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Recent interest in structure solution and refinement using electron diffraction

(ED) has been fuelled by its inherent advantages when applied to crystals of

sub-micrometre size, as well as its better sensitivity to light elements. Currently,

data are often processed with software written for X-ray diffraction, using the

kinematic theory of diffraction to generate model intensities – despite the

inherent differences in diffraction processes in ED. Here, dynamical Bloch-wave

simulations are used to model continuous-rotation electron diffraction data,

collected with a fine angular resolution (crystal orientations of �0.1�). This fine-

sliced data allows a re-examination of the corrections applied to ED data. A new

method is proposed for optimizing crystal orientation, and the angular range of

the incident beam and the varying slew rate are taken into account. Observed

integrated intensities are extracted and accurate comparisons are performed

with simulations using rocking curves for a (110) lamella of silicon 185 nm thick.

R1 is reduced from 26% with the kinematic model to 6.8% using dynamical

simulations.

1. Introduction

Electron diffraction (ED) is currently enjoying increased

attention and research activity due to its ability to work with

crystallites that are far smaller than can be tackled by X-ray

diffraction (XRD) (Gemmi et al., 2019; Gruene et al., 2018).

Structural solution utilizing ED has dramatically increased

since the turn of the century due to advances in computer

control and detector development (Gemmi & Lanza, 2019a)

and the new methodologies that have been developed for

structure solution are generally known by the term three-

dimensional electron diffraction (3D-ED) (Gemmi et al.,

2019). Just as in XRD, these techniques measure the direction

and integrated intensity of many Bragg-diffracted beams from

a crystal, which are then processed to deduce a unit cell, given

Miller indices hkl and observed intensities I
ðobsÞ
hkl . These data

are then used to produce a crystal model using structure

solution methods. There are many differences between ED

and XRD (Gemmi & Lanza, 2019b), including very different

wavelengths and damage mechanisms, but the principal one

which affects diffracted intensities is the strength of the

interaction, with electrons roughly 10 000 times more likely to

be scattered than X-rays (Spence, 2017; Xu & Zou, 2019). It is

this aspect which allows ED to outperform XRD at the

nanoscale, but renders it unable to tackle macroscopic crystals.

The methods are therefore complementary and together they

make a powerful combination (Yun et al., 2015).

Even at the nanoscale, multiple scattering is usual for

electrons – it is essential to capture the interaction of a fastPublished under a CC BY 4.0 licence
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electron with even a single gold atom (Howie, 2014) – whereas

single scattering usually dominates for XRD. Since structural

refinement relies on minimizing the difference between I
ðobsÞ
hkl

and calculated values I
ðcalcÞ
hkl , it is therefore unsurprising that a

fit to a single (kinematic) scattering model is poor for a

method where multiple (dynamical) scattering dominates.

Currently, some analyses of ED data for structural solution

and refinement still use programs from the range of well

established and relatively sophisticated XRD software,

despite the vastly different scattering processes involved. As a

result, structural solution statistics from 3D-ED often appear

much worse than those of XRD, even though the structures

obtained seem reliable. To develop the field of ED further, it is

necessary to improve the quality of the fit by taking into

account the differences between electron diffraction and other

methods. As first demonstrated by Palatinus et al. (2015a), and

now firmly established by Klar et al. (2021), significant

improvements can be obtained when dynamical electron

scattering effects are considered.

The differences between electrons and X-rays when used

for structure solution can be relatively subtle in data that only

contain integrated intensities, where each reflection is

measured over a time interval during which the diffracted

beam passes completely through its Bragg condition. This type

of data is found in continuous-rotation electron diffraction

(cRED) experiments, where each data frame typically covers

one or more degrees of crystal rotation. However, electron

detector technology has seen a significant improvement in

both quantum efficiency and speed in recent years (Faruqi &

McMullan, 2018; Paterson et al., 2020; Gruene & Mugnaioli,

2021), allowing ever greater amounts of data to be obtained.

These fast pixelated detectors can provide data that have fine

resolution both temporally and in scattering angle. cRED

experiments may now have data frames covering a small

fraction of a degree (Fröjdh et al., 2020). The additional

information in such fine-sliced data allows the detail of elec-

tron scattering processes to be observed more clearly and

provides an opportunity to model them more comprehen-

sively. In this work, we explore data taken with a crystal

orientation resolution of �0.1�, in combination with Bloch-

wave electron diffraction simulations. Our aim is to elucidate

the most important experimental and modelling parameters

that will be necessary in future electron diffraction methods.

The main reason for the continued adherence to a scattering

model that is known to be inadequate for ED is the relative

difficulty of calculation for dynamical scattering in comparison

with the kinematic model. In both models, the starting point

for calculation of the diffracted intensity for a reflection g =

hkl is the structure factor Fhkl ,

Fhkl ¼
XN

j¼1

fjð�BÞTj exp 2�ig � rj

� �
; ð1Þ

where fj(�B) are the atomic scattering factors evaluated at the

Bragg angle �B, Tj are the thermal factors and rj are the

fractional atomic coordinates of the j th atom, the sum taken

over all N atoms in the unit cell. In the kinematic model, it is

commonly stated that the structure factor Fhkl is proportional

to the amplitude of the diffracted beam, i.e. intensity is

proportional to I
ðkinÞ
hkl ¼ jFhklj

2
¼ FhklF

�
hkl , where * indicates

the complex conjugate. Using tabulated scattering factors

equation (1) can be evaluated almost instantaneously on even

the most basic computer. In comparison, modelling dynamical

scattering for ED to obtain I
ðdynÞ
hkl requires solving Schrö-

dinger’s wave equation for an electron travelling through the

crystal, usually done using either the Bloch-wave method or a

multislice wave scattering/wave propagation calculation. The

structure factor enters the Bloch-wave calculation as elements

in the scattering matrix, which contains all excited g vectors

and their differences, but is present only indirectly in a

multislice calculation. These models, which require significant

computing resources and may be cluster- or GPU-based, are

widely used in more traditional ED work such as convergent-

beam electron diffraction (CBED) (Tsuda & Tanaka, 1995;

Spence, 1993; Zuo & Spence, 2013) and in the simulation of

transmission electron microscopy (TEM) and scanning TEM

(STEM) images.

