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The magnetic small-angle neutron scattering (SANS) cross section of dilute

ensembles of uniformly magnetized and randomly oriented Stoner–Wohlfarth

particles is calculated using the Landau–Lifshitz equation. The focus of this

study is on the angular anisotropy of the magnetic SANS signal as it can be seen

on a two-dimensional position-sensitive detector. Depending on the symmetry

of the magnetic anisotropy of the particles (e.g. uniaxial, cubic), an anisotropic

magnetic SANS pattern may result, even in the remanent state or at the coercive

field. The case of inhomogeneously magnetized particles and the effects of a

particle-size distribution and interparticle correlations are also discussed.

1. Introduction

In a magnetic small-angle neutron scattering (SANS) experi-

ment, the angular intensity distribution of the scattered

neutrons on the two-dimensional position-sensitive detector

usually provides the first information on the magnetic micro-

structure of the sample under study. When an external

magnetic field B is applied and varied during the experiment,

such images can yield useful information on the degree of

magnetic saturation (at large fields), on the presence of clover-

leaf-shaped angular anisotropies (at intermediate fields), or

whether or not the magnetic moments are randomly distrib-

uted (at remanence or at the coercive field). The angular

anisotropy of the magnetic SANS cross section can have many

origins (Michels, 2021), e.g. (a) it can be due to the dipolar

nature of the interaction between the magnetic moment of the

neutron and the magnetic moment that is formed by the

unpaired electrons of the sample, (b) it might be related to the

magnetic interactions within the sample such as the magne-

todipolar energy between magnetic moments, anisotropic

exchange interaction or magnetic anisotropy, or (c) it can be

due to the presence of a texture in the microstructure of the

material.

One of the simplest examples is an ideal Langevin super-

paramagnet, which, by definition, consists of randomly

oriented noninteracting single-domain nanoparticles (macro-

spins) that are embedded in a rigid nonmagnetic matrix. The

magnetic behavior of this system is determined by the B/T

ratio, where T is the absolute temperature. At remanence and

not too low T, due to the randomizing effect of the thermal

energy, the macrospins are randomly oriented in the matrix

and the average system magnetization vanishes. The ensuing

magnetic SANS cross section is then isotropically distributed

in the detector plane. Applying a magnetic field induces anPublished under a CC BY 4.0 licence
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average magnetization, which may result in the appearance of

an angular anisotropy of the scattering pattern [see the

discussion in Section 5.1.2 of Michels (2021)].

Here, we consider the case of a statistically isotropic dilute

ensemble of identical magnetic nanoparticles, so that case (c)

is excluded as a source of the scattering anisotropy.

Temperature effects are not taken into account. The particles

are assumed to be in a single-domain state during the

magnetization-reversal process, which implies that the only

sample-related angular anisotropy that eventually becomes

visible on the detector is due to magnetic anisotropy. As we

will see below, cases (a) and (b) can be disentangled from one

another. The magnetic nanoparticle ensemble is treated within

the well known Stoner–Wohlfarth model (Stoner & Wohl-

farth, 1948), which is a workhorse in magnetism, since it is the

simplest approach for producing hysteresis effects. The

Stoner–Wohlfarth model considers a system of noninteracting

single-domain particles in the presence of an applied magnetic

field. The particles exhibit magnetic anisotropy, which may

have its origin in dipolar shape anisotropy and/or in spin-orbit-

interaction-related magnetocrystalline anisotropy. We analyze

the role played by the magnetic anisotropy for the angular

anisotropy of the two-dimensional magnetic SANS cross

section of Stoner–Wohlfarth particles. The Landau–Lifshitz

(LL) equation of motion for the magnetization is employed to

determine the magnetic equilibrium state and to calculate the

corresponding magnetic SANS signal and the pair-distance

distribution function.

This article is organized as follows. Section 2 displays the

well known equations for the magnetic SANS cross section of

a dilute ensemble of uniformly magnetized single-domain

particles that are rigidly embedded in a nonmagnetic matrix.

