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Single-particle cryo-electron microscopy (cryoEM) is a swiftly growing method

for understanding protein structure. With increasing demand for high-

throughput, high-resolution cryoEM services comes greater demand for rapid

and automated cryoEM grid and sample screening. During screening, optimal

grids and sample conditions are identified for subsequent high-resolution data

collection. Screening is a major bottleneck for new cryoEM projects because

grids must be optimized for several factors, including grid type, grid hole size,

sample concentration, buffer conditions, ice thickness and particle behavior.

Even for mature projects, multiple grids are commonly screened to select a

subset for high-resolution data collection. Here, machine learning and novel

purpose-built image-processing and microscope-handling algorithms are

incorporated into the automated data-collection software Leginon, to provide

an open-source solution for fully automated high-throughput grid screening.

This new version, broadly called Smart Leginon, emulates the actions of an

operator in identifying areas on the grid to explore as potentially useful for data

collection. Smart Leginon Autoscreen sequentially loads and examines grids

from an automated specimen-exchange system to provide completely unat-

tended grid screening across a set of grids. Comparisons between a multi-grid

autoscreen session and conventional manual screening by 5 expert microscope

operators are presented. On average, Autoscreen reduces operator time from

�6 h to <10 min and provides a percentage of suitable images for evaluation

comparable to the best operator. The ability of Smart Leginon to target holes

that are particularly difficult to identify is analyzed. Finally, the utility of Smart

Leginon is illustrated with three real-world multi-grid user screening/collection

sessions, demonstrating the efficiency and flexibility of the software package.

The fully automated functionality of Smart Leginon significantly reduces the

burden on operator screening time, improves the throughput of screening and

recovers idle microscope time, thereby improving availability of cryoEM

services.

1. Introduction

Over the past decade, single-particle cryo-electron microscopy

(cryoEM) has become an established method for structure

determination of macromolecular protein complexes ranging

from �40 kDa to several megadaltons (Wu & Lander, 2020;

Burton-Smith & Murata, 2021). A single-particle cryoEM

project begins with the application of an aliquot of purified

protein in solution to a holey foil substrate supported by a

metal mesh, referred to as an EM grid. The bulk sample is then

attenuated to a thin aqueous film, which is vitrified by plun-Published under a CC BY 4.0 licence
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ging the grid into a cryogen (Chua et al., 2022). The ideal

outcome of this procedure is to have the proteins spread out as

‘single particles’ embedded in vitreous ice that is only slightly

thicker than the largest diameter of the protein and at a

concentration that enables the most efficient data collection

(Taylor & Glaeser, 2008; Noble et al., 2018). Producing

suitable grids for high-resolution data collection almost always

involves a series of optimization steps, with cryoEM screening

required at each step to empirically examine the grids (Frank,

2006). Variables that can be optimized include grid mesh type

(typically copper or gold), grid film substrate (typically carbon

or gold), grid hole size, sample concentration, buffer condi-

tions, ice thickness, additives (e.g. detergents) and particle

behavior, i.e. preferred orientation and degradation (Chua et

al., 2022; Noble et al., 2018; D’Imprima et al., 2019). The effects

of these variables on grid and sample quality require that the

grids are to be examined in a cryo-transmission electron

microscope (cryoTEM) at a series of magnifications, also

called multi-scale imaging (MSI) (Cheng et al., 2021), from a

grid atlas composed of grid tile images to identify squares, to

square magnification to identify regions inside squares, to hole

magnification to identify holes in those regions, to exposure

magnification to analyze protein behavior and quality (Fig. S1

of the supporting information). MSI screening allows the

operator and researcher to estimate how many images of a

quality suitable for high-resolution structure determination

may be obtained from each grid.

Screening across these variables usually requires that

significantly more grids are prepared and imaged than are

used for a subsequent high-resolution data collection, parti-

cularly for new projects. Even for mature projects, poor

reproducibility of grid quality typically requires that two to six

or more grids are screened before settling on a small subset

that is best for a long data collection on a high-end instrument.

Current data-collection software packages available to the

public [e.g. Leginon (Cheng et al., 2021; Suloway et al., 2005),

SerialEM (Mastronarde, 2003), UCSFImage4 (Li et al., 2015),

TFS EPU (Drulyte et al., 2022; Deng et al., 2021), Gatan

Latitude and JEOL JADAS (Zhang et al., 2009), and Auto-

EMation (Lei & Frank, 2005)] focus on exhausting the usable

imaging area on a single grid. This is commonly achieved

through a high degree of tuning of automated targeting

parameters. The wide range of grid types, ice thicknesses and

other confounding variables have prevented the development

of a general, robust automated solution that performs as well

as an expert human operator in multi-grid screening. As a

result, the major time burden for a microscope operator is grid

screening.

To address this problem, we have incorporated a machine-

learning (ML) approach into our data-collection system

Leginon (Cheng et al., 2021; Suloway et al., 2005), together

with significant updates to the Leginon grid handling and

image processing algorithms to provide a fully automated

screening application with the goal of obtaining a set of images

that can be used to assess overall grid quality and identify the

best regions of each grid in the microscope. The ML and some

of the computer vision algorithms described herein are part of

the Ptolemy package which has been described in detail

elsewhere (Kim et al., 2023); the additional Leginon image

processing algorithms are described in the Materials and

methods. We broadly call this new version Smart Leginon.

‘Smart’ refers to our effort in reducing human intervention,

where the incorporation of Ptolemy square and hole targeting

for automated screening is our first step. Smart Leginon

includes a simple command line workflow, called Autoscreen,

that allows for an entire multi-grid screening session to be set

up in <10 min and run fully unattended. Additionally, Smart

Leginon functionality may be used as independent modules

from within the existing Leginon graphical user interface

(GUI). All software and algorithms described herein are open

source, designed to be transferable to other collection soft-

ware and to be extended with new functionality. Leginon is

free and Ptolemy is protected by a license and is free for

academic use.