Prior to the development of 3D-ED methods, an additional

difficulty in ED resulted from the collection of static diffrac-

tion patterns, meaning that with parallel illumination almost

all reflections were measured away from the Bragg condition.

In this case, even minuscule changes in crystal orientation can

produce large changes in diffracted intensity, and while

dynamical modelling was possible (Jansen et al., 1998) it was

not straightforward. The introduction of beam precession

(Vincent & Midgley, 1994) allowed the measurement of

intensities integrated around a circular path in reciprocal

space, which reduced the sensitivity to precise crystal orien-

tation. However, dynamical modelling of intensities in indi-

vidual ED patterns with beam precession then had to take

account of the different integration path for each g vector

(Sinkler & Marks, 2010; Dudka et al., 2007). In order to solve a

crystal structure in three dimensions, multiple precession ED

measurements were obtained at different crystal orientations

(Kolb et al., 2007). This method has had great success but still

requires corrections for integration of different g vectors

(Palatinus et al., 2015b). In the current cRED method, inte-

gration is performed by rotation of the crystal in a similar

manner to ‘X-ray rotation measurements’ (Arndt & Wonacott,

1977; Dauter, 1999). Extraction of integrated intensities in

cRED data with, or without, beam precession is possible using

the data reduction programs Process Electron Tilt Series or

PETS (Palatinus, 2011; Palatinus et al., 2015a) and PETS2

(Palatinus et al., 2019), with structure solution and refinement

with dynamical modelling using the programs JANA and

Dyngo (Petřı́ček et al., 2014; Palatinus et al., 2015b, 2019; Klar

et al., 2021).

In any quantitative experiment, measurements and calcu-

lations must meet at some point and in XRD it is most

convenient for that point to be the structure factor. The

correspondence between model and experiment is usually

captured using an R factor (see Section 3). Although it is often

said that diffracted X-ray intensities from a crystal are

proportional to |Fhkl|
2 [equation (1)], in reality things are not
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so simple and many other factors need to be accounted for,

which depend on both the experiment being performed and

the material. These factors are usually considered to be

experimental and can be either measured or determined

during refinement, but are separate from the crystal structure

itself. As noted by Ladd & Palmer (1994), it can be helpful to

list these corrections in the form of an equation, namely

equation (2). This makes a distinction between raw experi-

mental measurements of diffracted intensity I
ðexptÞ
hkl and the

‘observed’ intensities I
ðobsÞ
hkl that are suitable for comparison

with calculations jF
ðcalcÞ
hkl j

2,

jF
ðobsÞ
hkl j

2
/ I

ðobsÞ
hkl

¼ M�1A�1E�1S�1G�1C�1B�1L�1p�1
fI
ðexptÞ
hkl g;

ð2Þ

with corrections for polarization p, Lorentz factors L, back-

ground B, fluctuations in the incident beam intensity C,

geometry G, scaling S, extinction E, absorption A and

mosaicity M. Each correction in equation (2) will be different

for each reflection hkl and should be considered a rather

general operation when applied to a full diffraction data set.

Furthermore if, like extinction in XRD, a correction is deter-

mined iteratively during refinement, it could be argued that it

forms part of the scattering model and therefore should be

applied to I
ðobsÞ
hkl in equation (2) rather than I

ðexptÞ
hkl . For simpli-

city here, where we are concerned with the effect of these

factors rather than their point of application during data

processing, we consider any modification of data necessary to

improve structure solution and refinement to be applied to the

raw experimental data, resulting in a set of ‘observed’ inten-

sities that depend only on the crystal structure and nothing

else.

In XRD each reflection hkl has a single well defined inte-

grated I
ðobsÞ
hkl , so that if it is sampled multiple times, or there are

symmetrically equivalent reflections, they can be merged into

a single measurement with improved fidelity. However, in

dynamical diffraction a reflection no longer has a single well

defined intensity (Spence, 1993), as illustrated by Fig. 1. This

shows a Bloch-wave simulation of a 14 2 2 reflection from the

silicon cRED data set (Section 3) which, although kinemati-

cally forbidden, has intensities up to 10% of the incident beam

intensity where pathways for multiple allowed reflections

exist. Although this is an extreme example, it is not uncommon

for weak reflections to be affected in this way in ED. Thus an

average intensity, taken either by merging multiple measure-

ments, using symmetrically equivalent reflections or through

the use of a precessed incident beam (Vincent & Midgley,

1994), will in general converge to some ill-defined value.

Conversely, comparison of experimental data with a dyna-

mical model in which each measurement is simulated indivi-

dually gives a better match without any data merging

(Palatinus et al., 2015b).

Before embarking on a structural refinement in which rj and

Tj in equation (1) are determined for each atom in the unit cell

by minimizing the difference between observed and calculated

intensities, the many corrections in equation (2) must be

applied to optimize the experimental input jF
ðobsÞ
hkl j. At first

sight, it might therefore appear that equation (1) deals with

scattering theory while equation (2) deals only with experi-

mental parameters, but this is not strictly correct – absorption

and extinction, for example, are scattering effects that depend

upon the sample. For dynamical electron diffraction, we must

reconsider the validity of equation (2) to account for the

differences in ED versus XRD experiments. For electrons, we

can discard the polarization correction p since electron beams

are unpolarized, but each of the other terms has an equivalent

in ED. Thus, before presenting our results from a continuous

rotation electron diffraction (cRED) measurement, we briefly

discuss each in turn.

(i) Lorentz corrections L. Lorentz corrections ensure that a

given reflection has the same integrated intensity in XRD

irrespective of the way the crystal is rotated, i.e. they account

for the different time spent in the vicinity of each Bragg

condition during data collection. As purely geometric

corrections, they apply equally to XRD and ED (Zhang et al.,

2010b). If beam precession is employed in a set of ED patterns

recorded from a static crystal, the circular path in reciprocal

space taken by the direct beam must be taken into account

(Gjønnes, 1997; Zhang et al., 2010a), but if data are collected

with a continuously rotating crystal, beam precession adds no

additional geometric correction factor to the integrated

intensities (Palatinus et al., 2019). In our cRED experiment,

we measure the integrated intensity of each reflection

individually from rocking curves in both experiment and

simulation, and it is therefore possible to compare inten-

sities without applying Lorentz corrections. However, to

maintain equivalence with XRD refinement methods it is

preferable to apply them, and we do so for both experiment

and simulation.