We consider the two most often used scattering geometries,

which have the externally applied magnetic field either

perpendicular or parallel to the incoming neutron beam.

Section 3 briefly recapitulates the basic expressions of the

Stoner–Wohlfarth model, while Section 4 presents and

discusses the results for the SANS observables. We comment

on the case of inhomogeneously magnetized particles and on

the effect of interparticle correlations (dense packing). Finally,

Section 5 summarizes the main findings of this work. In the

supporting information of this article, we provide several

movies that feature the average magnetization, the two- and

one-dimensional magnetic SANS cross sections, as well as the

pair-distance distribution function, correlation function, and

anisotropy parameter during the magnetization-reversal

process assuming different magnetic anisotropy symmetries

(compare the six cases in Table 1).

2. Magnetic SANS cross section of a dilute ensemble of
single-domain particles

Magnetic SANS experiments are usually conducted with the

external magnetic field B either applied perpendicular (?) or

parallel (k) to the wavevector k0 of the incoming neutron

beam [compare Figs. 1(a) and 1(b)]. For these two scattering

geometries, the macroscopic elastic magnetic SANS cross

section d�M/d� at momentum-transfer or scattering vector q

can be expressed as (Michels, 2021)
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In these equations, V is the scattering volume, bH =

2.91 � 108 A�1m�1 denotes the magnetic scattering length in

the small-angle regime, eMMx;y;zðqÞ are the Cartesian Fourier

components of the magnetization vector field M(r) =

[Mx(r), My(r), Mz(r)], the index i refers to the orientation of

particle i, the index k keeps track of the applied-field value, the

asterisk ? denotes the complex-conjugated quantity and the

h...ii notation is explained below in equation (7). In the

perpendicular and parallel scattering geometries, the scat-

tering vector is given by q? ¼ q½0; sin �; cos �� and

qk ¼ q½cos �; sin �; 0�, where the angle � is measured between

q? and B k ez and qk and ex, respectively. Note that B k ez in

both geometries. Equations (1) and (2) neglect interparticle

interference effects and are valid for a dilute scattering system.

In the main part of this article we exclusively focus on the

perpendicular scattering geometry, and we refer to the
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Figure 1
The two most often employed scattering geometries in magnetic SANS
experiments. (a) External magnetic field B perpendicular to the incoming
neutron beam (B ? k0) and (b) B k k0. Note that B k ez in both
geometries. The momentum-transfer or scattering vector q corresponds
to the difference between the wavevectors of the incident (k0) and
scattered (k1) neutrons, i.e. q = k0� k1; its magnitude for elastic scattering
is given by q ¼ 4�=� sinð =2Þ, where � is the mean wavelength of the
neutrons and  is the scattering angle. The angle � is used to describe the
angular anisotropy of the recorded scattering pattern on the two-
dimensional position-sensitive detector.



supporting information for movies that show results for the

parallel geometry.

The Fourier transform of the magnetization vector field of a

nanoparticle is defined by

eMMðqÞ ¼ 1

ð2�Þ3=2

Z
Vp

MðrÞ exp �iq � rð Þd3r; ð3Þ

which, for a uniformly magnetized particle, can be simplified

to

eMMðqÞ ¼ M0m

ð2�Þ3=2

Z
Vp

exp �iq � rð Þd3r: ð4Þ

In going from equation (3) to equation (4), we have expressed

the (constant) magnetization vector as M = M0m, where M0 is

the saturation magnetization and m is a unit vector along M.

The remaining integral in equation (4) is the well known form-

factor integral (over the volume Vp of the particle), which is

analytically known for many particle shapes. For spherical

particles (with radius R), equation (4) can be further simplified

to

eMMðqÞ ¼ 4�R3M0

ð2�Þ3=2

j1ðqRÞ

qR
m; ð5Þ

where j1(z) denotes the first-order spherical Bessel function.

