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Structural disclosure of biological materials can help our understanding of

design disciplines in nature and inspire research for artificial materials.

Synchrotron microfocus X-ray diffraction is one of the main techniques for

characterizing hierarchically structured biological materials, especially the 3D

orientation distribution of their interpenetrating nanofiber networks. However,

extraction of 3D fiber orientation from X-ray patterns is still carried out by

iterative parametric fitting, with disadvantages of time consumption and demand

for expertise and initial parameter estimates. When faced with high-throughput

experiments, existing analysis methods cannot meet the real time analysis

challenges. In this work, using the assumption that the X-ray illuminated volume

is dominated by two groups of nanofibers in a gradient biological composite, a

machine-learning based method is proposed for fast and automatic fiber

orientation metrics prediction from synchrotron X-ray micro-focused diffraction

data. The simulated data were corrupted in the training procedure to guarantee

the prediction ability of the trained machine-learning algorithm in real-world

experimental data predictions. Label transformation was used to resolve the

jump discontinuity problem when predicting angle parameters. The proposed

method shows promise for application in the automatic data-processing pipeline

for fast analysis of the vast data generated from multiscale diffraction-based

tomography characterization of textured biomaterials.

1. Introduction

Many biological, bioinspired and synthetic materials exhibit

3D networks of textured nanofibers, especially for high-

strength and multifunctional materials containing nanofibrillar

constituents (Ma et al., 2020; Zhang et al., 2014, 2021;

Kargarzadeh et al., 2017; Peng et al., 2020; Meyers et al., 2008).

Their key functionality and properties are closely related with

nanofiber orientation (Mittal et al., 2018; Meyers et al., 2008).

The accurate and fast characterization of nanofiber orienta-

tion will help to reveal important structural information,

elucidate the relationship between structure and property, and

thereby provide a way for material modification (Li et al.,

2015) and bioinspired material design (Amorim et al., 2021).

Synchrotron small-angle X-ray scattering (SAXS) and

wide-angle X-ray diffraction (WAXD) methods are widely

employed to rapidly and non-destructively extract the orien-

tation distribution information of nanofiber-based composites.

Though the texture information of 2D-layered nanocompo-

sites can be directly acquired by fitting the SAXS/WAXD

peaks, the determination of the orientation information in thePublished under a CC BY 4.0 licence
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natural nanocomposite is usually not straightforward due to

their hierarchical structures. Usually, reconstruction of the

complex fiber orientation within composite material requires

well designed mathematical models to extract information

from different measurement sensors (Breuer et al., 2019;

Chung & Kwon, 2002; Jack & Smith, 2005). To tackle this, a

mathematical model of the ultrastructure based on the

diffraction geometry has recently been developed to recon-

struct the 3D information in reciprocal space from 2D

experimental SAXS/WAXD patterns, and hence retrieve 3D

orientation parameters of the nanofibers inside the X-ray

illuminated volume (Zhang et al., 2016). Although this

analytical approach has demonstrated success in retrieving

nanofiber orientation information from SAXS/WAXD data

collected from hierarchically structured biological tissues like

mantis shrimp cuticle, wood etc. (Rennhofer et al., 2019; Rosén

et al., 2018; Lichtenegger et al., 1999), as we know, there are

some inevitable shortcomings. First, the present fitting algo-

rithm is still very time-consuming (ca 3 min for each sample),

which makes online analysis impossible. Second, it requires

domain knowledge of the sample structure and X-ray

diffraction, which hampers non-experts. Third, the results are

highly dependent on initial parameter estimates that differ

between different analyzers, thereby leading to variation. With

the advances in beamline instrumentation (Liebi et al., 2018,

2021, 2015), the combination of SAXS/WAXD characteriza-

tion with tomography techniques has gained great popularity

to perform a multiscale study on the sample. For hetero-

geneous biological tissues, the SAXS/WAXD tomography

experiments require a 4D or 5D scan across real and reci-

procal space to fulfill the requirements of rotational invar-

iance, resulting in an explosion of experimental data. In fact, a

full dataset for the cutting-edge tensor X-ray tomography or

6D SAXS tomography may contain millions of scattering or

diffraction patterns in the new-generation beamlines. There-

fore, it is foreseeable that the real time data analysis of future

SAXS/WAXD tomography experiments will face great chal-

lenges which cannot be resolved using the existing method.

The development of a novel method for fast and automatic

analysis of these enormous datasets is essential.