(ii) Geometry G. Corrections for other geometric issues,

such as variations in specimen height or rotation axis, are

needed in XRD and also for ED (Palatinus et al., 2019). These

issues primarily affect a diffracted beam’s position, rather than

the intensity that is our main interest here. It is of course
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Figure 1
An illustration of the range of intensities that are obtained for the
kinematically forbidden 14 2 2 reflection in silicon with a thickness of
180 nm in a dynamical simulation. The image underneath shows the
corresponding LACBED pattern (see section 3)



important to ensure that the crystal of interest does not

wander out of the electron beam as it is rotated (Cichocka et

al., 2018; Plana-Ruiz et al., 2020). More importantly, since

dynamical diffraction is exquisitely sensitive to geometry, the

crystal orientation must be known to high precision. At crystal

orientations where diffraction is strong, a good calculation of

intensities in a cRED measurement using dynamical scattering

requires an angular precision and accuracy better than

40 arcseconds (�0.2 mrad). Previously, orientation refinement

has been performed by optimizing the fit between experi-

mental and calculated intensities, either integrated (Palatinus

et al., 2013) or pixel-wise for peaks detected on individual

frames (Palatinus et al., 2019). Here, we show that fine-sliced

data allow a quicker and more straightforward orientation

refinement to be performed, using the sequence of reflections

as they appear during crystal rotation. The fine-sliced data

approach also permits a measurement of the varying slew rate

(Section 3). As a corollary of the requirement for high

precision in crystal orientation, the angular range of the

incident beam must also be taken into account; while parallel

illumination is often assumed, in practice there is always some

beam convergence or divergence that broadens the range of

reciprocal space that is sampled.

(iii) Background B. In ED, corrections for background need

to be considered from two main sources, (a) the detector and

(b) non-Bragg scattered electrons (both elastic and inelastic).

For (a), detector characteristics such as dark noise levels,

quantum efficiency and linearity can be measured effectively;

these corrections are necessary but straightforward. Unfor-

tunately, (b) is rather more problematic. Amorphous material,

e.g. the support film for the crystal, can create a nonlinear

background (Tivol, 2010), but the sample itself also produces

non-Bragg thermal diffuse scattering (TDS, caused by

displacement of atoms from their mean positions by thermal

vibrations) and inelastic scattering. Importantly, these elec-

trons can be diffracted again by the crystal, producing a

background that is highly structured, with Kikuchi lines and

dynamical scattering effects (Eggeman & Midgley, 2012).

Calculating this background is not a trivial exercise and

generally requires a model of thermal vibrations (ideally,

complete knowledge of the phonon spectrum) (Muller et al.,

2001; Kolb et al., 2012) and a full quantum-mechanical

description of inelastic processes (Forbes et al., 2011),

respectively. In a complete model of electron scattering these

effects would be taken into account in the calculation of

diffracted intensities to be compared against experiment.

Currently, while some multislice simulation packages can do

so (Allen et al., 2015) none have yet been implemented for 3D-

ED experiments. Here, we use a simple Bloch-wave model

that neglects this ‘background’ intensity of diffuse scattering

by the crystal.

(iv) Absorption A. This is another term which, strictly

speaking, should be considered in scattering theory but in

XRD its behaviour is simple enough for it to be corrected as

an experimental variable. For the energies typical of ED (80–

300 keV) and a thin specimen suitable for structure solution,

true absorption of the electron beam does not happen to any

appreciable extent. However, the attenuation of a Bragg

reflection, as electrons are scattered into the diffuse back-

ground by TDS or inelastic interactions, has a very similar

effect. In ED, TDS is enhanced significantly when the elec-

trons are channelled along atom columns, particularly those

with high atomic number (Hall & Hirsch, 1965). Thus, dark

bands can be seen between low-index Bragg conditions in

bright-field large-angle convergent-beam electron diffraction

(LACBED) patterns [‘anomalous absorption’ (Hirsch et al.,

1965; Jordan et al., 1991); see examples below]. This compli-

cated behaviour means that in ED it is best dealt with in

scattering theory, and should no longer be regarded as an

experimental parameter. Both Bloch-wave and multislice

models can account for this effect in ED.

(v) Extinction E. This is simply the X-ray term for dyna-

mical diffraction effects. The underlying theory is very similar;

the two-beam analysis by Darwin (1914a,b, 1922) for X-rays

has many resemblances to the analysis of Howie and Whelan

for electrons (Howie & Whelan, 1961; Hirsch et al., 1965), so

much so that they are sometimes referred to as the Darwin–

Howie–Whelan model (James, 1990). The term ‘extinction’

refers to the transfer of intensity from the direct beam to a

diffracted beam g and back again, as a function of crystal

thickness; the distance over which this occurs is known as the

extinction distance �g . In XRD this is usually dealt with during

refinement and can be considered as a multiplicative correc-

tion factor that depends only upon the magnitude of Fhkl and

the g vector (Becker & Coppens, 1974; Petřı́ček et al., 2014;

Bourhis et al., 2015). This simple approach can be used

because X-ray extinction distances are usually much larger

than the size of a crystallite. In ED, where extinction distances

can be tens of nanometres and multiple beams are almost

always excited, this is not the case. [In XRD, there is also

‘secondary’ extinction, which refers to the enhanced absorp-

tion of strong diffracted beams in large crystals (Ladd &

Palmer, 1994), whose counterpart in ED is anomalous

absorption, mentioned above]. Again, this correction should

not be applied to ED data, but taken into account in the

calculation of diffracted intensities.

