’rn2

� n1’rn1
Þ

1� ðn1 � n2Þ
2

þ
cosðn2’rn2

þ n1’rn1
Þ

1� ðn1 þ n2Þ
2

# X
m1;m2

�n1m1
�n2m2

rm1þm2þ3

m1 þm2 þ 3

)
:

ð87Þ

The integral
R

�t 2 is completely equivalent to
R

�r 2, with

all �nm replaced with �nm and all ’rn replaced by ’tn.

What remains is the evaluation of covðL; dÞ =R
ðuL � uiÞ

T
ðud � uiÞ. Explicitly, this integral amounts to

covðL; dÞ

¼

Z
�uTPRT

��LR�ui dV

¼

Z�max

�¼��max

Z2�
’¼0

Zrmax

r¼0

�r cos ’ �r sin ’ cos� �r sin ’ sin �
� �

��L

r cos ’

r sin ’ cos �

r sin ’ sin �

0
B@

1
CAr2
j sin ’j d� d’ dr

þ

Z�max

�¼��max

Z2�
’¼0

Zrmax

r¼0

��t sin ’ �t cos ’ cos � �r cos ’ sin �ð Þ

��L

r cos ’

r sin ’ cos �

r sin ’ sin �

0
B@

1
CAr2
j sin ’j d� d’ dr

ð88Þ

This integral is closely related to the integral B evaluated

earlier, and it is conveniently expressed in terms of matrix D,

covðL; dÞ ¼ 2�maxl11d11 þ 2 sin �maxðl12d12 þ l21d21Þ

þ d22ðl22q20 þ l33q02Þ: ð89Þ

Here again the expression simplifies further if the expres-

sion for the least-squares-optimized �L is used, in which case,

as follows from the properties of the least-squares optimiza-

tion, cov(L, d) = 
2
L, i.e.

covðL; dÞ ¼

15

4r5
max

2d2
11 þ d2

22

� �
�max þ 2d2

21 þ d2
12

� � 2 sin2 �max

�max þ
1
2 sin 2�max

� �
:

ð90Þ

Next, we evaluate the correlation coefficients for individual

types of distortion, assuming the optimal �L. This evaluation

provides a good estimation of the ease or difficulty with which

individual distortions can be refined together with the orien-

tation matrix.

B6.1. Radial linear distortion: radial only, n = 0, m = 1.

D ¼
8

15
r5�01

1
2 0

0 1

� �
; ð91Þ

�L ¼ �01I; ð92Þ


2
L ¼

8

5
�2

01�maxr5
max; ð93Þ


2
d ¼

8

5
�2

01�maxr5
max: ð94Þ

Thus �(L, d) = 
L/
d = 1 and RMSD(L, d) = 0, confirming

the trivial result that an overall scaling distortion is perfectly

correlated with scaling of the lattice.

B6.2. Barrel-pincushion distortion: radial only, n = 0,m = 3.
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D ¼
8

21
r7�03

1
2 0

0 1

� �
; ð95Þ

�L ¼
5

7
�03r2

maxI; ð96Þ


2
L ¼

40

49
�2

03�maxr9
max; ð97Þ


2
d ¼

8

9
�2

03�maxr9
max; ð98Þ

�ðL; dÞ ¼
40

49
�

9

8

� �1=2

¼ 0:958 . . . ; ð99Þ

RMSDðL; dÞ ¼
�2

03�maxr9
max

8
9�

40
49

� �
8
3 �maxr3

max

� �1=2

¼ 0:1648�03r3
max:

ð100Þ

Thus, regardless of the resolution and maximum tilt angle,

the correlation between the barrel-pincushion distortion and

lattice distortion is 	95.8%. Although apparently high, this

correlation is still sufficiently low to allow a stable refinement

of the barrel-pincushion distortion in most practical cases. For

a realistic value of �03 = 0.2% and r3
max = 1.4 Å�1, RMSD(L, d)

= 0.00090 Å�1. This value is comparable with the experimental

RMSD (0.00318 Å�1 for DS1) and such distortion can thus be

easily refined.

B6.3. Tangential first-order distortion (rotation axis mis-
alignment): tangential only, n = 0, m = 1.

D ¼
8

15
r5�01

0 �1
1
2 0

� �
; ð101Þ


2
L ¼

8

5
r5

max�
2
01

2 sin2 �max

�max þ
1
2 sin 2�max

; ð102Þ


2
d ¼

8

5
�2

01�maxr5
max; ð103Þ

�ðL; dÞ ¼
2 sin2 �max

�maxð�max þ
1
2 sin 2�maxÞ

� �1=2

; ð104Þ

RMSDðL; dÞ

¼

8
5 �

2
01�maxr5

max �
8
5 r5

max�
2
01

2 sin2 �max

�max þ
1
2 sin 2�max

 �
8
3�maxr3

max

2
4

3
5

1=2

¼ �01rmax

3

5
1�

2 sin2 �max

�max �max þ
1
2 sin 2�max

� �
" #( )1=2

:

ð105Þ

The correlation tends to 1 for small �max , but remains very

high up to relatively high �max . For �max = 60� it is still 98.4%.