Machine-leaning (ML) based approaches have generally

been believed to be a necessary means for fully exploiting the

powerful experimental strength of next-generation synchro-

trons (Li et al., 2021; Dong et al., 2022). Fitting large SAXS/

WAXD tomography datasets with millions of patterns will

require the development of a highly parallel program. For

traditional modeling, although a parallel fitting program can

be developed, the optimized physical model requires human

experience to choose the input parameters, which severely

limits the batch-fitting ability. In comparison, with ready

implementation in parallel computing, ML will have the

unrivaled advantage in a batch-fitting task of hundreds of

thousands of diffraction patterns because no human experi-

ence is required. Until now, the ML-based method has not yet

been reported for synchrotron diffraction data analysis of

nanofiber systems, though there have been a number of

helpful studies on ML applications in related fields, mainly

X-ray adsorption spectroscopy (XAS) and X-ray diffraction

(XRD) (Wang et al., 2020; Timoshenko et al., 2019, 2018;

Carbone et al., 2020; Oviedo et al., 2019; Dong et al., 2021).

These works have different characteristics in terms of neural

network (NN) structure and data processing methods. First, a

NN structure is essential in ML applications. A customized

deep convolutional neural network (CNN) has been devel-

oped as a tool for property analysis of multi-phase systems,

where the same features extractor (i.e. CNN module) was

shared for subsequent multi-tasks (Dong et al., 2021). A

message-passing neural network (MPNN), a kind of graph-

based NN that is most appropriate for modeling molecules,

was used in predicting molecular X-ray absorption near-edge

spectroscopy spectra on the basis of the oxygen- or nitrogen-

containing molecular structures from the QM9 dataset and

achieved quantitative accuracy (Carbone et al., 2020). Second,

and most significantly, owing to the scarce experimental data,

almost all algorithms are trained on simulated datasets, and

therefore an appropriate data-transformation strategy is

needed to guarantee the consistency between experiment and

simulation. Wang et al. (2020) extracted noise signals from

experimental data and diffraction signals from simulated data,

and used them to synthesize the training data for rapid clas-

sification of metal–organic framework (MOF) materials with

XRD patterns as input. Oviedo et al. (2019) achieved fast

identification of the crystalline dimensions and space group.

To adapt to the characteristics of thin-film materials, diffrac-

tion peaks in the simulated XRD spectra were scaled, elimi-

nated randomly and shifted as a specific means of data

transformation. Third, dimensional reduction can be utilized

to remove uncorrelated/low-correlated features and make the

prediction robust. Timoshenko et al. (2019, 2018) employed an

NN approach to extract the partial radial distribution function

(PRDF) with extended X-ray absorption fine structure,

thereby characterizing the b.c.c. to f.c.c. phase transformation

temperature of bulk iron and exploring the catalyst

mechanism of monometallic and bimetallic metal nano-

particles (NPs). To summarise, a proper network structure,

data transformation strategy and dimension reduction could

be effective factors in the present diffraction data analysis. The

ML-based method requires development for the analysis of

synchrotron-based nanofiber diffraction data, but resolving

nanofiber diffraction data is a multi-targets regression task

and is extremely different from the XRD or XAS data

mentioned above, including marginally separated diffraction

peaks and circular adjacent features. Therefore, a specific ML

scheme is demanded for the successful nanofiber orientation

prediction.

In this work, under the assumption that two sets of well

separated nanofibers are distributed across the examined

sample with changing local orientation parameters, we

demonstrate an NN method for the orientation metrics iden-

tification of 3D textured nanofibers based on synchrotron

X-ray diffraction I(�) data. Data corruption and orientation

label transformation are implemented for resistance to

experimental noises, ensuring predictive performance for

experimental data with various missing regions and resolving
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the jump discontinuity problem when predicting angle labels.

The framework used for automatic and fast orientation

prediction of 3D textured nanofibers is shown in Fig. 1. There

are six types of ML algorithms utilized here for pursuing the

best fit. These ML algorithms are trained and validated on the

simulated data generated from the physical nanofiber

diffraction-scattering model from the previous results of our

group (Zhang et al., 2016; Zhang, De Falco et al., 2017). The

hierarchically structured stomotopod (mantis shrimp) cuticle

is endowed with great impact resistance by its interpenetrating

chitin nanofibers and is therefore a popular biological material

model for bionic research. To test its effectiveness in real-

world data, the method is applied to analyze experimental

diffraction data collected from a stomatopod telson cuticle.

Since most synchrotron facilities are building artificial intel-

ligence (AI) platforms to overcome the barriers associated

with using cutting-edge ML algorithms and computing

resources for future users, developing a customized ML

analysis pipeline will become increasingly easy (Dong et al.,

2022). The development of the proposed method therefore

represents a big step forward to a highly automatic data-

processing pipeline for future high-throughput and multi-

dimensional WAXD characterizations.