(vi) Scaling S. This correction takes account of the varying

proportion of the incident beam occupied by a crystal of

irregular shape as it is rotated. This is certainly a correction

that should be applied in principle in ED, although in practice

extreme care must be taken not to confound it with simple loss

of intensity in the direct beam due to a very strong diffracted

beam, or the effect of ‘absorption’ due to TDS. ED has a

potential advantage over XRD here, in that a crystal can be

imaged directly, allowing scaling to be calculated from a series

of images taken after a diffraction measurement (Plana-Ruiz

et al., 2020). Without these images, frame-by-frame scaling of

intensities is difficult to calculate [e.g. the current imple-

mentation of dynamical refinement refines the scale as part of

the refinement process rather than the data reduction process

(Palatinus et al., 2019)]. Here we propose a method using the

direct beam intensity.

(vii) Fluctuations in incident electron beam intensity C.

cRED measurements are in general very rapid; diffracted
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electron beam intensities are sufficiently high that they can be

sampled to good precision even in a small fraction of a second,

and the total time for data collection is often less than a

minute. Variations in incident beam intensity on this timescale

are negligible. Despite this, it is common to see significant

changes in the direct 000 beam intensity in a cRED data set

(see e.g. the video in the supporting information). This

happens because electron diffraction is strong and the crystal

occupies much, or all, of the incident electron beam. In ED, it

is quite possible for a diffracted beam with a large structure

factor to have a higher intensity than the direct beam.

Nevertheless, this effect is not due to a change in incident

beam intensity and therefore this correction is not appropriate

for a cRED measurement.

(vii) Mosaicity M. Crystal imperfections, in the form of

dislocations, low-angle grain boundaries and cracks, allow the

Bragg condition to be satisfied over a wider range of angles

than would be the case for a perfect crystal without strain. In

XRD, the presence of these defects can be helpful in that they

effectively break the crystal into a mosaic of small crystal

blocks, reducing extinction effects significantly (Ladd &

Palmer, 1994), although they can also produce broadening of

diffracted beams. For high-energy electrons, with much

smaller extinction distances, defects alter the diffracted

intensity very strongly, allowing them to be visualized directly

in diffraction-contrast TEM (Hirsch et al., 1965; Williams &

Carter, 2009). In ED they may have a significant effect on

measured intensities that is too complicated to account for in

any simple model and which will vary from one crystal to

another in an unknown way. Currently, their effect is neglected

completely and this is probably the best approach until the

more tractable effects of dynamical diffraction are fully

accounted for.

To summarize, in reconsidering equation (2) for dynamical

ED structure solution or refinement, we find that some factors

that can be separated from the scattering model and consid-

ered ‘experimental’ variables for XRD – i.e. absorption A,

geometry G and extinction E – must instead be considered

explicitly in the scattering model for ED. Other experimental

factors – polarization p, incident beam intensity variations C

and the complicated effects of mosaicity M – can probably be

neglected at the current level of simulation fidelity, being

either relatively unimportant or too difficult to tackle with

current methods. Finally, the truly experimental corrections L,

B and S that both XRD and ED hold in common must be

taken into account, but the differences in Bragg angle and

hardware mean that they are rather different for ED. One of

the biggest changes in emphasis is that the point of contact

between experimental measurements and modelled intensities

in a dynamical refinement no longer has a simple and elegant

interpretation relating to the structure factor.

In what follows, we use the reliability factor R1 (see Section

S1.3 in the supporting information) as a metric to compare

model and experiment, using the square root of the observed

(corrected) intensity ½I
ðobsÞ
hkl �

1=2. Our discussion above justifies

only corrections to the raw data for Lorentz factors L, back-

ground B and scaling S,

I
ðobsÞ
hkl ¼ S�1B�1L�1

fI
ðexptÞ
hkl g: ð3Þ

We compare ½I
ðobsÞ
hkl ½

1=2 with the square root of the calculated

ED integrated intensities ½I
ðcalcÞ
hkl �

1=2 using a dynamical diffrac-

tion model in which extinction X and absorption A are

implicit, resulting from the crystal itself. Dynamical integrated

intensities I
ðdynÞ
hkl are a nonlinear function of crystal thickness t,

geometry G and beam profile P. It should be borne in mind

that the relationship between these values and the structure

factor Fhkl of equation (1) is no longer straightforward. Since

we apply Lorentz correction factors L to the simulation we

distinguish between the raw simulation I
ðdynÞ
hkl and corrected

intensities I
ðcalcÞ
hkl ,

I
ðcalcÞ
hkl ¼ L�1I

ðdynÞ
hkl ðX; t;G;PÞ: ð4Þ

We now explore this approach using Bloch-wave simula-

tions to compare kinematic and dynamical model fits to

experimental data for a simple well known material. We

examine data from a single crystal of silicon, ion milled to a

thin foil. This almost perfect crystal shows strong dynamical

scattering and is used to evaluate the improvement in fit using

dynamical modelling, as well as the importance of correction

factors applied to the raw data.

2. Experiment

2.1. Data collection

Experimental data were obtained using selected-area elec-

tron diffraction (SAED) with parallel beam illumination on a

JEOL 2100 LaB6 transmission electron microscope operating

at 200 kV. The sample was a defect-free single crystal milled

using precision ion polishing (PIPS) Ar+ ions at 6 kV to

electron transparency with surface damage minimized by final

polishing at 0.5 kV, producing a (110) lamella with extensive

thin parallel-sided regions. Diffraction patterns were

produced using a strongly excited third condenser lens, giving

close to parallel illumination and a selected-area aperture, and

captured using a Gatan OneView camera recording continu-

ously at 8	 binning (4096 	 4096! 512 	 512) at 75 frames

per second. (Note that with 8	 binning for data collection, the

point spread function of the camera is negligible.) The crystal

was much larger than the selected-area aperture and was

rotated at maximum slew rate about the �-tilt axis over 143�,

giving 1389 frames, each with a nominal crystal rotation of

0.1035� (i.e. all data collected in 18.5 s). The angular step per

frame was determined by finding the lowest score parameter

in PETS from the cylindrical projection plots.