We measured the performance of Smart Leginon in a

variety of situations. First, Smart Leginon Autoscreen was used

to screen 11 previously unseen mouse apoferritin (mApof)

(Danev et al., 2019) grids to assess the overall speed and

robustness of the system compared with 5 expert human

operators. To assess the outcomes, we measured the total

screening time, total operator time, percentage of ‘good’ holes

selected, ice thickness and CTF resolution estimates (herein, a

‘good’ hole is based on analysis at hole magnification, not

exposure magnification). Next, we assessed the ability of

Smart Leginon to successfully target on a wide range of grid

types without adjusting any parameters, including gold and

carbon substrates, multiple hole sizes and spacings, and a wide

range of ice thicknesses and grid quality. Finally, we report on

the application of Smart Leginon to three real-world multi-

grid screening and collection sessions for users at our cryoEM

facility.

After the initial public release of Smart Leginon, another

fully automated cryoEM collection package that uses ML to

interface with SerialEM, called SmartScope (Bouvette et al.,

2022), has been publicly released. Additionally, there are

other pieces of software available that use ML to perform

specific steps in the data-collection pipeline (Fan et al., 2022;

Yokoyama et al., 2020, 2021).

2. Materials and methods

2.1. Implementation in Leginon

In order to integrate Ptolemy (Kim et al., 2021) into Leginon

and add the Autoscreen features, three additions were built

into Leginon: (1) a workflow for running Ptolemy processes

which returns segmentations, target coordinates, target scores

and other metadata; (2) an algorithm to filter and sample the

targets found by Ptolemy; and (3) a method to manage grid

exchange and the MSI workflow for each grid. These modifi-

cations, described below, are available as of the myami-3.6

release (http://leginon.org).

(1) Two new node classes were added to Leginon to utilize

Ptolemy. MosaicScoreTargetFinder handles the lowest

research papers

78 Anchi Cheng et al. � Smart Leginon: automated multi-grid cryoEM screening IUCrJ (2023). 10, 77–89



magnification images which executes Ptolemy’s lowmag_-

cli.py on each tile of the grid atlas (i.e. grid tile images of

multiple squares; Fig. S1, upper-left image). Similarly, the

ScoreTargetFinder node class handles hole magnification

images (i.e. images of multiple holes; Fig. S1, bottom-left

image), which executes Ptolemy’s medmag_cli.py and loads

the results for processing. Each of these node classes then

loads the full set of results from Ptolemy into Leginon in JSON

format. Shell scripts are defined by the Leginon administrator

to make Ptolemy calls so that it is possible to easily substitute

Ptolemy with future versions. An additional step was added to

merge together partial squares at the edges of adjacent tiles

(Fig. S2). This extra merging step allows square targets to be

evaluated on the full atlas image. The merged area becomes

the sum of areas, the center of gravity becomes the merged

target coordinate and the average mean intensity weighted by

each target area gives the mean intensity of the merged

square. The merged target also takes on the highest score of

the targets it is merged from.

(2) Atlas grid tile images are filtered by considering only the

squares within a defined square area range, while the filtering

for hole magnification images includes the lower threshold of

the Ptolemy score and the ice thickness filter as implemented

in other Leginon TargetFinder node classes. For Auto-

screen purposes, hole magnification filters are usually loosely

set so only very bad selections (e.g. holes with cracks or with

large ice crystal contamination) are eliminated. The hole

magnification filters did not remove any potential targets in

the mApof 11 grid screening comparison.

Ptolemy scores play their strongest role for the square

finder for the atlas grid tile images. The area-filtered squares

are put into Ng equally sized groups based on the chosen

parameter, where square area is typically chosen as the

parameter by which to separate groups in the results as

presented herein. The highest-ranked (‘best’) squares from

each group based on Ptolemy scores then creates a total of Ns

squares to be targeted at higher magnifications. For example, if

Ng = 4 and Ns = 8, then 2 squares from each group will be

selected.

A sampling feature for the hole magnification image hole

finder was added to the Leginon automated target finder base

class. This presents the user with one additional setting to

handle the sampling and to decide on the maximum number of

targets Nh to include. Sampling in a given hole magnification

image is produced by dividing the holes by a defined variable

into Nh classes and then randomly sampling one instance in

each class. Relative ice thickness, determined by average pixel

intensity of a small group of pixels near the center of a hole, is

used as the variable in this classification. The Ptolemy scores

can also be used to filter the targets prior to sampling;

however, this filter was not used for any of the results

presented herein.

(3) The Autoscreen workflow is initiated by a command line

python script that sets up session information and defines the

task to perform in each session. The current options are ‘full

MSI’, which performs unattended grid screening at all

magnifications, and ‘atlas only’, which only collects an atlas

for each grid. These required additional changes in the

Leginon framework. Changes to the Leginon manager were

made to switch sessions without disconnecting from instru-

ments and to issue the grid exchange and workflow instruction

to individual sessions when it is active. Settings were made to

be recallable from a specified example session instead of the

most recent session. Automated execution of the square finder

was added as an option for the MosaicTargetFinder base

class. A ‘Center between holes’ option was added to the

current auto-creation of focus targets. This parameter-less

algorithm analyzes the target lattice and places the focus

target halfway between the lattice points nearest to the center

of the hole magnification image, thus ensuring its maximal

distance from any hole selections.

To fully realize unattended multi-grid screening with

Autoscreen, we used AutoIt scripting (https://www.autoit-

script.com) to emulate the GUI operations necessary to insert

and retract the objective aperture in the TFS microscope API

as these function calls are not available through the TFS

microscope API. For our TFS Glacios microscope without an

energy filter, we found that inserting the objective aperture

improved both ice thickness estimations and contrast in high-

magnification images. For all experiments herein, a 70 mm C2

aperture was used for all magnifications.

For the examples shown in this manuscript, Ptolemy was run

on a single CPU core on the Leginon computer connected to

the microscope, which was sufficient to keep up with collection

in real time.

