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With X-ray free-electron lasers (XFELs), it is possible to determine the three-

dimensional structure of noncrystalline nanoscale particles using X-ray single-

particle imaging (SPI) techniques at room temperature. Classifying SPI

scattering patterns, or ‘speckles’, to extract single-hits that are needed for

real-time vetoing and three-dimensional reconstruction poses a challenge for

high-data-rate facilities like the European XFEL and LCLS-II-HE. Here, we

introduce SpeckleNN, a unified embedding model for real-time speckle pattern

classification with limited labeled examples that can scale linearly with dataset

size. Trained with twin neural networks, SpeckleNN maps speckle patterns to a

unified embedding vector space, where similarity is measured by Euclidean

distance. We highlight its few-shot classification capability on new never-seen

samples and its robust performance despite having only tens of labels per

classification category even in the presence of substantial missing detector areas.

Without the need for excessive manual labeling or even a full detector image,

our classification method offers a great solution for real-time high-throughput

SPI experiments.

1. Introduction

Single-particle imaging (SPI) with X-ray free-electron lasers

(XFELs) is a promising method for determining the three-

dimensional structure of noncrystalline nanoscale particles at

room temperature. In SPI experiments, intense femtosecond

coherent X-ray beams strike biomolecules injected into the

beam path, causing radiation-damage-free scattering of the

samples. This method of collecting scattering datasets is

known as ‘diffraction before destruction’ (Neutze et al., 2000;

Chapman et al., 2006; Seibert et al., 2011; Aquila et al., 2015;

Reddy et al., 2017). Such scattering patterns are also referred

to as ‘speckles’ due to their grainy appearance. A single

particle of interest can then be reconstructed by algorithms,

such as EMC (Loh & Elser, 2009; Ayyer et al., 2016) and M-

TIP (Donatelli et al., 2017; Chang et al., 2021), from hundreds

to tens of thousands of speckle patterns.

In today’s SPI experiments, speckle patterns form in four

main categories, depending on what interacts with the X-ray

pulse at the point of interaction. A large fraction of X-ray

pulses may miss the target particle, for example Shi et al.

(2019) reported 98% of the pulses did not interact with the

sample, resulting in no scattering pattern, defined as a ‘no-hit’.

In contrast, a speckle pattern is labeled as a single-hit when

X-ray photons collide with one and only one sample particle.

Similarly, a multi-hit happens when an X-ray pulse intersects

with two or more sample particles. In some cases, X-ray pulses

might also hit objects that are not the sample of interest in the

delivery medium, and those speckle patterns are defined asPublished under a CC BY 4.0 licence
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‘non-sample-hit’. The main goal of this work is to provide an

efficient solution to identify single-hit speckle patterns in near

real time during data collection.

Real-time speckle pattern classification for SPI experiments

is a challenge faced by high-data-rate facilities like the

European XFEL and LCLS-II-HE, due to their need (1) for

real-time vetoing to better utilize data storage and (2) to

enable near real-time feedback of reconstructed electron

densities. The classification algorithm needs to scale linearly to

handle the vast amount of data they generate in real time.

Some pioneering works addressing the challenge employed

unsupervised learning techniques (Yoon et al., 2011; Gian-

nakis et al., 2012; Schwander et al., 2012; Yoon, 2012;

Andreasson et al., 2014; Bobkov et al., 2015). Such solutions

can reveal underlying clusters of data categories and runs

without human labeling, but require post-human interpreta-

tion to achieve reasonable classification results, such as

specifying the decision boundary of single-hit speckle patterns

in some vector space. Also, these algorithms do not scale

linearly with the number of speckle patterns needed for real-

time classification. On the other hand, supervised learning

solutions based on artificial neural network (NN) models (Shi

et al., 2019; Ignatenko et al., 2021) scale linearly, but require

hundreds of labeled examples of the data being collected

during beam time as well as additional time for model training

which precludes real-time classification. Such models are

made of largely two components: (1) convolutional neural

networks (CNNs) for spatial feature extraction and (2) fully

connected networks (FCN) for compressing CNN features

into a probability distribution of possible outcomes. These

models demonstrate good performance on speckle patterns of

one single-particle sample, bacteriophage PR772, which is an

important step towards the goal of near real-time particle

classification. But when studying a different sample, they will

have to be retrained on hundreds of labeled speckle patterns.