2.2. Data reduction and dynamical simulations

We used PETS (Palatinus, 2011) to find the crystal orien-

tation and unit cell, index reflections and give their rocking

curves. The procedure followed sections 4.1–4.6 of Palatinus et

al. (2019), which refers to the newer version PETS2 (Palatinus

et al., 2019) but remains accurate for both versions. Bloch-

wave simulations were performed using the code Felix

(Beanland et al., 2019) running on a high-performance
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computing cluster (typically 384 cores, completing a simula-

tion in �30 s) using a Python script to extract data from the

dyn.cif_pets file generated by PETS and write input files

for Felix, e.g. setting the incident beam orientation with

respect to the crystal. LACBED patterns of size 400 	 400

pixels were simulated over an angular range corresponding to

40 frames (4.14� or 72.26 mrad). The x axis of the image was

taken to be along a direction perpendicular to the rotation

axis. Successive simulations overlapped by ten frames in an

attempt to ensure that each reflection was fully captured in a

single simulation, an approach referred to as overlapping

virtual frames (OVF) (Klar et al., 2021). Seventy simulations

were required in total to cover the full angular range of the

cRED data.

3. Results

The Si cRED data contained 962 reflections up to 4 Å�1, with

intensity over 6000 or I
ðexptÞ
hkl =�hkl > 2. Almost all reflections

showed a single sharp peak as the crystal was rotated; only 27

had clear dynamical structure with multiple peaks in their

rocking curves, obtained as an intensity given frame by frame

as an output from PETS. Although these data were nominally

background corrected [B�1 in equation (3)], close inspection

showed the tails of the rocking curves had a small non-zero

average. An additional small background correction was

therefore performed by subtracting a linear fit interpolated

beneath the peak of each rocking curve (Fig. S1 in the

supporting information). The origin of the small non-zero

intensity when no peak was present is unclear, although we

note that complex background from TDS and Kikuchi lines is

readily apparent in the raw data, as shown in Fig. 2 (see also

the animated data set in the supporting information).

The Lorentz correction L�1 was then applied for each

reflection g by taking the sum of counts in the background-

subtracted rocking curve and multiplying by the change in

deviation parameter per frame �sg,

I 0hkl ¼ �sg

X
I
ðframesÞ
hkl : ð5Þ

Since the silicon lamella was close to parallel-sided and

much larger than the selected-area aperture, it filled the field

of view completely throughout data collection and therefore

no frame scaling correction S�1 should be required. Never-

theless, it is useful to examine the total intensity falling on the

detector and the intensity of the direct beam as the crystal is

rotated, both shown in Fig. S2. The total intensity (blue line)

shows a drop of approximately 10% when the crystal is

perpendicular to the beam, close to zero � tilt. Since the silicon

is not thick enough to absorb 200 kV electrons to any appre-

ciable extent, and the short collection time precludes any

significant change in incident beam intensity, the change in

total intensity must be due to scattering of electrons to high

angles outside the detector area. This observation remains

unexplained. For the direct beam, each frame z was cropped to

an x = 17 	 y = 17 pixel image I(x, y, z) containing just the

direct beam. An average beam profile was obtained by

summing all frames and dividing by n = 1387, i.e.

I000ðx; yÞ ¼
Xn

z¼1

Iðx; y; zÞ=n: ð6Þ

A normalized direct beam intensity I 0000 was then produced by

dividing each cropped frame by I000,

I 0000ðx; y; zÞ ¼ I000ðx; y; zÞ=I000ðx; yÞ: ð7Þ

Re-slicing this 17 	 17 	 1387 xyz data volume to

1387 	 17 	 17 zyx, and taking the average along x, gives a

1387 	 17 yz image that shows relative direct beam intensity

as the crystal is rotated (Fig. S2, black line in Fig. 3). The trend

in total intensity is also visible here (orange line). There is a

range of approximately 10� at � = 0� where the relative

intensity is depressed by �20%, but this is primarily due to

channelling (see below); since this is calculated as part of the

dynamical simulation it should not be compensated for by

scaling. Most strikingly, there are many sharp and significant

minima (up to 50% of the relative intensity). Closer exam-

ination shows each of these dark lines to occur when a

diffraction condition is satisfied; they simply indicate a transfer

of intensity from the direct beam to a diffracted beam. As seen

in more detail in Fig. S2, Bragg conditions that are satisfied in

only a few frames are visible as dark vertical bands, while

Bragg conditions that pass through the direct beam slowly are
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Figure 2
Seven consecutive frames from the Si cRED data set, showing Kikuchi lines as diffuse contrast passing through Bragg spots, marked by magenta and
yellow arrows.

Figure 3
The blue line shows the total intensity in the Si cRED ED pattern as a
function of goniometer angle �, normalized to an average of unity and
offset by 0.4. The black line shows the relative direct beam intensity for
the data, normalized to an average of unity (red line). See also Fig. S2.



visible as inclined dark lines. In the absence of any explanation

of the broad variations in intensity and knowing that the

crystal completely filled the selected-area aperture, no inten-

sity scaling was applied.

After applying corrections B�1 and L�1 and while

discounting S, we perform an overall scaling to compare

simulated and experimental intensities directly. Intensities are

calculated with an incident beam intensity of unity and we

multiply the corrected integrated observed intensities by a

factor K,

K ¼

P
I
ðcalcÞ
hkl

h i1=2

I
ðobsÞ
hkl

h i1=2

P
I
ðobsÞ
hkl

h i1=2

I
ðobsÞ
hkl

h i1=2
; ð8Þ

giving a set of integrated intensities KI
ðobsÞ
hkl that can be

compared with the simulation and which yield an R factor. We

use the usual definitions, e.g. (Palatinus et al., 2013)

R1 ¼

P
KI
ðobsÞ
hkl

h i1=2

� I
ðcalcÞ
hkl

h i1=2
����

����
P

KI
ðobsÞ
hkl

h i1=2
; ð9Þ

R2 ¼

P
KI
ðobsÞ
hkl � I

ðcalcÞ
hkl

���
���

n o
P

KI
ðobsÞ
hkl

; ð10Þ

wR2 ¼

P
whkl KI

ðobsÞ
hkl � I

ðcalcÞ
hkl

h i2

P
whkl KI

ðobsÞ
hkl

h i2

8><
>:

9>=
>;

1=2

; ð11Þ

where the weights whkl ¼ 1=I
ðobsÞ
hkl �

2
hkl (Ladd & Palmer, 1994).