RMSD(L, d) = 0.000054 Å�1 for �01 = 0.0278%, which corre-

sponds to a rotation misalignment of 0.1�. It is thus in principle

possible, but in practice rather difficult, to refine the rotation

misalignment accurately with this approach.

B6.4. Spiral distortion: tangential only, n = 0, m = 3.

D ¼
8

21
r7�01

0 �1
1
2 0

� �
; ð106Þ


2
L ¼

80

49
r9

max�
2
03

sin2 �max

�max þ
1
2 sin 2�max

; ð107Þ


2
d ¼

8

9
�2

03�maxr9
max; ð108Þ

�ðL; dÞ ¼
90

49

sin2 �max

�max �max þ
1
2 sin 2�max

� �
" #1=2

; ð109Þ

RMSDðL; dÞ

¼

8
9 �

2
03�maxr9

max �
80
49 r9

max�
2
03

sin2 �max

�max þ
1
2 sin 2�max

8
3 �maxr3

max

0
@

1
A

1=2

¼ �03r3
max

1

3
�

30

49

sin2 �max

�max �max þ
1
2 sin 2�max

� �
" #1=2

: ð110Þ

Although very similar to the expression for the rotation

misalignment, the correlation for the spiral distortion starts at

95.8% for small �max and decreases further upon increasing

�max . The spiral distortion is thus the most robustly refinable

distortion of all the standard distortions.

B6.5. Elliptical: n = 2, m = 1, s21 = q21, ut2 = ur2 � p/4.

D ¼
8

15
r5�21

1
2 cos 2’r 2 sin 2’r 2
1
2 sin 2’r 2 � cos 2’r 2

� �
; ð111Þ


2
L ¼

8

5
r5

max�
2
21

�
�max cos2 2’r 2

þ
2 sin2 �max

�max þ
1
2 sin 2�max

sin2 2’r 2

�
; ð112Þ


2
d ¼

8

5
�2

21�maxr5
max; ð113Þ

�ðL; dÞ

¼ cos2 2’r 2 þ
2 sin2 �max

�max �max þ
1
2 sin 2�max

� � sin2 2’r 2

" #1=2

;

ð114Þ

RMSDðL; dÞ ¼ rmax�21

(
3

5

"
1� cos2 2’r 2

�
2 sin2 �max

�max �max þ
1
2 sin 2�max

� � sin2 2’r 2

#)1=2

:

ð115Þ
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This correlation coefficient is very high for all realistic

values of �max and it is exactly 1 for ’r2 = 0. Therefore, ellip-

tical distortion cannot be refined together with refinement of

the orientation matrix, unless symmetry constraints are

applied or unless more crystals in different orientations are

used.
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Ångström, J., Chen, H. & Wan, W. (2018). J. Appl. Cryst. 51, 982–989.
Brázda, P. & Palatinus, L. (2023a). Manuscript in preparation.
Brázda, P. & Palatinus, L. (2023b). Manuscript in preparation.
Brázda, P., Palatinus, L. & Babor, M. (2019). Science, 364, 667–669.
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& Hÿtch, M. J. (2005). J. Electron Microsc. 54, 181–190.
Kolb, U., Gorelik, T., Kübel, C., Otten, M. T. & Hubert, D. (2007).

Ultramicroscopy, 107, 507–513.

Kolb, U., Gorelik, T. & Otten, M. T. (2008). Ultramicroscopy, 108,
763–772.

Krivanek, O. L., Dellby, N. & Lupini, A. R. (1999). Ultramicroscopy,
78, 1–11.

Mahr, C., Müller-Caspary, K., Ritz, R., Simson, M., Grieb, T.,
Schowalter, M., Krause, F. F., Lackmann, A., Soltau, H., Wittstock,
A. & Rosenauer, A. (2019). Ultramicroscopy, 196, 74–82.

Mitchell, D. R. G. & Van den Berg, J. A. (2016). Ultramicroscopy, 160,
140–145.

Mugnaioli, E., Capitani, G. C., Nieto, F. & Mellini, M. (2009). Am.
Mineral. 94, 793–800.

Nannenga, B. L., Shi, D., Leslie, A. G. W. & Gonen, T. (2014). Nat.
Methods, 11, 927–930.

Nederlof, I., van Genderen, E., Li, Y.-W. & Abrahams, J. P. (2013).
Acta Cryst. D69, 1223–1230.

Ophus, C. (2019). Microsc. Microanal. 25, 563–582.

Palatinus, L., Brázda, P., Boullay, P., Perez, O., Klementová, M., Petit,
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