2. Experimental

2.1. Theoretical data generation and ML algorithms used

Like other nanofiber-based biological tissues, the hier-

archically arranged mineralized chitin fiber networks play a

crucial role for the stomatopod cuticle to achieve both high

stiffness and high toughness (Yaraghi et al., 2019; Zhang et al.,

2020). Most regions across the depth of the stomatopod cuticle

contain two groups of fibers. A schematic is given in Fig. 2.

One in-plane fiber group is parallel to the morphological

surface, forming a twisted plywood structure (known as a

Bouligand structure), and one out-of-plane fiber group is

oriented perpendicular to the surface [Fig. S2(b)] inside the

pore canal systems (Zhang et al., 2016). Generally, two sepa-

rate pairs of diffraction arcs can be observed in the (110)

diffraction region of WAXD patterns collected from a

stomatopod cuticle [Fig. S2(c)]. In our previous paper, we

developed a mathematical model to retrieve 3D information

of the fiber groups within the sample from a single (110)

diffraction pattern from of the 2D WAXD image. The model is

based on diffraction geometry and the fiber symmetry feature

in the assembly of nanofibrils into nanofibers. Using the

model, we managed to reconstruct the 3D reciprocal QS(110)

sphere and retrieve two sets of fiber orientation parameters by

exploring the complexity in the radially integrated I(�) curve

of the (110) diffraction pattern (Zhang et al., 2016). As

described in our published paper, we employed a nonlinear

iterative fitting method to fit the experimental I(�) curve to

obtain the fiber orientation parameters.

For developing a faster and more accurate fiber orientation

prediction method using ML, we simulated vast amounts of

synthetic data to train the ML model. In practice, 100 000

orientation labels were sampled, covering all possible orien-

tations of two groups of nanofibers (Table S1 and Figs. S6 and

S7 of the supporting information). The developed mathema-

tical model for nanofibers was then used to generate the

corresponding I(�) curves. The nanofiber diffraction model is

described in Section S2 of supporting information.

The task of ML is to directly obtain nine fiber orientation

parameters from the corresponding I(�) curves. Three deep-

learning algorithms were implemented to learn the nonlinear

relationship between the diffraction pattern and the corre-

sponding targets, including fully connected neural networks
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Figure 1
Schematic of the fiber orientation prediction framework for two groups of nanofiber systems with data corruption on the simulated dataset.



[FCNN (Zhang, Lee et al., 2017; Kingma & Ba, 2014)] and two

CNN models [i.e. 1D variants of DenseNet (Huang et al., 2017)

and PreActResNet34 (He et al., 2014) for adaptation to 1D

input]. Their details and architecture are described in Section

S1 and Fig. S1 of supporting information. In brief, the objec-

tive function is the mean absolute error (MAE) between nine

orientation labels and NN output values, and the Adam

optimizer (Kingma & Ba, 2014) is used for minimization. What

is more, as representatives of classical ML algorithms, K-

nearest neighbors (KNN), random forest (RF) and support

vector regression (SVR) were also tested. Bayesian optimi-

zation is applied to search the optimal hyperparameters via

Scikit-learn (Pedregosa et al., 2011). The optimal hyperpara-

meters for the ML algorithms involved are listed in Table S2.

The ML algorithms are implemented through Scikit-learn/

Pytorch software (version 1.6; Paszke et al., 2019) and run on

the Intel Core i9-9900X 3.50 GHz CPU and Nvidia RTX 2080

super graphic processor. For the sake of the randomness in

weight initialization and dataset splits, ML algorithms are

trained five times and the results are averaged.

2.2. Experimental WAXD data for algorithm verification

Generally, the WAXD patterns were produced after a beam

of X-rays with sufficient intensity transmitting through the

sample as shown in Fig. S2(a). In this paper, the WAXD

experiment was conducted at beamline I22 with a mono-

chromatic X-ray beam (beam size 10 � 12 mm) of 10 keV with

a flux of about 3.5 � 1012 photons s�1 at Diamond Light

Source (Harwell, UK). During the test, the sample-to-detector

distance was set to 262.3 mm. The WAXD patterns were

acquired with a Pilatus P300k-W detector (silicon hybrid pixel

detector, DECTRIS Ltd, Baden–Daettwil, Switzerland) with a

pixel size of 172 � 172 mm and a 0.5 s exposure time. The gaps

and bad pixels in the patterns were automatically masked by

the threshold (less than 0 and higher than 100 000). A circular

mask was further manually added to cover the beamstop and

direct beam. The specimens were dissected from mantis

shrimp (purchased from the Tropical Marine Centre, London)

and sectioned with 1 mm thickness under constant irrigation

using a low-speed diamond saw (Buehler Isomet, Buehler,

Duesseldorf, Germany). The experiment pattern recorded by

a Pilatus P300k-W detector is shown in Fig. S2(c).