For more complicated particle shapes (e.g. cylinders or flat

discs), an additional average over the particle orientation

might be required to obtain the only q-dependent form factor.

As a reminder, we consider a dilute system of N identical

spherical single-domain particles, where, at a given value of

the applied field Bk, each particle i has its own random

orientation of magnetic easy axes with respect to B (to be

further specified in Section 3). For this situation, we may

express the Fourier components as

eMMikðqÞ ¼
4�R3M0

ð2�Þ3=2

j1ðqRÞ

qR
mik: ð6Þ

The magnetic SANS cross sections at the kth magnetic field

value, averaged over all the random easy-axis orientations i,

are then given by equations (1) and (2), where the bracket

notation of the mean operator is defined as follows:
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and similar for the other Fourier components. Since the

spherical Bessel function is a scalar prefactor to the Fourier

transform of the magnetization vector, we can simplify the

magnetic SANS cross sections as follows:
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such that the magnetic SANS cross section directly follows

from the (real valued) real-space correlation functions of the

components of the magnetization vector. We therefore define

the cross-correlation matrix corresponding to the kth value of

the magnetic field as

Ck
¼ mik

�mik
	 


i
; ð10Þ

where more explicitly written the components are defined as

�k
�� ¼

1

N

XN

i¼1

mi;k
� mi;k

� ; �; � 2 fx; y; zg; ð11Þ

such that the magnetic SANS cross sections are written as
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In the general case of an inhomogeneous magnetization

distribution, i.e. m = m(r), these formulations of the magnetic

SANS cross sections only correspond to the first term in a

Taylor series expansion. From equations (12) and (13) we see

that the magnetic SANS cross section gives quite different

insights into the magnetization structure than the hysteresis

loop: the latter contains information about the first-order

moments, while the former yields information about the

second-order moments of the magnetization vector field. The

magnetic SANS cross section of uniformly magnetized parti-

cles is anisotropic (� dependent) when the terms in the

brackets on the second lines of equations (12) and (13) add up

to yield a resulting net � dependence. This statement can be

further specified by noting the symmetry of the equations in

the parallel scattering geometry [equation (13)], which is

absent in the perpendicular case [equation (12)]. For B k k0

the two transversal magnetization components lie in the

detector plane, whereas for B ? k0 only one transversal

component lies in the detector plane and the other one is

pointing along the incident-beam direction [compare Figs. 1(a)

and 1(b)]. Since for the here-considered Stoner–Wohlfarth

system with B k ez in both scattering geometries we have �xx =

�yy and �xy = �xz = �yz = 0 (see Appendix A), it becomes

immediately clear that the two-dimensional d�M, k/d� is

isotropic at all fields, while d�M, ?/d� is generally anisotropic.
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Moreover, for a constant magnetization vector field, the

orientationally averaged form-factor integral in equation (4)

can be analytically or numerically computed for many particle

shapes, with the result that the prefactor in equations (12) and

(13) is only a function of the magnitude of q. Therefore, the

above result – isotropy of d�M, k/d� and general anisotropy of

d�M, ?/d� – is true for arbitrary particle shapes and also in the

presence of a distribution of particle sizes, as long as all the

randomly oriented particles are in a single-domain state.

The azimuthally averaged SANS cross sections are

straightforwardly obtained as
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Here, for the 2� azimuthal average, we see that the yz and xy

cross-correlation terms vanish, and only the autocorrelation

terms remain. The pair-distance distribution functions are

obtained as
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The related correlation functions ck(r) = pk(r)/r2 are
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The �k
�� are real numbers, which depend on the applied field

and on the symmetry of the magnetic anisotropy of the

particles. We then see that – within the present Stoner–

Wohlfarth approach – the I(q), p(r) and c(r) are identical for

the perpendicular and parallel scattering geometries, except

for a numerical prefactor.