We first consider kinematic intensities calculated using equa-

tion (1), taking the temperature factor to be Tj =

exp[�Bjsin2(�)/�2] , where Bj is the Debye–Waller factor. We

find a minimum R1 = 26.4% (R2 = 59.4%, wR2 = 56.2%) at B =

0, shown in Fig. 4 (X-ray refinements give B = 0.54 Å2;

Többens et al., 2001). In this plot the bold black line indicates

R1 = 0 ½F
ðobsÞ
hkl ¼ F

ðkinÞ
hkl � while the orange line is a least-squares

linear fit to the data. It is quite clear that the fit of the kine-

matic model to the data is poor, not least because there are a

number of kinematically forbidden reflections that have

significant experimental intensities (highlighted in red), but

also because many strong reflections (F
ðkinÞ
hkl > 0:2) are in fact

weaker than expected.

The poor R1 seen in Fig. 4 is typical of many ED refinements

using a kinematic model and we now turn to a dynamical one.

We use an initial Debye–Waller factor B = 0.54 (Többens et al.,

2001) since the value obtained from the kinematic model is

unphysical. A Bloch-wave simulation of seventy Felix 000

LACBED patterns, stitched together to make a continuous

strip, is shown in Fig. 5. The frame numbers underneath

correspond to experiment. In this image, a perfect plane-wave

incident beam corresponds to a single point and the red line

marks the nominal path traced by the direct beam through

reciprocal space as the crystal is rotated. Each dark line in the

simulation shows the location of a Bragg condition; when the

direct beam lies on one of these lines a diffracted beam is

produced, with an intensity that can be obtained from the

corresponding point in the relevant dark-field LACBED

pattern. The correspondence between this simulation and

experiment can also be seen by converting the normalized

experimental direct beam data volume to a 2D image, shown

in greyscale below the simulation. Some features common to

both experiment and simulation are marked by arrows.

The simulated rocking curve for a reflection is given by the

intensity along a line in its dark-field LACBED pattern, as

shown in Fig. 6 for (a) a typical reflection with a single peak

9 3 3 and (b) one with obvious dynamical structure 311. Inte-

grated intensities I
ðdynÞ
hkl can be obtained from these simulated

rocking curves in the same way as they are taken from

experimental ones, although here there is no diffuse scattering

and therefore no background correction. The incident beam

intensity is fixed at unity so there is no scaling correction and

only Lorentz corrections need to be applied.

Kinematic intensities are independent of crystal thickness,

but dynamic intensities can be very sensitive to it, particularly

strong reflections with short extinction distances. It is there-

fore necessary to perform simulations for a range of thick-

nesses (see supplementary Sections S1.4 and 1.5). We may also

expect the specimen thickness along the path of the electron

beam to vary as the crystal is rotated, but this is ignored for the

moment. The best R1 is obtained for a thickness of 190 nm,

shown in Fig. 7. A very significant improvement over the

kinematic model is apparent, with R1 = 12.6% (R2 = 23.8%,

wR2 = 39.8%). The wide spread of intensities is no longer

present, but there is still considerable scatter about the

expected R1 = 0 line and the gradient of a linear fit is 0.74.

Dynamical simulations therefore clearly give a much better

fit to experimental data, as may be expected. However, R1 is
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Figure 4
R1 calculation for cRED silicon data using the kinematic model [equation
(1)] with B = 0.2. Kinematically forbidden reflections are highlighted in
red. R1 = 26.0%



still relatively high in Fig. 7 and further improvements are

possible by increasing the precision of the crystal orientation.

The wide range of reciprocal space covered in the simulation

allows the geometry to be optimized, as described below.

3.1. Orientation optimization G

For any given reflection in Fig. 5 its Bragg condition is

satisfied, and a spot will appear in the SAED pattern, when

the 000 beam sits on the corresponding dark line. The frame in

which the maximum diffracted intensity appears is given by

the crossing point of the Bragg condition and the red line. It is

thus possible to obtain the sequence of reflections which

appear in a cRED experiment, and the frame spacing between

them, for any given direct beam path. Conversely, with

knowledge of the frames in which diffracted maxima appear in

an experiment we can find the corresponding path through

reciprocal space.

The effect of a slightly incorrect crystal orientation is shown

in Fig. 8(a). In this simulated image each frame corresponds to
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Figure 5
Dynamical simulation for the path of the 000 beam through reciprocal space (red line) in the silicon cRED data set, corresponding to 1387 frames
(goniometer rotation of 143� about �). Frame numbers are indicated; note that one division = 5 frames = 0.5175� = 9 mrad. Each dark line corresponds to
a Bragg condition for a diffracted beam, two of which (9 3 3, frames 30–50, and 311, frames 545–590) are labelled. Below the simulation, the experimental
intensity of the 000 beam is shown. Some features that are clearly present in both simulation and experiment are indicated by arrows. The [110] zone axis
lies a few degrees below the beam path around frame 670.



a vertical stripe ten pixels wide and the nominal direct beam

path runs horizontally through the centre, marked by a red

line. Experimentally, the 14 2 2 and 11 1 3 reflections were seen

in frame 4, 844 was seen in frame 9 etc., as marked by blue

vertical lines. The image is a superposition of eight dark-field

LACBED patterns; each bright line corresponds to a

diffracted beam (and to a dark line in the direct beam

LACBED pattern, not shown). The intersection of each blue

line and its corresponding diffraction condition is marked by a

yellow dot and must lie on the beam path; yellow lines indicate

an error of 0.5 frames. Clearly, these points do not correspond

to the expected horizontal line through reciprocal space,

indicating that the nominal crystal orientation is slightly in

error. An optimized crystal orientation can be found by

shifting the group of blue lines while maintaining their relative

frame spacing (e.g. 339 has an experimental peak intensity one

frame before 137 and three frames after 844). Shifting the set

of blue lines by 2.5 frames to the left brings all points close to a

horizontal line [Fig. 8(b)]. An optimized direct beam path was

then calculated by fitting a smoothed curve to the best crystal

orientation for each simulation (Fig. 9), for both changes

about the rotation axis �� and perpendicular to it �	, by least-

squares fitting a horizontal line to the optimized set of inter-

section points. Rocking curves extracted from the Bloch-wave

simulations using an optimized beam path give a significant

improvement to R1 = 10.0% [R2 = 19.9%, wR2 = 30.2%,

Fig. 8(c)], mainly by reducing the scatter in reflections with

lower intensities. This can be understood by referring back to

Fig. 1, which shows how large variations in intensity can be

found in weak beams when they coincide with stronger beams.