There are 40 experimental WAXD patterns collected from

two separate synchrotron experiments at different beam times

(21 images from beam time I and 19 images from beam time

II) on thin slices (0.8–1 mm thick) of stomatopod telson

cuticles. It has been demonstrated that, only by exploring the

intensity variation of the radially integrated I(�) profiles (1D)

from the single meridional (110) reflection, we can extract the

desired 3D fiber orientation information in the X-ray illumi-

nated sample volume. We also performed radial integration on

the (110) reflection of the WAXD patterns using Fit2D

(Hammersley, 1997) and a further ring-subtraction described

in our previous paper for background removal (Zhang et al.,

2016). Standard nonlinear Levenberg–Marquardt fit algo-

rithms were used to fit the experimental scattering profiles

[Fig. S2(d)] to obtain the orientation information for the

traditional fitting method.

2.3. Saliency mapping

Saliency maps were first proposed by Simonyan et al. (2013),

and this technique has been widely used in the field of deep-

learning interpretation (McGovern et al., 2019). The expla-

nation for this technique is relatively straightforward. As we

know, the regression coefficients indicate the degree of

importance of their corresponding features for linear regres-

sion. In the case of deep NNs used here, the NN output S(I) is

a highly nonlinear function of input features I, whereas S(I)
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Figure 2
Schematics showing (a) a sectioned specimen illuminated by a micro-focused X-ray beam, (b) in-plane (green) and out-of-plane (gold yellow) fibers, and
(c) the geometric definition of parameters �, �, �, �� for each group of nanofibers. Note there is also a parameter � which indicates the quantity for every
group of nanofiber, and thereby the scale ratio parameter is derived using �1/�2.



can be approximated with a linear function through its first-

order Tayler expansion:

SðIÞ ¼ WTI þ b; ð1Þ

where W is the derivative of S with respect to the input I at

point I0 and b is the bias.

W ¼
@S

@I

���
I¼I0

: ð2Þ

Thus, the absolute values of the elements in W will naturally

represent the influence rank order of input features on the NN

output S(I).

2.4. Evaluation metrics of algorithm performance

In our previous paper, we developed a mathematical model

based on the physical diffraction geometry to describe the

relationship of 3D nanofiber orientation to its diffraction

patterns, and on this basis, 3D nanofiber orientation para-

meters were retrieved from a single experimental I(�) curve at

fixed Q [i.e. on QS(110)] with the help of a nonlinear iterative

fitting algorithm. However, even though the traditional model-

fitting method based on our mathematical model demon-

strated success in retrieving the 3D nanofiber distribution

information within the examined cuticle sample, the method

still has its limitations: (a) the accuracy of the fitting depends

on the variable step size when looped over nine parameters,

the heavy computational task results in greater time

consumption, hence there is a trade-off between prediction

accuracy and speed; (b) in a real world situation, the nanofiber

orientation distribution within the sample can never be

perfectly described by a mathematical model, therefore even

though the physical model can be considered correct, the

experimental I(�) curve can never be fitted with 100% accu-

racy. Thus, the retrieved nanofiber orientation cannot be

considered as the ground truth (i.e. unlike the simulated

dataset, we have no access to the ground truth labels for

experimental data).

For both ML and traditional fitting methods, we evaluated

the accuracy by calculating the root mean squared error

(RMSE) in equation (3) between the experimental and

reconstructed I(�) curves, with the latter generated from the

physical model using the nine predicted orientation para-

meters. The reconstruction process is described schematically

in Fig. S9. That is to say, we assessed the algorithm perfor-

mance in terms of goodness of fit between the reconstructed

curve and the original I(�) curve. The peak location/intensity

of those 1D I(�) curves could also be evaluated owing to their

strong connection to the nanofiber orientation parameters and

can be viewed as a real world expression of these hidden

parameters. To make a fair comparison, the performance on

the simulated dataset is also evaluated in the same way,

although the simulated dataset has ground truth labels. Based

on these, Table 1 shows the ML model performance on both

the experimental and the simulated datasets in terms of

matches of the reconstructed and original I(�) curves, with

metrics including the RMSE in equation (3) and the peak-

related Pearson coefficient in equation (4). The results are

analyzed in the Results and discussion.

In addition, because the simulated dataset has ground truth

orientation parameters, we also evaluate the FCNN perfor-

mance in terms of the nine ground truth labels (i.e. in Fig. 4).