2.2. Smart Leginon Autoscreen workflow

Fig. 1 illustrates the general Smart Leginon workflow, with

Autoscreen functionality highlighted in blue. The operator

provides Autoscreen with a list of grids to be screened in the

order in which they should be imaged and associates each grid

with a specific project in the database. After the session is

started, the following actions are performed unattended: (i) a

grid is loaded from the automated specimen exchange system

into the microscope; (ii) an atlas of the entire grid is collected

tile by tile; (iii) Ptolemy locates all squares in the atlas tile

images and merges the results (Kim et al., 2021); (iv) Leginon

separates squares into Ng groups based on a chosen parameter

[currently either square area, mean intensity or Ptolemy score

(Kim et al., 2021)], and chooses the highest-ranked square

from each group for a total of Ns squares; (v) Leginon acquires

a square magnification image of each targeted square, then a

raster of hole magnification images is acquired after the grid is

set to eucentric height in the square; (vi) Ptolemy identifies the

positions of holes within each hole magnification image (Kim

et al., 2021), (vii) Leginon selects Nh holes from this set based

on chosen parameters (e.g. ice thickness, Ptolemy score, and/or

random); (viii) Leginon performs a set of procedures to

acquire an exposure magnification image from each hole,

including focusing, setting defocus, checking for drift and

normalizing lenses (Suloway et al., 2005); (ix) once all squares

and all holes from a grid have been imaged, the grid is

unloaded from the stage. This process is then repeated until all
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grids have been examined, after which Autoscreen is termi-

nated and a message is sent to the operators and users, typi-

cally through a designated SLACK channel (https://

slack.com). During grid exchange, Leginon retracts and inserts

the objective aperture automatically. Leginon performs ice

thickness estimation (Cheng et al., 2021; Rice et al., 2018) for

each exposure magnification image in real time. After each

grid is screened, Smart Leginon initiates frame alignment and

CTF estimation through Appion (Lander et al., 2009). These

image processing procedures are fast enough to be performed

at the same rate as data collection. Exposure magnification

collection targets may be augmented by collecting at several

locations away from or in addition to the center of the holes

identified by Ptolemy, i.e. multi-shot hole targeting (Suloway et

al., 2005). All of the images and the pre-processing results can

be viewed in the Appion (Lander et al., 2009) web-based

three-way viewer (Figs. S1 and S3). Several components of the

Autoscreen functionality may be used as independent modules

from within the Leginon GUI, e.g. most hole finding at SEMC

is now carried out using the Ptolemy hole finder.

2.3. Mouse apoferritin cryoEM grid preparation and
screening

In total, 11 cryoEM grids were prepared by two people by

adding 3 ml mouse apoferritin (mApof from the laboratory of

Dr Kikkawa) solution (8 mg ml�1) to UltrAuFoil 1.2/1.3 grids

(Quantifoil, Jena, Germany) immediately after plasma
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Figure 1
General Smart Leginon Autoscreen fully automated, unattended multi-grid screening workflow. CryoEM grids with samples are prepared and loaded
into a cryoTEM with an automated specimen-exchange system. In Autoscreen, the microscope operator imports settings from an example session,
including (1) Ng , the number of groups to separate the squares in the grid atlas by, based on square area, mean intensity or Ptolemy score; (2) Ns, the
total number of squares that will be collected; and (3) Nh , the number of holes that will be collected for each square. For each grid in the microscope,
Smart Leginon Autoscreen will automatically target the highest-ranked (‘best’) square in each group and sample Nh random, threshold-filtered holes for
each square, where Ptolemy determines rankings. Exposure magnification ice thickness estimations are determined in real time by Leginon and
automated pre-processing in Appion (e.g. frame alignment and CTF estimation) is initiated at the end of each grid collection. If another grid is listed for
screening, then Autoscreen automatically moves to the next grid and initiates a new collection session in the database. Once all grids are screened,
Autoscreen safely returns the microscope to its default state and sends a message of completion to a designated Slack channel to alert operators and
users. Each step in Autoscreen may be performed unattended by command line or used as independent modules in the Leginon GUI. Atlas scale bar is
500 mm, grid tile image scale bar is 50 mm, hole image scale bar is 1 mm.



cleaning (Gatan Solarus II plasma cleaner; Gatan Inc. Plea-

santon, CA, USA). The grids were blotted for 4 or 4.5 s, then

vitrified by plunge-freezing in liquid ethane using a TFS

Vitrobot Mark IV (Thermo Fisher Scientific) with the

chamber maintained at 20�C and 100% humidity.

The 11 mApof cryoEM grids were screened on a TFS

Glacios with a Falcon 3 camera (Thermo Fisher Scientific) in

integration mode. The grids were not pre-screened prior to

loading into the Glacios and starting Smart Leginon. Para-

meters used were Ng = 4, Ns = 4 and Nh = 5 where these and all

other settings – including to split groups by square area and to

rank squares in each group by Ptolemy score – were imported

from a previous screening session that created an example

Smart Leginon session (Fig. S4). Each atlas consisted of 22 grid

tile images, where each tile was acquired at a magnification of

210� (2751 Å pixel�1). Square magnification was set to 940�

(615 Å pixel�1); hole magnification was set to 5300�

(109 Å pixel�1); exposure magnification was set to 120 000�

(1.204 Å pixel�1). Exposure magnification movies were

recorded in linear mode with a total exposure time of 400 ms

across 40 frames and with an accumulated electron dose of

55.59 e� Å�2 at �3 mm nominal defocus.

2.4. Smart Leginon Autoscreen versus operator
quantification metrics

Timing measurements for Smart Leginon Autoscreen and

human operators were obtained using the image timestamps at

the beginning and end of each session. To reduce the bias of

external microscope hardware, the time required for micro-

scope alignment before the screening session and LN2 fillings

were removed from the time measurements. Grid exchange

times (�5 min to retract a grid and insert the next grid) are

included in the time measurements.