To quantify the angular anisotropy of the two-dimensional

magnetic SANS cross section, we introduce (for B ? k0) the

following number [compare Fig. 1 with equation (12)]:

Ak
? ¼

R1
0 d�k

M;?=d�
� ���

qkez
dqR1

0 d�k
M;?=d�

� ���
qkey

dq
¼
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yy

�k
xx þ �k

zz

: ð20Þ

For the parallel scattering geometry, where B is perpendicular

to the detector plane, we calculate Ak similar to equation (20)

as the ratio of integrated intensities along the horizontal and

vertical directions on the detector [compare with equation

(13)]:

Ak
k ¼

R1
0 d�k

M;k=d�
� ���

qkex
dqR1

0 d�k
M;k=d�

� ���
qkey

dq
¼

�k
yy þ �k

zz

�k
xx þ �k

zz

: ð21Þ

In the following, the quantities A? and Ak are denoted as the

anisotropy parameters. As discussed before, since �xx = �yy,

we find that Ak = 1 at all fields, while generally A? 6¼ 1 (see

Appendix A). When the �zz correlation coefficient dominates,

we have A? < 1 and the two-dimensional magnetic SANS

signal exhibits a dominant sin2 � anisotropy, whereas for

dominant �xx and �yy (A? > 1) we observe a cos2 � type

angular anisotropy.

3. Recap: Stoner–Wohlfarth model

In this chapter, we recapitulate the basic ideas of the Stoner–

Wohlfarth model (Stoner & Wohlfarth, 1948), which considers

a magnetically anisotropic single-domain particle in the

presence of an applied magnetic field B (assumed here to be

parallel to the z direction of a Cartesian laboratory coordinate

system). The origin of the magnetic anisotropy can be due to

shape anisotropy and/or magnetocrystalline anisotropy. Here,

we consider identical particles possessing magnetocrystalline

anisotropy only. Note also that spherical particles do not

exhibit shape anisotropy and thermal effects are ignored. By

denoting with !ik
ani the magnetic anisotropy energy density in

the (global) laboratory coordinate system, the total energy

density !ik of a particle i at field k is commonly expressed as

!ik
ðmik
Þ ¼ �M0mik

� Bk
þ !ik

aniðm
ik
Þ; ð22Þ

where M0 is the saturation magnetization of the material. The

two most common forms of magnetocrystalline anisotropy

either exhibit uniaxial (u) or cubic (c) symmetry. The corre-

sponding mathematical expressions for the magnetic aniso-
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tropy energy densities, in the local coordinate frame of the

particle, are the following:

!ani;uðmÞ ¼ Ku1 1�m2
z

� �
þ Ku2 1�m2

z

� �2
ð23Þ

and

!ani;cðmÞ ¼ Kc1 m2
xm2

y þm2
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z þm2
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z

� �
þ Kc2m2

xm2
ym2

z; ð24Þ

where Ku and Kc are the temperature-dependent anisotropy

constants (in J m�3). Depending on their relative magnitude

and the signs of the anisotropy constants, different easy axes

are obtained (Kronmüller & Fähnle, 2003). The corresponding

effective magnetic fields (in Tesla) are then readily obtained as

Bani;uðmÞ ¼ �
1

M0
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ð25Þ

and
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75:
ð26Þ

The different (random) particle orientations i are obtained by

rotations in three-dimensional space (change of basis). This is

accomplished by using a rotation matrix Ri that is para-

metrized by (random) Euler angles � i, �i and 	i (with 0 � � i �

2�, 0 � �i � � and 0 � 	i � 2�) (Goldstein, 1991), so that the

total effective field is calculated as follows:

Bik
effðm

ik
Þ ¼ �

1

M0

@!ik

@mik
¼ Bk

þ Ri � BaniðR
T
i �m

ik
Þ; ð27Þ

where

Rið�i; �i; 	iÞ ¼ Rzð�iÞ � Ryð�iÞ � Rzð	iÞ; ð28Þ

and the superscript T refers to the transpose of the matrix.