Specifically, two additional metrics are calculated, including

the coefficient of determinant R2 defined in equation (5) and

the mean absolute error (MAE) defined in equation (6)

between the predicted values and ground truth labels:

RMSE Ið�Þ; ÎIð�Þ
� �

¼
1

n

Xn

i¼1

Ið�iÞ � ÎIð�iÞ
� �2

( )1=2

; ð3Þ

� ¼

Pn
i¼1 �

peak
i � �̂�peak

i

� �
�peak

i � �̂�peak
i

� �
Pn

i¼1 �
peak
i � ���peak

i

� �2
h i1=2 Pn

i¼1 �
peak
i � ���peak

i

� �2
h i1=2

; ð4Þ

R2 ¼ 1�

Pn
i¼1 yi � ŷyið Þ

2Pn
i¼1 yi � �yyð Þ

2
; ð5Þ

MAE yi; ŷyið Þ ¼
1

n

Xn

i

yi � ŷyi

�� ��: ð6Þ
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Table 1
Performance metrics of the ML algorithms for two phases.

Reported RMSEs and peak-related Pearson correlation coefficients in terms of the matches between experimental and reconstructed I(�) curves. Phase I: training
and testing data are all simulated. Phase II: real-world experimental data for the cuticle of a stomatopod telson are used for testing. The results are the average of
five repetitions together with corresponding the standard deviations in parentheses.

Phase I Phase II

Method RMSE
Pearson coefficient
(peak location/peak intensity) RMSE

Pearson coefficient
(peak location/peak intensity)

K-nearest neighbors 0.1843 (0.0062) 0.9520/0.6717 (0.0111/0.0657) 0.2303 (0.0207) 0.9406/0.6286 (0.0024/0.0937)
Random forest 0.2947 (0.0065) 0.9651/0.372 (0.0026/0.0319) 0.4001 (0.0045) 0.9478/0.3462 (0.0055/0.0220)
Support vector machine 0.2444 (0.0111) 0.9246/0.6764 (0.0041/0.0567) 0.282 (0.0079) 0.9307/0.5250 (0.0062/0.1210)
Fully connected neural networks 0.0265 (0.0024) 0.9982/0.9731 (0.0002/0.0067) 0.0902 (0.0025) 0.9983/0.9349 (0.0012/0.0064)
DenseNet 0.0322 (0.0014) 0.9953/0.9564 (0.0005/0.0027) 0.1332 (0.0072) 0.9915/0.7928 (0.0023/0.0094)
PreActResNet 0.0467 (0.0054) 0.9836/0.9636 (0.0014/0.0043) 0.1991 (0.0173) 0.9795/0.7200 (0.0041/0.0593)



3. Results and discussion

3.1. Framework for nanofiber orientation prediction

As shown in Fig. 1, there are six ML algorithms used for

learning the mapping from input features to transformed

target labels. The label transformation is described in detail in

Section 3.2. Our method utilizes simulated diffraction patterns

to train an ML algorithm for the orientation-prediction task.

Then, the trained ML is subsequently applied to experimental

data for testing purposes, which can be challenging because

there are no experimental data in the training dataset.

In our previous work, on the basis of the nanofiber

diffraction model, a nonlinear iterative fitting method was

used to retrieve the 3D nanofiber orientation information

from experimental I(�) profiles of the acquired WAXD

patterns (Zhang et al., 2016). However, there are some

limitations that block the achievement for high accuracy, high-

throughput, online and real time analysis, including required

expertise and an initial guess, and the inevitable tradeoff

between time efficiency and accuracy. In this work, nanofiber

orientations within biological cuticles are allowed to be

rapidly and automatically obtained without the participation

of domain experts and with a compromise between time

consumption and tolerant errors.

In response to measured experimental noises and random

missing regions in experimental diffraction patterns, a data

corruption strategy is applied to the simulated dataset (details

in Section 3.2) with the aim of generalized and robust

predictive ability for experimentally measured data. The

experimental data were also preprocessed (details in Section

2.2). In brief, this work uses a simulated dataset for training

and validation, and experimental datasets are used for testing,

where the performance proves that this method is indeed

feasible for practical data.

Although only two distinct orientations are considered

here, the framework can be extended to tackle multi-group

cases by training many models for each of them, like in the

published work on XRD phase-fraction prediction (Lee et al.,

2021). For specific data, the reconstructed RMSEs from these

models are compared, then the one with lowest RMSE is

selected.

3.2. Data corruption and orientation label transformation
strategy

As shown in Fig. 3, a series of data corruption steps has

been implemented to account for the differences between

simulated and experimental data, and ensure the prediction

ability of the algorithm for experimental data with the natural

signal missing and measured noises. At the same time, among

labels (i.e. orientation parameters), the angle-related labels

are transformed into x and y coordinates with the aim of

avoiding jump discontinuity in values during prediction. The

data corruption steps for the simulated dataset are shown in

Figs. 3(a)–3(d). The label transformation for angle-related

labels is shown in Fig. 3(e).