Hole quality analysis for mApof grids was performed

visually. Only holes with more than �80% of the hole area

existing inside the image (i.e. not significantly cut off by the

edge of the image) were considered. A hole was considered

contaminated if more than �40% of the imageable area in the

hole was obfuscated.

2.5. Real-world Smart Leginon Autoscreen 35-grid user
session

An assortment of grids – Quantifoil R1.2/1.3 300 mesh,

Quantifoil R1.2/1.3 300 mesh with graphene, UltrAuFoil R1.2/

1.3 300 mesh (Quantifoil, Jena, Germany) – were frozen with a

TFS Vitrobot Mark IV (Thermo Fisher Scientific). In total, 35

user grids were screened on a TFS Glacios with a Falcon 3

camera in integration mode. Autoscreen settings were Ng = 3,

Ns = 3 and Nh = 3. The imaging parameters were the same as

the mApof screening session, except each atlas consisted of 43

grid tile images and the square magnification was set to 2600�

(222 Å pixel�1).

2.6. Real-world Smart Leginon user sample screening and
collection session

Eight user grids were screened on a TFS Glacios with a

Falcon 3 camera in integration mode. Autoscreen settings were

Ng = 4, Ns = 4 and Nh = 5. Imaging parameters were the same

as the mApof screening session, except the atlases consisted of

28 grid tile images each. The two best grids were selected for a

full data collection on a TFS Krios with a Gatan K3 camera in

counting mode and BioQuantum energy filter (Gatan Inc.

Pleasanton, CA, USA). Hole magnification was set to 3600�

(97 Å pixel�1). Exposure magnification was set to 81000�

(1.069 Å pixel�1). 2D classification and 3D refinement were

performed with CryoSparc (version 3.3.1; Punjani et al., 2017).

2.7. Real-world Smart Leginon user data-collection session

Grids were screened and collected on a TFS Krios with a

Gatan K3 camera in counting mode, a BioQuantum energy

filter and a Cs corrector. Hole magnification was set to 3600�

(76 Å pixel�1). Exposure magnification was set to 81 000�

(0.846 Å pixel�1).

2.8. Micrograph pre-processing

Motion correction was performed with MotionCor2 (Zheng

et al., 2017) and CTF parameters of motion-corrected micro-

graphs were estimated by CTFFIND4 (Rohou & Grigorieff,

2015) through the Appion (Lander et al., 2009) pipeline. Ice

thickness was determined by the aperture limited scattering

(ALS) method for Glacios sessions and by the energy filter

method (Rice et al., 2018) for Krios sessions from within

Leginon (Cheng et al., 2021); estimation by ALS is accurate to

an estimated �10 nm. For Smart Leginon Autoscreen sessions,

AutoRelauncher.py was used to automatically re-launch

the Appion real time pre-processing (i.e. frame alignment and

CTF estimation) from an example session for many screening

sessions described herein.

3. Results

3.1. Smart Leginon Autoscreen significantly decreases
operator time while increasing microscope throughput

The Smart Leginon Autoscreen multi-grid screening

performance using a TFS Glacios was evaluated by comparing

it with 5 microscope operators who had not previously seen

the grids nor the Autoscreen results. To obtain metrics on a

per-grid basis, 11 grids were screened by Autoscreen in one

Smart Leginon session to establish timing and performance

values. Of these grids, 3 were selected for evaluation by 5

expert operators for a total of 15 operator grid screenings.

Autoscreen and each operator targeted Ns = 4 squares across

Ng = 4 groups and selected Nh = 5 holes per square. Autoscreen

was set up to target holes randomly while operators selected

squares manually and set up the standard Leginon template

matching hole finder to target the 5 holes closest to the center

of the image used for hole targeting; these are the standard

methods that Autoscreen and operator use for screening grids.
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A variety of metrics were measured to assess the outcomes,

including total screening time (i.e. the time from inserting the

first grid into the microscope to the time the last grid is

retracted), total operator time required during screening, the

percentage of ‘good’ holes selected (i.e. non-empty, minimal

contamination, no cracks), ice thickness estimation (Rice et al.,

2018) as measured from the exposure magnification images

and CTF resolution estimation (Sheth et al., 2015). Note (1)

these hole and exposure magnification metrics do not

conclusively determine whether an exposure image in a given

hole will contain useful particles; however, these are some of

the few metrics available for real time quality determination;

and (2) random exposure targeting by Autoscreen versus

targeting central holes by operators may result in systematic

and random errors in ice thickness and CTF comparisons

presented herein.

The Autoscreen collection sessions, including the example

Smart Leginon session, took about 10 min for the operator to

set up before beginning unattended collection. Screening of

each grid then took an average of 29.7 � 1.2 min to collect,

resulting in about 5.4 h total to screen 11 grids. The equivalent

tasks performed by 5 expert microscope operators on 3 of the

11 grids took 32.7 � 7.1 min per grid, which extrapolates to

6.0 h to screen 11 grids if the operator rarely or never leaves

the microscope. Although screening grids by an operator

generally requires the operator to stay at the microscope

during the entire process in order to perform several manual

tasks, there does exist some time for the operator to non-

optimally multitask. The amount of time depends strongly on

the quality of the grids, which is unpredictable. During these

tests, each operator did not interact with the microscope for 5–

10 min of fragmented time per grid, which is generally not

enough time to accomplish any meaningfully involved task.

Thus, we estimate that the microscope operators have little to

no meaningful time away from the microscope during their

entire screening session. Fig. 2 summarizes the results.

The Autoscreen images at all magnifications were visually

inspected in the web-based viewer that is part of the Leginon

and Appion packages (Lander et al., 2009) (Fig. S1) which

quickly allowed the operator to determine that 8 of the grids

were of good to excellent quality while the other 3 were of

poor quality (Fig. S5). This analysis took about 5 min and

allowed the operator to correctly correlate which grids were

made by which person, exemplifying the efficiency of

combining automated screening software with a database for

storing data and a web GUI for rapid, remote visual analysis.