Optimization of the beam path is essential to capture these

interactions correctly.

The resulting corrections are shown in Fig. 9. The actual

path traced by the direct beam deviates vertically from the red

line (i.e. about the 	 tilt axis) in Fig. 9 by a maximum of ten

pixels (equivalent to one frame or 0.1�). There is a much larger

correction needed along �, up to five frames [0.5�, Fig. 9(b)]

and which varies through the data series, caused by a varying

slew rate during rotation of the specimen. This varying slew

rate is apparent in Fig. 5, where the features in the normalized

experimental direct beam intensity are not found directly

beneath their corresponding points in the simulation above. A

changing slew rate also has an impact on integrated intensities,

since the crystal is rotating more slowly or quickly through a

diffraction condition than expected. Applying a slew rate

correction to the simulated intensities gives a further

improvement to R1 = 9.4% [R2 = 13.8%, wR2 = 28.7%,

Fig.9(c)].

3.2. Correction for beam profile P

The sensitivity of dynamical electron diffraction to thick-

ness is apparent in the R1 calculation for all integrated
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Figure 6
Two examples of silicon cRED rocking curves. (a) and (b) are
experimental data. Most experimental rocking curves have a simple
peak like (a) 9 3 3, while less than 3% show dynamical structure like (b)
311. (c) and (d) The corresponding dark-field LACBED simulations
(specimen thickness 185 nm). The nominal beam path is a red line, with
frame numbers in yellow. Intensity profiles along the red line give the
rocking curves (e) and (f). The difference in frame numbers (a) to (e) and
(b) to (f) is caused by a varying slew rate [Fig. 9(b)]. (g) and (h) Applying
the angular spread of the incident beam (Fig. 10) as a convolution to the
simulation gives simulated rocking curves that are a good match to
experiment.

Figure 7
R1 calculation for cRED silicon data with a Bloch-wave model, using the
nominal direct beam path (red line in Fig. 3) and a specimen thickness of
190 nm. The kinematically forbidden reflections identified in Fig. 4 now
have non-zero values. The black line marks perfect correspondence (R1 =
0) and the orange line a least-squares linear fit. R1 = 12.6%



intensities (see Section S1.4). It is also very important for the

fine structure of rocking curves of strongly dynamical inter-

actions, which show fringes that change in size and number as

a function of crystal thickness. It has long been known that

crystal thickness can be measured to an accuracy of a nano-

metre or better using these features in CBED patterns (Kelly

et al., 1975; Allen, 1981). The fine structure of strongly dyna-

mical rocking curves thus gives another way of measuring

crystal thickness, which should match the minimum R1 for all

reflections. These fringes can be seen clearly for the 311

reflection in Fig. 6. However, the features in Fig. 6(f) are

noticeably sharper than the experimental rocking curve in

Fig. 6(b) and this is due to the angular range of the incident

electron beam. Additionally, in the optimized orientation of

Fig. 8(b) the yellow dots do not lie precisely on a straight

horizontal line. Both of these effects may be explained if the

intersections are not points but have a finite size.

The incident electron beam is not a perfect plane wave

because the crossover produced by the final condenser lens,

which acts as an effective illumination source, is of finite size.

We may approximate the angular profile of the incident beam

by the intensity profile of the direct transmitted beam aver-

aged through all frames, which is shown in Fig. 10(a) together

with a fit to a Lorentzian profile. The fit is excellent and gives

the FWHM of the direct beam as 0.037 Å�1 or 0.47 mrad

(97 arcseconds). Thus, the integrated intensity is obtained

from the simulated LACBED patterns not from a single row

of pixels, but from multiple rows, each of which contributes in

proportion with the beam profile of Fig. 10(a). This has the

effect of changing the rocking curve profile, particularly when

the line of the Bragg condition is more parallel to the beam

path, and changing the integrated intensities because the

intensity of a reflection varies along its Bragg condition. The

most straightforward way of performing this correction is to

apply the beam profile as a convolution to the simulations,

which allows rocking curves to be extracted that are a good

approximation to experiment, shown in Figs. 6(g) and 6(h).

Integrated intensities obtained after applying this final

correction give R1 = 8.9% [R2 = 18.1%, wR2 = 25.3%,

Fig. 10(b)]. The largest scatter from the R1 = 0 line is now

found in the highest intensity reflections.

Having applied all relevant corrections to the experimental

data and optimized the simulation, we are finally in a position

to perform a structural refinement. In silicon there is only one

free parameter, the Debye–Waller factor B. Fig. 11 shows the

variation in R1 with B, with a final R1 of 6.8% (R2 = 13.8%,
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Figure 8
(a) The intersections with Bragg conditions for eight reflections in the first Si Felix simulation. Frame numbers are given at the bottom of the image and
the frame in which each peak intensity is found is marked by a vertical blue line. The intersection of the blue line with its Bragg condition is marked by a
yellow dot (yellow lines correspond to an error of 
0.5 frames). The horizontal red line marks the nominal beam path (output from PETS) and if the
crystal orientation was correct the yellow dots would all lie on this line. (b) The best fit to a straight line is obtained by shifting the blue lines by �2.5
frames. (c) R1 calculation using an optimized beam path and a specimen thickness of 185 nm. R1 = 10.0%

Figure 9
Corrections to the nominal direct beam path (red line in Fig. 5), (a) perpendicular to the line (	 tilt) and (b) along the line (� tilt). The uncertainty in ��
and �	 for each data point is� 
 0.5 frames, i.e. 0.05�. (c) R1 calculation after correcting the integrated intensities for a varying slew rate gives R1 = 9.4%
at a specimen thickness of 195 nm.



wR2 = 23.6%) and a well defined best fit at B = 0.32Å2. This is

rather lower than the X-ray value of B = 0.54Å2 (Többens et

al., 2001) and there is still noticeable scatter in the highest

intensity measurements. These differences may be due to

difficulties in background subtraction, which result from a

limited number of intensity measurements in the PETS output

(see Section S1.1).