The first issue that needs to be considered is the noise in the

experimental data. The peaks in the experimental I(�) profiles

are not necessarily standard Lorentz or Gaussian shape.

Therefore, the noise cannot be removed by fitting to a stan-

dard curve. To ensure the robustness of algorithms to

experimentally measured noise, random levels of Poisson

noise are added in the simulated data [Fig. 3(b)]. The other

two noise settings are also tested, including random Gaussian

noise, and random Poisson noise and random Gaussian noise.

Table S3 shows the reconstruction results for experimental

data and there is no significant difference among them. In

addition, the reconstruction results of the algorithm trained on
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Figure 3
Schematic of data corruption and orientation label transformation. (a) Original simulated I(�)(110) curve without noise, (b) Poisson noise applied to the
simulated I(�)(110) curve, (c) random masking of the I(�) curve through a blockwise masking algorithm, (d) scaling into a range, (e) label transformation
which transforms the angle labels into corresponding x and y coordinates at a fixed radius.



the Poisson noise applied simulation dataset are checked. Fig.

S4 shows that the model trained based on the Poisson noise

applied simulated dataset is robust to Gaussian noise.

The major and most important difference between the

experimental and simulated I(�) profiles is the existence of

missing regions in the experimental profiles. These gap regions

come from the mask setting on the detector gap and beam stop

region. However, though the gap regions on the detector are

fixed for a specific module, the missing region in the radially

integrated I(�) profiles will change due to different experi-

mental setups. The variation of the beam center position,

incident X-ray energy and sample-to-detector distance will

result in either the shift of the (110) diffraction peaks [Figs.

S2(a) and S2(c)] or the change of the radius of the reflection

ring. This means the positions and sizes of the missing gaps in

the experimental profiles will be a constant changing factor

among different beam times. The work from masked image

modelling in the computer vision community shows that the

NN model can learn nontrivial and meaningful latent vison

representation through masking random patches of the input

image (He et al., 2021; Xie et al., 2021). Inspired by this, the

masked curve training strategy is used in this work to learn the

robust representation and guarantee the predictive ability of

the model for different experimental data with variable

missing regions. Note that the mask tokens are not necessary

in our work because the masked regions still exist in the

experimental data. As shown in Fig. 3(c), blockwise masking is

employed in the I(�) profiles in the simulated dataset. Unlike

blockwise masking for images (Bao et al., 2021), the head and

tail of the I(�) curve are in fact connected with each other.

Considering this connectivity, the feasible blockwise masking

method for I(�) is summarized in algorithm 1 (see below). A

block of the I(�) curve is masked each time, and, as a result,

produces similar missing patterns to the experimentally

measured I(�) curves. To identify an appropriate masking

ratio, Fig. S3 shows the FCNN reconstruction error for

experimental I(�) curves versus different masking ratios.

From these results, we can conclude that, without the masked

curves training strategy, the performance on experimental

data is poor, and the lowest reconstruction error of 0.09 can be

achieved at masking ratio of 0.3. Finally, to compensate signal

fluctuation, the maximal intensity is randomly scaled to [1 �

5%, 1 + 5%] instead of general normalization [Fig. 3(d)].

As for orientation labels, two important issues need to be

considered. The first is the computational indistinguishability

of the two parameter groups which can lead to an unlearnable

mapping for algorithms. Specifically, the order of orientation

labels for two fiber groups can be switched with each other and

not change the corresponding I(�) curves. This means the

mapping of algorithms will not be unique. To define a unique

mapping for ML algorithms, the order of two fiber groups

must be ranked according to the specific rule (e.g. descending

order of � magnitude). Herein, we define the fiber group with

the larger � as the first and the other as the second, thus the

two fiber groups are artificially distinguishable. Table S4 shows

that, compared with the artificially defined distinguishability,

the indistinguishability between two groups of fibers leads to

an unlearnable mapping.

The other noteworthy issue is that the �1, �1, �1, ��1, �2, �2,

�2 and ��2 labels have periodicity, but the periodicity is not

reflected by their values. For example, physically, � = �90 and

� = 90� means the same, yet the values exhibit the largest

difference when ranging from �90 to 90�. This means the

prediction of algorithms will have jump discontinuity on those

labels. As shown in Fig. 3(e), the angle labels are first multi-

plied by 2 and the corresponding range will be from �180 to

180�, then they are transformed into corresponding x and y

coordinates at a fixed radius (e.g. unit circle). This transfor-

mation ensures predictive continuity at boundary locations.