Here we adopt a z–y–z rotation sequence. The procedure of

obtaining the Euler angles starts with uniformly distributed

random numbers ai, bi and ci in the three-dimensional unit

cube, such that 0 � ai, bi, ci � 1. As a random-number

generator we use the low-discrepancy Sobol sequences (https:/

/www.mathworks.com/help/stats/sobolset.html). In order to

achieve a uniform distribution of random angles on the unit

sphere, we use the following transformations:

�i ¼ 2�ai; ð29Þ

�i ¼ arccosð2bi � 1Þ ð30Þ

and

	i ¼ 2�ci: ð31Þ

To obtain the static equilibrium magnetization, we insert the

expression for Bik
eff into the LL equation (Bertotti, 1998),

which describes the magnetization dynamics:

dmik

dt
¼ ��G mik � Bik

eff � 
mik � ðmik � Bik
effÞ; ð32Þ

where �G = 1.76 � 1011 T�1s�1 is the gyromagnetic ratio and 

is the damping constant. Following the temporal evolution of

the LL equation, the static spin structure mik ¼ ½mik
x ;mik

y ;mik
z �

of nanomagnet i at field k can be obtained. Repeating (at fixed

k) these simulations N times for different easy-axis orienta-

tions allows us to compute the averages that determine the

magnetic SANS cross section. More specifically, the hysteresis

loop of the ensemble of spherical nanomagnets then follows

from the averaged magnetization projected along the z

direction,

mk
z ¼ mi;k

z

	 

i
¼

1

N

XN

i¼1

mi;k
z : ð33Þ

In addition to mk
z, we also calculate the field dependence of the

transversal magnetization components, mk
x and mk

y , as well as

the field loops of the components of the cross-correlation

matrix ��� (with �, � 2 {x, y, z}) [equation (11)]. As we have

seen in Section 2, these are of particular relevance for the

magnetic SANS cross section.

In the numerical computations, we used the following

parameters: 
 = 3 � 1011 T�1s�1 and an integration time step

of 5 � 10�15 s. Typically, K = 2000 discretization points for the

applied magnetic field and N = 10 000 samples of different

orientations for the easy axes of the particles (angles � i, �i and

	i) were used. For further details on the SANS simulation

methodology using the LL equation, we refer to Adams et al.

(2022a).

4. Results and discussion

In our analysis, we consider the following six cases for Stoner–

Wohlfarth particles with uniaxial and cubic anisotropy: (i) ku1

= +1 and ku2 = 0, (ii) ku1 = �1 and ku2 = 0, (iii) ku1 = �0.5 and

ku2 = +0.5, (iv) kc1 = +1 and kc2 = 0, (v) kc1 = �1 and kc2 = 0,

and (vi) kc1 =�1 and kc2 = +9. The ku, c (in Tesla) are related to

the Ku, c (in J m�3) via ku, c = 2Ku, c/M0 [compare equations

(25) and (26)]. Minimization of the anisotropy energy densi-

ties [equations (23) and (24)] shows that these combinations of

anisotropy constants correspond to the following well known

easy-axis orientations in hexagonal and cubic single crystals

(Kronmüller & Fähnle, 2003): (i) easy c axis, (ii) easy basal

plane, (iii) easy cone with opening angle sin� ¼
ð�ku1=2ku2Þ

1=2, (iv) h100i directions, (v) h111i directions and

(vi) h110i directions.

Table 1 contains the values of the second moments ��� of

the components of the magnetization vectors at selected

points on the hysteresis loop (remanence and coercivity), and

for the different anisotropy symmetries. The hysteresis loops

and the full field dependencies of the autocorrelations are

shown in Appendix A. As an example, for uniaxial Stoner–

research papers

IUCrJ (2023). 10, 261–269 Michael P. Adams et al. � Angular anisotropy of neutron scattering of nanoparticles 265



Wohlfarth particles of case (i), Fig. 2 depicts the results for the

SANS observables. Inspection of the table entries for the ���
and comparison with the magnetic SANS cross sections

[equations (12) and (13)] reveals that only case (i) yields, in

the perpendicular scattering geometry, an isotropic two-

dimensional SANS image at remanence. In all other cases, we

find (for B ? k0) an anisotropic magnetic SANS pattern at

remanence and at the coercive field. By contrast, in the

parallel scattering geometry (B k k0), we observe (since �xx =

�yy) an isotropic magnetic d�M, k/d� at all fields during the

magnetization-reversal process.