Notably, it is not a lack of computing power that prevents

these models from working in near real time, as deep-learning

models can be run on supercomputers with modern graphics

processing units (GPUs). The bottleneck is speckle pattern

labeling. It is by no means a trivial task to label speckle

patterns, especially at scale, even for experts in the field.

Therefore, we need solutions that enable NN models to

effectively classify speckle patterns without excessive manual

labeling.

We aim to address the problem of near real-time speckle

pattern classification by converting it into the task of

measuring speckle pattern similarities. To accomplish this

goal, we propose to train an NN model to learn an embedding

function, capable of mapping speckle patterns into a unified

embedding vector space. An important property of this vector

space is that similarities can be evaluated by computing the

Euclidean distance between any two points in the space. Then,

we classify unknown examples by comparing them with a few

labeled examples per class in the embedding vector space and

assigning the label of the closest class.

A contrastive approach, known as twin NNs, is used for

training the unified embedding model. The main idea is that

two identical networks will extract features from a pair of

examples, either with the same label or different labels. For

two examples with the same label, their Euclidean distance

should be small and vice versa. Contrastive approaches based

on twin NNs achieved early success in computer vision tasks

such as signature verification (Bromley et al., 1993) and face

verification (Chopra et al., 2005; Schroff et al., 2015). More-

over, two twin NNs can work together to collectively train the

underlying embedding network by minimizing the Euclidean

distance between identically labeled examples, while simul-

taneously maximizing the Euclidean distance between differ-

ently labeled examples. This approach is also referred to as

triplet networks detailed in the face verification model

(Schroff et al., 2015).

In this work, we present SpeckleNN as a unified embedding

network for classifying speckle patterns in real-time X-ray

SPI. Specifically, two classification solutions are proposed, one

with offline training and one with online training.

First, we show that SpeckleNN accurately classifies speckle

patterns with only a few labeled examples per category (e.g. 5

examples per category) by learning a unified embedding

function from a number of distinct protein samples. The model

can be trained entirely offline or prior to data collection, and

its classification capability generalizes to new samples.

Second, we demonstrate that SpeckleNN achieves accurate

and robust speckle pattern classification in the presence of

missing detector area (e.g. 25% of a pnCCD detector). The

model is designed to be trained online or during data collec-

tion on a relatively small number of labeled examples per

category (e.g. a total of 60 patterns with 40 for training and 20

for validation). Unlike the offline solution, the online training

utilizes only the speckle patterns from the sample of interest

as opposed to generalized embedding of multiple samples.

2. Related work

2.1. Speckle pattern classification

The task of single-particle speckle pattern classification

often requires expert knowledge and immense manual effort.

A human-engineered feature extractor and unsupervised

learning came along to tackle this challenge. For instance,

spectral clustering (Yoon et al., 2011), principal component

analysis (PCA) and support vector machines (SVMs) (Bobkov

et al., 2015) were employed for single-hit classification.

Geometric machine learning is a supervised learning solution

based on the diffusion map framework that can output a score

for how likely a speckle pattern is a single-hit (Cruz-Chú et al.,

2021). More recently, artificial NN models have become a new

avenue for exploring classification solutions with the advent of

capable infrastructures (GPUs, machine-learning frameworks)

for model training. Shi et al. (2019) uses a CNN for feature

extraction and couples its last layer with two additional fully

connected (FC) layers that perform binary classification,

which achieved an accuracy of 83.8% in predicting single-hits.