Although they refer to the same thing, the algorithms will not

directly predict angles but transform angles (i.e. x and y

coordinates), and the prediction values will be inversely

transformed into angles in our implementation.

3.3. Machine-learning prediction performance

On account of the difference between the simulated and

experimental data, even after data corruption, the ML algo-

rithm performance is evaluated under two phases. Phase I:

simulated data are used for both training and testing purposes;

phase II: simulated data are used for model training whereas

the real world experimental data are used for testing. As

stated in Section 2.4, owing to the lack of ground truth

orientation parameters for the experimental data, the accu-

racy of the ML model is evaluated by the goodness of fit

between the experimental and reconstructed I(�) curves, with

the latter calculated from the physical model using the nine

predicted orientation parameters. Table 1 summarizes the

performance metrics of various algorithms under two phases

together with the corresponding standard deviations in

parentheses. Phase I clearly has a lower RMSE than phase II

because training and testing are both based on the simulated

dataset, thus ensuring adequate consistency. Compared with

phase I, the higher RMSE reveals the discrepancy between the

experimental data and the simulated data. The Pearson

correlation coefficient for peak locations and peak intensity

follows the same trend, but some differences exist. The

Pearson correlation coefficient is higher for peak location than

that of peak intensity for both phases. Meanwhile, the

decrease in the Pearson correlation coefficient for peak

intensity is larger in comparison with the peak location from

research papers

IUCrJ (2023). 10, 297–308 Minghui Sun et al. � Fast 3D nanofiber orientation extraction from WAXD using ML 303



phase I to phase II. This phenomenon implicitly reveals that

peak location is more easily learned than peak intensity by

ML algorithms.

For both phases, the FCNN demonstrates the best perfor-

mance compared with the other ML algorithms used. The

CNN architectures are generally thought to outperform the

relatively simple FCNN in many tasks (Prince et al., 2019;

Oviedo et al., 2019; Rankine et al., 2020) because of the

parameter-sharing mechanism which reduces the overfitting

risk, and utilizes the spatial information efficiently. However

the FCNN outperforms the CNN architectures in this study.

This discrepancy is mainly attributed to their different

assumptions on input data. CNNs makes an assumption that

input data has a grid-like structure (Peng et al., 2017). But the

topology and connectivity of original 2D diffraction patterns

are not intactly preserved in I(�) curves, thus the assumption

of CNNs breaks apart. In comparison, the FCNN is not

involved in the inductive bias of CNNs and will learn the

actual data topology relationship eventually through training

data. In practice, the reconstruction result shows that FCNN

can easily pick up the information of different cut-off locations

of I(�) curves (Fig. S5).

For the performance of FCNN on the simulated dataset, we

analyze the parity plot between ground truth and predicted

orientation parameters with MAE and R2 metrics in Fig. 4.

The R2 scores of �1 and �2 are both 0.97 and their MAE values

are 0.77 and 0.82, respectively. The R2 scores of �1 and �1 are

0.82 and 0.96 and their MAE values are 0.73 and 4.9, respec-

tively. With respect to the �1/�2 label, MAE = 0.45 and R2 =

0.94. In brief, among the nine labels, the FCNN model shows

the best prediction performance for the � and � labels with R2

up to 0.97, and ��1, ��1 and �1/�2 with R2 = 0.94, and at last

the R2 metrics for two � are 0.82. The training loss history of

FCNN is shown in Fig. S9.
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Figure 4
Parity plot of the ground truth and the predicted value with R2 and MAE metrics for nine orientation labels (i.e. �1, �1, �1, ��1, �2, �2, �2, ��2 and �1/�2

respectively) on the simulated dataset.



The prediction performances of FCNN on the experimental

data [Figs. 5(a) and 5(b)] are shown in Figs. 5(c) and 5(d) by

examining the difference between I(�) curves reconstructed

from the physical model and experimental curves. Since the

training process does not bring in missing signal pattern

information of tested experimental data, the reconstructed

and experimental curves exhibit a good match for both

experiments I and II, which indicates that the trained FCNN

model has good compatibility for experimental WAXD

patterns collected even from different beamlines with entirely

different missing signal patterns. Fig. 5(e) shows the compar-

ison of reconstruction RMSE for the traditional model-fitting

method and FCNN for experimental data. The FCNN method

achieves a relatively low RMSE value [enlargement shown in

Fig. 5( f) of the shaded region in Fig. 5(e)]. When the value

goes up, the RMSE of the FCNN method will probably

surpass the traditional model-fitting method. The result means

that when both fitting methods work well, the FCNN performs

better. However, when the traditional model-fitting method

starts to fail the task, this means fiber orientation distribu-

tion in the sample can no longer be well described by the

proposed physical model. Under this circumstance, the ML

model which is trained with simulation data based on the

same physical model cannot be expected to work as well as

before.