3.2. Smart Leginon square grouping and ranking enables de
novo and prior-knowledge screening

One goal of cryoEM grid screening is to identify squares

where optimal holes reside. For de novo cryoEM projects

where no cryoEM screening has been performed, a common

practice is to screen several different squares with different

visible areas because the square area is often inversely

proportional to the ice thickness of holes in the square (Fig.
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Figure 2
Quantitative comparisons between Smart Leginon Autoscreen (SLA) and expert microscope operators (Op). Autoscreen and operators each
independently selected what they considered to be the ‘best’ 4 squares, where for Autoscreen each square was selected from 4 equally spaced square area
ranges spanning all square areas (one grid atlas is shown on the left; see Fig. S8 for all atlases). Autoscreen took <10 min for the operator to set up and
then run in a completely unattended manner for 5.4 h. The operators spend an average of 6.0 h to screen 11 grids (*extrapolated from 3 grids), of which
most of the time is spent operating the microscope, interspersed with several short periods (5–10 min per grid) of time away from the microscope. (Note:
calculations assume that the operators do not take any breaks away from the microscope.) In terms of percentage of good holes available from hole
magnification images, Autoscreen (95.9% good holes) performed better than the average from the operators (90.6% good holes) and comparable to the
best operator (95.2% good holes). Figs. S9–S14 show visual analyses of all holes and Table 1 shows the quantifications. From the random holes targeted
(SLA) and central holes (Op), CTF resolution estimation for Autoscreen holes (7.3� 2.6 Å) was comparable to the average obtained by operators (7.4�
2.9 Å). Estimates of ice thickness show comparable values between Autoscreen (32.9 � 7.1 nm) and operators (35.0 � 18.7 nm). Table S1 shows the raw
data. The hole magnification image most representative of the average in terms of hole quality is shown in the last row. Targets are shown by white
squares and bad holes are shown by red circles with lines through them. Note: the representative image for operator 4 is a composite image due to there
being no image that closely represents the average.



S6). On the other hand, if the sample owner has prior

knowledge of the optimal square area for their sample, then

the microscope operator will concentrate screening efforts on

those squares.

Smart Leginon can be optimized for different stages of a

project. Large values of square groups (Ng) ensures that

diversity is achieved in de novo cryoEM projects in a manner

comparable with microscope operators. If the sample owner

has prior knowledge of the sample behavior in ice, then the

square area can be restricted to a range and Ng can be set to ‘1’

so that only the highest-ranked Ns squares within a specific

area range are collected (Fig. S7).

Fig. S8 shows the 3 grids that were screened by Smart

Leginon Autoscreen and independently by the 5 expert

microscope operators. There is nearly no overlap (2.8%

overlap) between the squares identified by Autoscreen and the

operators, which is likely due to the fact that there are a large

number of possible squares in each group area range and that

several squares in each group are visually indistinguishable.

Manual examination of each hole magnification image for

Autoscreen and operator collections was performed to identify

‘bad’ holes (i.e. holes that have no ice, that have considerable

contamination or that have cracks; Table 1, Figs. S9–S14).

Smart Leginon Autoscreen using Ptolemy performed better at

finding squares with good holes (95.9% good holes) compared

with average operator performance (90.6% good holes).

This same level of performance was also evident when the

exposure magnification images were analyzed. CTF resolution

estimation of all exposure magnification images showed

comparable performance between Smart Leginon Autoscreen

(7.3 � 2.6 Å) and operators (7.4 � 2.9 Å). Ice thickness esti-

mates for Smart Leginon Autoscreen (32.9� 7.1 nm) showed a

comparable average and narrower range compared with the
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Table 1
Hole analysis for each square image for the 3 mApof grids imaged by
Smart Leginon Autoscreen (SLA) and the 5 expert microscope operators
(and their average).

Figs. S9–S14 show the annotated hole magnification images.

Good Empty Contaminated Cracked Total
Percentage
good (%)

Operator 1 495 3 7 15 520 95.2
Operator 2 431 62 9 7 509 84.7
Operator 3 479 22 3 11 515 93.0
Operator 4 454 21 8 17 500 90.8
Operator 5 451 49 5 1 506 89.1
Average 90.6
SLA 493 8 6 7 514 95.9

Figure 3
Smart Leginon hole finding using Ptolemy applied to Quantifoil grids of different materials, hole sizes, spacings and characteristics. The top row shows
targeting on carbon foil grids and the bottom row on gold foil grids. (a) R0.6/1.0 carbon grid with minor contamination and uniform ice where all holes
were identified and targeted (white field-of-view boxes). (b) R1.2/1.3 carbon grid with moderate contamination where the holes are darker than the
surrounding foil, and all holes were identified and a random subset of 5 targeted. (c) R0.6/1.0 carbon grid with thick and non-uniform ice and minor
contamination where all holes were identified and a random subset of 5 targeted. (d) R2.0/1.0 carbon grid with minor contamination where all holes were
identified and targeted with 4 multi-shot targets. (e) R0.6/1.0 gold grid with minor contamination (top-left hole) where all holes were identified and all
non-contaminated holes targeted. ( f ) R1.2/1.3 gold grid with no contamination where all holes were identified and targeted. (g) R1.2/1.3 gold grid with
thick ice and no contamination where all holes were identified and a random subset of 5 targeted. (h) R1.6/1.0 gold grid with minor contamination where
all holes were identified and a random subset of 5 targeted. Blue plus signs (+) are automatically determined focus locations. Note: an exclusion border
was applied to each image, so some edge holes are not targeted. Scale bars are 5 mm.



operators (35.0 � 18.7 nm; Fig. 2, Table S1 of the supporting

information).