Considering case (i), we see that the angular anisotropy of

the two-dimensional d�M, ?/d� changes strongly between

saturation (sin2 � type), remanence (isotropic) and the coer-

cive field (cos2 � type) [Fig. 2(a)], while the azimuthally aver-

aged d�M, ?/d� changes relatively little between these

situations [Fig. 2(c)]. Decreasing the field from saturation

(where �xx = �yy = 0 and �zz = 1) to zero field and to Bc, we

observe an increase of the one-dimensional d�M, ?/d� and of

the pair-distance distribution function p?(r) [Fig. 2(d)] and of

the correlation function c?(r) [Fig. 2(e)] [compare equations

(16) to (19)]. From these results it may be concluded that,

depending on the anisotropy symmetry of Stoner–Wohlfarth

particles, an anisotropic magnetic SANS pattern is (generally)

obtained; see Fig. 2( f) for the anisotropy parameter A?(B). In

experimental studies, where often the two-dimensional total

(nuclear and magnetic) d�?/d� is analyzed, one should

therefore be cautious in assuming that an isotropic pattern is

to be expected at characteristic field values such as at rema-

nence or at the coercive field. To access the purely magnetic
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Figure 2
Results for the magnetization and the SANS observables of a dilute ensemble of uniaxial Stoner–Wohlfarth particles with ku1 = +1 and ku2 = 0 [case (i)]
(B ? k0). The (spherical) particle diameter is D = 10 nm. (a) Two-dimensional magnetic SANS cross sections d�M, ?/d� at saturation (sat), remanence
(rem) and at the coercive field (coe); (b) hysteresis loop mzðBÞ (the reduced remanence and the coercivity are indicated); (c) one-dimensional 2�
azimuthally averaged magnetic SANS cross sections I?ðqÞ ¼ ðd�M;?=d�ÞðqÞ; (d) pair-distance distribution functions p?(r); (e) correlation functions
c?(r); and ( f ) anisotropy parameter A?(B).

Table 1
Stoner–Wohlfarth particles with uniaxial and cubic anisotropy (Usov & Peschany, 1997).

Values for the reduced remanence mr, the coercivity Bc (in Tesla), and for the autocorrelations �xx, �yy and �zz [equation (11)] at these points on the hysteresis
loop. All cross-correlations ��� with � 6¼ � vanish. The ku, c are given in units of Tesla.

mr Bc �
mr
xx �

mr
yy �mr

zz �
Bc
xx �

Bc
yy �Bc

zz

Case (i): uniaxial
(ku1 = +1, ku2 = 0) 0.5 0.482 0.333 0.333 0.333 0.422 0.422 0.156
Case (ii): uniaxial
(ku1 = �1, ku2 = 0) 0.785 0 0.167 0.167 0.667 – – –
Case (iii): uniaxial
(ku1 = �0.5, ku2 = +0.5) 0.909 0 0.083 0.083 0.833 – – –
Case (iv): cubic
(kc1 = +1, kc2 = 0) 0.831 0.321 0.150 0.150 0.700 0.1875 0.1875 0.625
Case (v): cubic
(kc1 = �1, kc2 = 0) 0.866 0.189 0.121 0.121 0.758 0.225 0.225 0.550
Case (vi): cubic
(kc1 = �1, kc2 = +9) 0.912 0.383 0.082 0.082 0.836 0.105 0.105 0.790



SANS cross section in unpolarized experiments, the subtrac-

tion of the total d�?/d� at a field close to magnetic saturation

from the data at lower fields might help. As shown in the work

by Bersweiler et al. (2019) on Mn—Zn ferrite nanoparticles, an

isotropic total d�?/d� at zero field can then turn into an

anisotropic purely magnetic signal, in this way providing

access to the magnetic correlations. Of course, polarization

analysis also yields the purely magnetic SANS cross section,

albeit with much more effort regarding the experimental setup

and the data-reduction procedure.