In conclusion, the general prediction performance of FCNN

exceeds the traditional iterative fitting method overall. Since

the FCNN fitting method requires no human intervention on

setting the fitting parameters of individual data together with

excellent parallel capability endowed by parallel matrix

computation, it hence has unrivalled advantages in batch-

processing and automation capabilities. Besides, in the rare

circumstance that large RMSEs (e.g. RMSE > 0.17) are

obtained, the output parameters from the FCNN model can

serve as part of the initial estimates for building the right

physical models and accelerate the fitting process in special

cases.

Furthermore, we explored the feature dependence of

FCNN for nanofiber diffraction analysis. The saliency map is a

means to show the saliency of each input feature and the

degree of impact that different regions have on prediction. As

shown in Fig. 6, the saliency map for one selected fiber group

(green fiber in Figs. 6(a1)–6(a4) highlights highly dependent

regions when making predictions with various fiber orienta-

tions. With Fig. 6(a1) as a comparison, the difference in

orientation involves �1/�2 [Fig. 6(b1)], � [Fig. 6(c1)] and ��
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Figure 5
Prediction performance for the FCNN evaluated on two separate experimental datasets from two different experiments. WAXD patterns for
experiments (a) I and (b) II. Waterfall plots of experimental diffraction profiles (black triangle markers) and reconstructed diffraction profiles (red solid
line) according to the FCNN prediction values for experiments (c) I and (d) II. (e) Comparison of the reconstruction RMSEs between the traditional
iterative fitting and FCNN methods. ( f ) Zoomed-in image of the shaded region of (e).



[Fig. 6(d1)], and orientation variance can affect relative peak

height, peak shift and full width for half-maximum of

diffraction peaks for the variable group of fibers [Figs. 6(a2)–

6(d2)]. Saliency maps for � and � are shown in Fig. S10.

Overall, it suggests that with the present data corruption, the

output of FCNN highlights features with a high signal-to noise

ratio [Figs. 6(a3)–6(d3)]. On the contrary, the feature depen-

dency does not show obvious regularity when without data

corruption [Figs. 6(a4)–6(d4)]. The saliency map results

suggest that the data corruption strategy focuses the FCNN

more on important and robust features and neglect susceptible

features (i.e. low signal-to-noise).

4. Conclusions

Our work first develops an ML framework for the 3D orien-

tation prediction of nanofibers based on the synchrotron

diffraction data. Data corruption is applied to the simulated

dataset to ensure resistance to experimentally measured noise

and predictive ability for experimental data with naturally

random missing regions. The transformation for angle-related

orientation labels resolves the jump discontinuity problem

when predicting angle labels. And this treatment for angle

parameters may also be effective for other problems involving

predicting angle values. Through saliency analysis, the high-

correlation features with prediction are substantially distrib-

uted in the peak regions, which is physically meaningful and

leads to reliable and robust models. The relationship in the

simulated dataset is precisely learned by the FCNN algorithm

with a high coefficient of determinant (R2
� 0.82). The low

reconstruction RMSEs for two separate experiment datasets

suggest the practical prediction ability for real-world data with

richly varied missing signal patterns. The method can be

extended to tackle multi-group nanofiber cases by simple

means, i.e. training many models for each multi-group case and

selecting the one with the lowest error.

Given the merits of automation and rapid speed, this work

is a step forward for the future analysis of large amounts of

multiscale diffraction characterization data from biological

materials. Although more effort is still needed for challenging
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Figure 6
Saliency maps highlighting the features that the FCNN model is dependent on. (a)–(d) Sketches of two groups of fibers, (a1)–(d1) one orientation
parameter of the specific fiber group (green) changes at each time, (a2)–(d2) normalized simulated I(�) profile corresponding to the changes in (a1)–
(d1), and the saliency maps (a3)–(d3) with data corruption and (a4)–(d4) without data corruption.



cases (e.g. peak splitting and close orientations), its application

will still help to accelerate the past expert-need and time-

consuming analysis of fiber orientations. Furthermore, this

method possesses great potential to be an online tool so that

the real time analysis and experimental adjustments will

become possible. Looking to the future, the methods devel-

oped in this project are expected to play greater roles for

material characterization when integrated into the data

acquisition and online data analysis software systems of

synchrotron beamlines (Liu et al., 2022).

5. Data and code

Data for this study are available at https://ihepbox.ihep.ac.cn/

ihepbox/index.php/s/YH9WWaZCS84dmTN. The demo code

in the form of a Jupyter notebook is available at https://

github.com/LinaZhaoAIGroup/nanofiber.
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