3.3. Smart Leginon identifies holes and focus locations
completely independent of grid type and hole size

To enable accurate and efficient automated exposure

targeting, Ptolemy (Kim et al., 2021) was integrated into Smart

Leginon and two additional features were added: (1) a para-

meter-less algorithm that places the focus position halfway

between the lattice that Ptolemy produces and closest to the

center of the image, and (2) an exclusion border around the

image to reduce the number of targets placed in partially

cutoff holes. The Smart Leginon hole lattice and focus iden-

tification performance was tested on multiple different types

of grids. We found that hole and focus-position finding for

carbon film [Figs. 3(a)–3(d)] and gold film [Figs. 3(e)–3(h)]

grids with varying hole sizes and spacings generally performs

well without the need to adjust any parameters. Hole and

focus targeting performed well under conditions where the

template matching hole finder would have struggled or failed,

for example on images where holes are darker than the

surrounding film [Fig. 3(b)], on thick ice images with low

contrast between the holes and foil [Fig. 3(c)], and on images

with contamination [Figs. 3(a)–3(d)]. Additionally, multi-shot

targeting may be set up in Smart Leginon [Fig. 3(d)] to

maximize exposure area and target in particular locations

across the gradient of the hole.

3.4. Smart Leginon and Autoscreen applied to a real-world
35-grid screening session

Smart Leginon Autoscreen was used to automatically screen

35 grids across 3 samples from one user on a TFS Glacios over

4 intensive days of concurrent grid optimization. Various grid

types (carbon substrate, gold substrate and graphene-coated

grids), sample concentrations and grid-making conditions (i.e.

changes in blotting time on the Vitrobot) were attempted for

each sample with the goal of preparing and identifying Krios-

ready grids. Generally, grids were prepared during the day and

screened automatically with Autoscreen, usually overnight,

then the screening data were evaluated the next morning and

used to guide the next iteration of grid and sample prepara-

tion. To prepare for screening all grids, the first grid was

screened semi-manually while determining suitable Smart

Leginon parameters to create an example session for Auto-

screen. On two occasions, Autoscreen completed before the

end of the working day, which allowed for preliminary data

collection on the Glacios to be collected on the best grid

overnight using Smart Leginon and the Ptolemy hole finder

(Kim et al., 2021). In total, 2594 micrographs were collected

during one of these unattended overnight sessions resulting in

a 5.6 Å structure, allowing for verification of the quality of the

grid-making conditions for this sample. With an average

automated screening time of �29 min per grid, Autoscreen

and Smart Leginon enabled 35 grids to be automatically (for

34 grids) and semi-automatically (for the example grid)

screened over �17 h of microscope time (overnight collection

not included) during the 4-day period, allowing for a constant

rapid feedback loop to the grid-making process. After all grids

were prepared and screened, 12 grids were determined to be

ready for Krios data collection. The Smart Leginon workflows

allowed for the grid preparation and screening cycle to be

significantly condensed, substantially increasing the time effi-

ciency for the microscope, operator and researcher.

3.5. Smart Leginon applied to a real-world user sample
screening and collection session

Smart Leginon Autoscreen was used to de novo screen 8

user grids of an unspecified sample on a TFS Glacios. In

general, all 8 grids had thick ice: 3 grids were completely

opaque, 3 grids had a very limited number of good squares,

and the remaining 2 grids had reasonable – though thick

(�100 nm) – ice and a sufficient number of good squares for

high-resolution collection [Figs. 4(a) and 4(b)]. The best of

these two grids was transferred to a TFS Krios for a full

collection. During high-resolution data collection, the user

chose to manually target squares, whereas the Smart Leginon

implementation of Ptolemy was used for hole targeting (Kim

et al., 2021). The grid had a wide range of ice thicknesses: ice

thickness variations resulted in some holes appearing lighter

than the surrounding film [commonly observed, e.g. Fig. 3(a)],

some holes appearing close to the same contrast as the

surrounding film [Fig. 4(c)] and some appearing darker than

the surrounding film [Fig. 3(b)]. Ptolemy within Smart Leginon

allowed for holes in all cases to be identified reliably in an

unattended manner without changing any parameters. The

Krios session resulted in nearly 4000 exposure magnification

images [Fig. 4(d)] whose ice thicknesses were primarily over

100 nm [Fig. 4(e)], yet reported good CTF resolution estima-

tions [Fig. 4( f)], likely due to the highly concentrated proteins

[Fig. 4(d)]. Subsequent 2D classification [Fig. 4(g)] and 3D

refinement resulted in a 3.1 Å EM map (not shown here),

which was sufficient for biological interpretation.

3.6. Smart Leginon screening applied to a real-world user
data-collection session

A common user practice is to first screen sample and grid

conditions on a screening microscope, then after variables are

found that produce high-quality cryoEM grids, create several

grids under the same conditions and load them directly into a

high-end cryoTEM to avoid potential contamination during

transfer from the screening microscope. However, the repro-

ducibility of cryoEM grids under identical grid-making

conditions is low. As a result, several grids often need to be

screened in the high-end cryoTEM before ranking the grids

for collection. This step again entails potentially hours of

additional screening work by the microscope operator.

We employed Smart Leginon to screen 4 freshly made

cryoEM grids on a TFS Krios prior to high-resolution data

collection. The user had ordered the grids for data collection

based on blot time according to previous screening results

(Fig. S15). For each grid, Ptolemy square targeting (Kim et al.,

2021) together with Smart Leginon algorithms were used to
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Figure 4
Real-world multi-grid screening with Smart Leginon Autoscreen followed by data collection with the Smart Leginon and the Ptolemy hole finder.
Autoscreen readily allowed for the identification of (a) the best grid and (b) another decent grid. The Ptolemy hole finder from inside Smart Leginon was
then used for high-quality data collection from (c) the best grid, leading to thousands of (d) exposure magnification images in (e) areas of moderately
thick ice resulting in ( f ) relatively high-resolution CTF estimations, (g) high-quality 2D classes and a 3.1 Å structure (not shown).



select 5 squares across a range of square areas that were

thought would be the most likely to contain well behaved

particles. The operator then used Smart Leginon and the

Ptolemy hole finder to automatically screen Nh = 4 holes per

square in an unattended manner. After �30 min of screening

for each grid, the operator and user deduced that (1) the

optimal areas for collection were in squares with moderate ice

thickness [30–40 nm; Fig. 5(d); red circles in Fig. S15] rather

than thin ice areas [10–20 nm; Figs. 5(a)–5(c)] as anticipated,

and (2) the anticipated grid ordering by the user was exactly

the opposite of the optimal ordering as determined by Smart

Leginon MSI analysis (Fig. S15). With this knowledge, the

operator queued the best 2 grids using the Ptolemy hole finder

in Smart Leginon for a 43 h collection session resulting in over

12 000 micrographs and a 2.6 Å EM map (not shown here).