We refer to the supporting information of this article, where

several movies that feature the average magnetization mzðBÞ

and the SANS observables during the magnetization-reversal

process are provided. More specifically, for the six cases

specified in Table 1, we display, for both scattering geometries,

the two- and one-dimensional magnetic SANS cross sections

d�M, ?/d� and d�M, k/d�, the pair-distance distribution

functions p?(r) and pk(r), the correlation functions c?(r) and

ck(r), and the anisotropy parameters A? and Ak.

As mentioned already in Section 2 when discussing equa-

tions (12) and (13), within the present Stoner–Wohlfarth

approach, the presence of a particle-size distribution results in

the smearing of the form-factor oscillations (i.e. affects the q

dependence) but leaves the angular anisotropy of d�M, ?/d�
unchanged.

So far the discussion has been based on uniformly magne-

tized Stoner–Wohlfarth particles. For nonuniformly magne-

tized nanoparticles, where the magnetization vector field m =

m(r) is a function of the position r within the particle, the

d�M, ?/d� at remanence or at the coercive field is generally

also expected to depend on the angle � in the detector plane.

Nonuniformities in the magnetization distribution of nano-

particles are e.g. caused by surface anisotropy, vacancies or

antiphase boundaries (Nedelkoski et al., 2017; Ijiri et al., 2019;

Zákutná et al., 2020; Lak et al., 2021; Köhler et al., 2021;

Honecker et al., 2022; Adams et al., 2022b,a; Sinaga et al.,

2023). Micromagnetic simulations that take into account the

relevant interactions such as isotropic exchange, antisym-

metric exchange, magnetic anisotropy, Zeeman energy and the

magnetodipolar interaction are an important tool for advan-

cing the understanding of magnetic SANS of nanomagnets

(Michels, 2021). Unfortunately, due to the nonlinearity of the

underlying integro-differential equations of micromagnetics,

numerical simulations have to be carried out.

As an example, we show in Fig. 3 selected results that

feature an anisotropic (randomly averaged) d�M, ?/d� at

remanence; for details on the micromagnetic SANS simulation

methodology see the works of Adams et al. (2022a) and Sinaga

et al. (2023). Fig. 3(a) showcases the results of atomistic SANS

simulations, where the focus is set on the effect of the Néel

surface anisotropy on the spin structure and ensuing magnetic

SANS signal of randomly oriented nanoparticles. This parti-

cular form of surface anisotropy arises because in a nano-

magnet a significant fraction of atoms belong to the surface

(with no neighbors on one side), and their magnetic properties

such as exchange and anisotropy can be strongly modified

relative to the bulk atoms. The snapshot of the real-space spin

structure clearly reveals a significant spin disorder in the near-

surface region of the nanoparticle, with a corresponding

characteristic sin2 � type anisotropic magnetic SANS pattern.

Fig. 3(b) displays the results for a random ensemble of sphe-

rical nanoparticles. In this system (with no surface anisotropy),

the magnetization distribution is determined by the dipolar

interaction energy, which gives rise to a vortex-type spin

texture. The randomly averaged d�M, ?/d� also exhibits a

pronounced � dependence.