In summary for these silicon cRED data, we have demon-

strated that the poor R1 obtained using a kinematic diffraction

model is not found when using a dynamical model with

appropriate optimization and correction factors [Fig. 10(c)].

The final result (R1 < 7%) is still some way above those typical

of X-ray diffraction (Ross et al., 2014), indicating that there is

still work to do in data processing or modelling for electron

diffraction. The importance of careful correction is very clear

from the observation that the improvement in R1 due to

refinement of the temperature factor (Fig. 11) is of similar

magnitude to improvements that result from optimization of

the geometry [Fig. 10(c)]. Nevertheless, dynamical ED inten-

sities are far more sensitive to structure (i.e. atomic coordi-

nates) than temperature factors (Beanland et al., 2021), which

is reassuring for structure solution and consistent with the

growing number of structures solved by ED. Further

improvements may be possible with improved background

subtraction, which may be incorrect for high-intensity reflec-

tions in this particular example due to a lack of data in the

rocking curves.

4. Discussion and conclusions

In this work, we have established a protocol for dynamical

modelling of fine-sliced cRED data, taking account of the

corrections that should be applied in the case of electron

diffraction, equivalent to those applied to X-ray data. These

corrections rely on the ability to extract rocking curves from

experimental data, i.e. having a large number of frames

collected at small angular increments. We expect that this

approach will become widespread as detector technology

continues to improve. Our results show similar improvements

to those seen by Palatinus et al. (2013, 2015b) and Klar et al.

(2021), i.e. dynamical modelling of cRED data has a very

significant impact on the quality of fit, reducing R1 by almost

20% in the silicon example chosen here. Nevertheless, this is a

particularly simple material with very high perfection and

many systematic absences. Equivalent improvements may not

be found for more interesting (complex) materials, particu-

larly if they have poorer crystallinity, exhibit strong inelastic

scattering as seen in organic materials (Latychevskaia &

Abrahams, 2019) and are not parallel-sided lamellae.

Several improvements can be made from this attempt at

dynamical modelling, not least the need for significant

computing resources. Each set of 70 simulations calculated

5.6 	 106 incident beam orientations, producing a 400 	 400

pixel LACBED pattern for each of the 962 diffracted beams.

The large range of reciprocal space covered in each LACBED

pattern, together with knowledge of which frame each

reflection was seen in experimentally, allowed precise

correction of the crystal orientation, but the area of reciprocal

space covered could be reduced by a factor of >40 if this

optimization were first performed by direct calculation of the

positions of the different Bragg conditions. To allow rocking

curves to be captured fully, each simulation overlapped with

the next, meaning that every incident beam orientation was
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Figure 10
(a) The direct beam profile, obtained by averaging all frames in the Si cRED data and a Lorentzian fit. (b) R1 calculation after optimizing the geometry
and correcting for the slew rate and beam profile (specimen thickness 185 nm). R1 = 8.9%. (c) R1 for the kinematic model K and initial dynamical model
D, with geometry optimization G, corrections for slew rate S and beam profile P, and refinement of Debye–Waller factor DWF.

Figure 11
(a) R1 as a function of Debye–Waller factor B. (b) Optimized R1

calculation for B = 0.33, giving a best R1 = 6.8% at a specimen thickness of
185 nm.



simulated twice, something easily avoided if a single simula-

tion (e.g. 20 	 14 000 pixels) is calculated instead. Rocking

curves and integrated intensities could be output directly,

rather than extracted from these simulated data using Python

scripts. In Felix, the Bloch-wave calculation is optimized by

careful choice of the diffracted beams included (Zuo &

Weickenmeier, 1995; Chuvilin & Kaiser, 2005), but the time

required remains / N 3, where N is the number of beams

(Yang et al., 2017). No attempt was made to optimize this

parameter and all simulations were run with N = 200 from a

beam pool of �800 in each simulation. If all such improve-

ments were to be implemented it seems reasonable to expect a

full set of I
ðcalcÞ
hkl to be obtained in seconds. This would then

allow dynamical refinement of crystal structure in reasonable

times.

Improvements in simulation fidelity are also possible. The

simple Bloch-wave calculation used here assumes that the

surface normal is parallel to the incident beam direction, i.e. it

does not properly account for continuity of the electron

wavefunction at the entrance and exit surfaces of a tilted

crystal. This is obviously not correct for a specimen tilted by

up to 70�. Furthermore, as the crystal rotates, the thickness of

material transited by the electron beam changes. Interestingly,

we found that simulated rocking curves for a single thickness

gave a good match to experiment across the full data set

(Section S1.5), and this thickness agreed with the minimum R1

obtained from the integrated intensities. Incorporating a

change in crystal thickness t corresponding to that expected

for a parallel-sided slab gave no improvement in comparison

with a single thickness for the complete data set, although

large corrections should only occur at very high tilts

(t / 1= cos �). We expect a more correct model would yield

further improvements in R1. Finally, some experimental

rocking curves suffered from poor background correction

(Section S1.1). While improved background subtraction may

be possible in PETS2, the presence of diffuse scattering,

modulated by strong Kikuchi lines, may still be a significant

factor that prevents a good measurement of the intensity.

In conclusion, dynamical modelling of cRED data has a

significant impact on the quality of the fit. Improvements are

still required before the fit metrics for electron diffraction

equal those of X-ray diffraction, but there seems to be no

fundamental reason why they cannot be achieved. This is

encouraging for the future development and application of

3D-ED techniques to structural solution in a wide range of

applications.
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Fröjdh, E., Wennmacher, J. T. C., Rzepka, P., Mozzanica, A., Redford,
S., Schmitt, B., van Bokhoven, J. A. & Gruene, T. (2020). Crystals,
10, 1148.

Gemmi, M. & Lanza, A. E. (2019a). Acta Cryst. B75, 495–504.
Gemmi, M. & Lanza, A. E. (2019b). Acta Cryst. B75, 495–504.
Gemmi, M., Mugnaioli, E., Gorelik, T. E., Kolb, U., Palatinus, L.,
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