This use of Smart Leginon for 2 h of screening just prior to a

high-resolution data collection proved critical for maximizing

the efficiency of Krios time.

4. Discussion

Single-particle cryoEM throughput tracks X-ray crystal-

lography throughput from 20 years ago (Berman et al., 2000)

and is poised for a throughput revolution (Drulyte et al., 2022)

much like the previous resolution revolution (Kühlbrandt,

2014). To keep up with the increasing demand from structural

biologists, cryoEM developers must significantly reduce

bottlenecks in the workflow. One significant bottleneck is the

screening of cryoEM grids and samples prior to high-resolu-

tion collection. This step consumes a significant amount of

user and microscope operator time that could be better used

in other bottleneck areas such as sample preparation and data

analysis. Fortunately, ML algorithms and image analysis have

progressed to the point where most cryoEM screening tasks at

the microscope can be performed without user intervention.

To directly address the cryoEM screening problem, we

present Smart Leginon for fully automated grid screening. We

illustrated the improvements of using Smart Leginon Auto-

screen by experimentally testing the software against 5 expert

microscope operators for 3 mApof grids and found that Smart

Leginon required significantly less operator time at the

microscope (<10 min for 11 grids compared with 6 h) while

targeting comparable squares. We also showed that the

Ptolemy parameter-less hole finder (Kim et al., 2023)

performed well on a range of common and difficult hole

identification tasks with carbon and gold holey grids, including

when contrast variation between the holes and the

surrounding film reverses. The parameter-less hole finder

suitably addresses the long-standing bottleneck of cryoEM

hole identification. Lastly, we deployed Smart Leginon on 3

real-world multi-grid user samples to illustrate its utility: (1) a

4 day session where the user and operator iteratively screened

35 grids with Autoscreen and Smart Leginon while looping this

rapid feedback into sample and grid optimization, allowing for

12 Krios-ready grids to be made; (2) a de novo cryoEM

Autoscreen session of 8 grids where it was determined that

relatively thick ice contained well behaved particles at

reasonable concentration. The two best grids were collected
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Figure 5
Real-world Smart Leginon screening MSI grid analysis of a user grid. The MSI analysis, with square magnification images of several squares from Grid 3
in Fig. S15 in the first row, hole magnification images of corresponding holes in the second row, exposure magnification images from inside corresponding
holes in the third row, and ice thickness estimations in the fourth row, allowed the operator and user to determine that medium-sized squares contain 30–
40 nm-thick ice containing (d) non-overlapping particles of interest, while (a)–(c) squares with ice thinner than 30 nm ice were void of particles and (e)
squares with ice on the order of 100 nm thick had overlapping particles. Scale bars are 10 mm for the first row, 5 mm for the second row and 100 nm for the
third row.



using Smart Leginon and Ptolemy, resulting in a 3.1 Å EM

map; and (3) a Krios session where 4 unseen grids were

screened with Smart Leginon and Ptolemy, and the grid

conditions were previously known and the grid order was

prioritized by user based on identical grid preparation

conditions. Smart Leginon Autoscreen results suggested better

priority and the best two grids resulted in a 2.6 Å EM map.

Additionally, Smart Leginon Autoscreen allowed for micro-

scope idle time, including overnight and on weekends, to be

used for screening owing to the minimal operator time

required, further increasing the overall cryoEM throughput

from sample preparation to high-resolution data collection.

The improvements in Smart Leginon, particularly the

reduction of operator time from 6 h to <10 min for screening

11 grids, can be attributed equally to the ML algorithms and

image processing in Ptolemy (Kim et al., 2023) and the new

purpose-built algorithms in Leginon. The targeting tasks have

historically been performed by operators either manually or in

a semi-automated manner where the operator either selects

targets by hand or adjusts several parameters until the soft-

ware reliably targets a narrow range of squares/holes. These

specialized parameters, however, often do not translate well to

new grids. Additionally, these semi-automated algorithms take

time and expertise to use, and cannot account for wide

variations in grid conditions, such as the grid in Figs. 3(b) and

4(c) which has alternating contrast between the holes and the

surrounding film. In contrast, the Smart Leginon imple-

mentation of Ptolemy for hole finding has no parameters to

change while square finding has only 4 parameters that need

to be set at the outset of a multi-grid Autoscreen session: Ng,

Ns, Nh, and the range of either square area, mean intensity or

Ptolemy score to search for squares within. Equally important,

the ability of Smart Leginon Autoscreen to insert and retract

grids and the objective aperture were critical for fully auto-

mating screening.

The Smart Leginon workflow (Fig. 1) may be extended in

multiple ways, for instance: (1) the results from the Smart

Leginon workflow may be augmented by numerous live-

processing software packages (Punjani et al., 2017; Kimanius et

al., 2021; Biyani et al., 2017; Gómez-Blanco et al., 2018; Stabrin

et al., 2020; Xie et al., 2020; Caesar et al., 2020; Tegunov &

Cramer, 2019) that perform, for example, particle picking, ab

initio model generation, 2D/3D classification and 3D refine-

ment as automated post-processing routines; and (2) targeting

may be further improved by feeding live-processing results

back into the collection software as targeting priors.