The simulation results in Fig. 3 were obtained for a dilute

set of nanoparticles, i.e. interparticle correlations are not taken

into account. When the particle concentration in a sample

increases, positional correlations become important, which is

taken into account by the structure factor SðqÞ ¼

h
P

i;j expð�iq � rijÞi, where rij = rj � ri denotes the vector

connecting the position vectors of particles i and j, and the

bracket h...i refers to an orientational average. For magnetic

particles, whether uniformly or nonuniformly magnetized,

additional magnetic moment correlations become relevant,

resulting in the appearance of a magnetic structure factor. This

was realized by Honecker et al. (2020), who showed that the

magnetic structure factor can deviate significantly from the

nuclear (positional) structure factor for magnetically inter-

acting nanoparticle ensembles; see also Hayter & Pynn (1982)

and Pynn et al. (1983), where the structure factor of a

magnetically saturated ferrofluid was derived. Since correla-

tions between the particle magnetizations are magnetic field

dependent and also anisotropic (Gazeau et al., 2002; Honecker

et al., 2020), extending the present Stoner–Wohlfarth

approach to higher concentrations (increased magnetodipolar

interaction) does presumably not change the main statement
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Figure 3
Micromagnetic simulation results for dilute ensembles of inhomogen-
eously magnetized nanoparticles. (a) Remanent spin structure of a
spherical 8 nm-sized nanoparticle with strong Néel surface anisotropy
and corresponding randomly averaged magnetic SANS cross section
d�M, ?/d� (B ? k0) (Adams et al., 2022a). (b) Remanent spin structure
and randomly averaged d�M, ?/d� of spherical nanoparticles with a
diameter of 32 nm (Sinaga et al., 2023).



of the present work, namely that the magnetic SANS cross

section of a randomly oriented nanoparticle ensemble is, in the

B ? k0 geometry, generally anisotropic. This assertion is

supported by the results of large-scale micromagnetic simu-

lations on magnetic nanocomposites (Erokhin et al., 2012;

Michels et al., 2014), which clearly show that the dipolar

interaction results in an anisotropic magnetic SANS cross

section in the perpendicular geometry.

5. Conclusions

We have analyzed the angular anisotropy of the magnetic

SANS cross section of spherical Stoner–Wohlfarth particles

using the Landau–Lifshitz equation. Depending on the

symmetry of the magnetic anisotropy of the particles (uniaxial,

cubic), an anisotropic randomly averaged magnetic SANS

pattern may result in the perpendicular scattering geometry,

even in the remanent or fully demagnetized state. The

magnetic scattering in the parallel geometry is, as expected,

isotropic. Inhomogeneously magnetized nanoparticles also

generally exhibit an anisotropic randomly averaged magnetic

SANS response. From the experimental point of view, the

subtraction of the total unpolarized (nuclear and magnetic)

scattering at saturation from data at lower fields might help to

access the intrinsic anisotropy of the particles. Likewise, this

can also be achieved by one-dimensional polarization analysis

via the measurement of the spin-flip SANS cross section. Since

the present Stoner–Wohlfarth simulations are relatively easy

to implement, we recommend carrying them out in parallel to

experimental investigations on magnetic nanoparticles.

APPENDIX A
Magnetization curves and cross-correlation values of
spherical Stoner–Wohlfarth particles with uniaxial and
cubic anisotropy

Figs. 4 and 5 show the hysteresis loops mzðBÞ and the field

dependencies of the second moments of the components of

the magnetization vectors, ���(B), from the Stoner–Wohlfarth

model for uniaxial and cubic anisotropy. The six cases speci-

fied in Table 1 are considered. All cross-correlations ��� with

� 6¼ � vanish, and mxðBÞ ¼ myðBÞ ¼ 0.
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Figure 4
Hysteresis loops mzðBÞ (the reduced remanences and coercivities are indicated) and second moments ��� of the components of the magnetization
vectors from the Stoner–Wohlfarth model with uniaxial anisotropy. (a) ku1 = +1 and ku2 = 0, (b) ku1 = �1 and ku2 = 0, and (c) ku1 = �0.5 and ku2 = +0.5.
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Figure 5
Similar to Fig. 4, but for cubic anisotropy. (a) kc1 = +1 and kc2 = 0, (b) kc1 = �1 and kc2 = 0, and (c) kc1 = �1 and kc2 = +9.
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