4.1. Potential for implementation in other collection
software

The image processing and ML routines from Ptolemy that

were integrated together with the algorithms added into

Leginon may also be integrated into other collection software

packages, such as SerialEM (Mastronarde, 2003), UCSF-

Image4 (Li et al., 2015), TFS EPU (Deng et al., 2021; Drulyte et

al., 2022), Gatan Latitude, Jeol JADAS (Zhang et al., 2009) and

AutoEMation (Lei & Frank, 2005). We describe in the Mate-

rials and Methods the exact modifications required to inte-

grate Ptolemy into Leginon and to perform filtering and grid

manipulation. The generalized requirements are: (1) a work-

flow for running Ptolemy processes and returning segmenta-

tions, target coordinates, target scores and other metadata that

Ptolemy provides; (2) an algorithm to sample the targets found

through automation; and (3) a method to manage grid

exchange and the MSI workflow for each grid. Once these

algorithmic requirements are met, then Ptolemy can be run in

real time using a CPU on any modern computer with access to

the same file system as the collection software. In addition to

Ptolemy integration, several collection software modifications

described in the Materials and Methods may need to be made,

such as automatically controlling the objective aperture or

integrating image processing routines for estimating clustered

pixel intensities.

4.2. Using other ML hole and square target classifiers in
Smart Leginon Autoscreen

There are a few hole and square target classifiers available

(Yokoyama et al., 2020; Yonekura et al., 2021). These can be

used in Smart Leginon Autoscreen as long as target finding

results are provided by the classifier in the format accepted by

the two ScoreTargetFinder node classes described here.

For API details, please refer to https://emg.nysbc.org/redmine/

projects/leginon/wiki/MSI-Ptolemy_API_information_for_de-

velopers

4.3. Current limitations of square selection

Due to the wide and sometimes unpredictable range of grid

quality, grid characteristics and imaging characteristics,

targeting can have issues. For instance, (1) we have found that

large ice thickness gradients across individual atlas grid tiles

can confuse the Ptolemy per-tile normalization (Kim et al.,

2023), causing square location predictions in seemingly

random locations. (2) For grids where the majority of squares

have cracks, Ptolemy may rank cracked squares higher than

non-cracked squares. We hypothesize that the ML square

ranking model becomes confounded because the brightness of

a cracked square is greater than of a non-cracked square, yet

still has other features of a non-cracked square, so it decides to

weigh brightness highly. (3) For merged atlas tile images (Fig.

S2), critical parameters such as square opening area may be

distorted by any slight misalignment of the tiles, and the

merged score, defined by the highest Ptolemy score, may not

reflect the quality of the square if the image of the square had

been intact in a tile. Solutions potentially include: adding a

high-pass filtering step for (1), manually curating training data

for (2) and increasing grid tile overlap for (3).

The grouping in the sampling algorithm used in the

experiments described here aimed to form groups with equal

numbers of scored squares. We noticed that this grouping

approach made it difficult to achieve the diversity of square

areas required for de novo screening when the distribution of

square areas itself is highly unbalanced. For example, if most

squares on the grids are dry, the few squares with ice all end up
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in the same sampling group and would only be sampled once

whereas dry squares would be sampled multiple times. To

address this, we added an option to use the area filter to place

squares into a predefined area range. This eliminates the

square area bias in sampling, but adds two extra user para-

meters that need to be defined by the grid mesh.

Using this new grouping, we have had some success in

targeting squares on Spotiton (Wei et al., 2018; Dandey et al.,

2020) and chameleon (Darrow et al., 2021) nanowire grids

which have characteristic stripes of sample across contiguous

squares and no sample elsewhere on the grid. However, this

approach is not reliable yet. We suspect that this is because the

percentage of such grids in the Ptolemy training set was low

(Kim et al., 2023) and that usable squares do not usually have a

significantly reduced area compared with the squares with no

ice that make up the majority of squares. Work is in process to

improve the success rate.

4.4. Current limitations of the hole selection

In our experimental design for the timing and performance

comparison between Autoscreen versus manual screening

(Fig. 2), no quality filtering was performed. In day to day

operations, we have not found that these scores provided by

Ptolemy (Kim et al., 2023) are generally a better classifier than

the ice thickness estimations. Additionally, the accuracy of the

hole centers found by Ptolemy are compromised when holes

are very different from the majority of the Ptolemy model

training set. This includes cases when the hole magnification

images are taken at higher magnification so that the lattice is

less clearly defined (e.g. when there are 4 or less holes in the

image). The square lattice-based hole selection implemented

in Ptolemy is also not able to target tilted or highly bent grids

(Fig. S16) or lacey grids. A solution for targeting on inten-

tionally tilted grids may be to stretch the image in the direction

orthogonal to the tilt axis, feed the stretched image to Ptolemy

to find the hole lattice, then un-stretch the coordinates

produced by Ptolemy.

We are working on addressing these square and hole

selection limitations so that Smart Leginon and Ptolemy

generalize to as many grid and imaging characteristics as

possible.

5. Conclusions

We anticipate that Smart Leginon Autoscreen and associated

functionality will significantly increase the throughput of

cryoEM screening, an essential optimization step in the high-

resolution single-particle cryoEM pipeline. Simultaneously,

the smart target selection algorithms significantly reduce

operator time spent at the microscope, thus allowing for more

time to be dedicated towards grid/sample preparation and

data analysis. Moreover, idle microscope time outside of

business hours (e.g. overnight and weekends) may be recov-

ered, leading to an even greater effective increase in

throughput. We envision that algorithms will continue to

improve, particularly in the direction of real time feedback

from live processing, which may enable intelligent, fully

automated high-resolution collection that replicates or

surpasses human performance.

6. Software availability

Smart Leginon is freely and publicly available as two

components: (1) Leginon and Autoscreen are in myami-3.6

release and above (http://leginon.org) and licensed under the

Apache License, Version 2.0; and (2) Ptolemy is publicly

available for academic use only (https://github.com/SMLC-

NYSBC/ptolemy) and licensed under CC BY-NC 4.0. A

tutorial for how to set up and use Smart Leginon and Auto-

screen is available at https://emg.nysbc.org/redmine/projects/

leginon/wiki/Multi-grid_autoscreening
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