More recently, another NN-based hit classifier is proposed by

Ignatenko et al. (2021). They repurposed YOLO (you only

look once) deep-learning models (Redmon et al., 2016;
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Redmon & Farhadi, 2018) from detecting objects to classifying

speckle patterns. In fact, these YOLO models also consist of a

CNN spatial feature extractor and several FC layers to

compress features into the probability of classes and location

of objects. However, these models cannot be directly used to

classify speckle patterns of previously unseen single-particle

samples without example relabeling and model retraining.

Their performance with missing detector area is also

unknown. YOLO models specifically come with extra

complexities, such as requiring bounding boxes as labels and

increasing computational cost for finding the location of a

speckle pattern.

2.2. Similarity metrics in a unified embedding vector space

A common method for assessing the similarity of high-

dimensional data, such as images, is to project them onto a

unified vector space, often accomplished through feature

extraction or embedding. In this unified space, similarity is

quantified using metrics like Euclidean distance. One of the

early examples was signature verification using a twin NN

(Bromley et al., 1993). During training, a twin NN works on

two signatures simultaneously. During verification, only one

half of the twin NN is used to map input signatures into a

vector space. The output embedding will be compared with

previously stored signature embedding in this unified vector

space. The stored embedding that is closer to the input

embedding is considered to share the same label as the input,

thereby, the label of this stored embedding becomes the

predicted label of the input. Similar twin NNs were later used

to train models for face recognition/verification (Chopra et al.,

2005). Then, triplet NNs (Hoffer & Ailon, 2014) were applied

to further enhance the unified embedding models (Schroff et

al., 2015) by training essentially two twin-NNs on both positive

and negative examples simultaneously instead of only one of

them. In addition to twin NNs and their variants, many

embedding models have been explored for few-shot classifi-

cation. Vinyals et al. (2017) introduced ‘matching networks’

that map queries and supports to a unified vector space with

two independent embedding functions. Snell et al. (2017)

proposed that a unified embedding model can be trained with

‘prototypical networks’ so that the embedding of unseen

inputs is more likely to be closer to the correct ‘prototype’,

defined as the mean of the embedded supports of the same

category.

3. Methods

Our speckle pattern classifier uses a unified embedding model

to measure pattern similarity through Euclidean distance in

the embedding space. This model is trained by two twin NNs

simultaneously. One twin NN processes two matching exam-

ples that share the same label, while the other works on two

opposing examples with different labels. Such dual twin NNs

can be further simplified to triplet networks when the

matching pair and the opposing pair share a common example.

The common example is referred to as an anchor, and the

matching example and the opposing example are referred to

as positive and negative, respectively. The complete triplet

network architecture is summarized in Fig. 1. In this section,

we present the details in model training with triplet networks,

including the embedding model, the loss function and the

selection of triplet examples. Additionally, we outline the steps

for speckle pattern classification.
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Figure 1
Triplet network architecture for model training. Three input examples (anchor, positive and negative) are propagated through the triplet NN
simultaneously. Anchor and positive share the same label, thus forming a matching pair. In contrast, anchor and negative do not share the same label,
thus forming an opposing pair. The three CNNs and FC layers share the same weights in the triplet network. After examples are embedded to a low-
dimensional vector space, a triplet loss function is used to simultaneously maximize similarities between matching embeddings and minimize those
between opposing embeddings. A side-by-side comparison of three embeddings in a triplet are annotated at the upper right corner.



3.1. The embedding model (the vision backbone)

Our embedding model consists of two convolutional layers

that extract spatial features and two fully connected layers

that compress these features into a low-dimensional vector, or

embedding. The detailed architecture of the embedding model

is delineated in Fig. 2. The first convolutional layer uses a 5� 5

single channel filter with a stride of one and no padding. The

second convolutional layer employs a 32-channel 5 � 5 filter

with a stride of one and no padding. A ReLU (rectified linear

activation unit) activation function is applied to the outcome

of each convolutional layer, which is followed by a batch

normalization layer and a max-pooling operation performed

by a 2� 2 filter with a stride of two. Then, two fully connected

layers are used to generate the final embedding with the size of

128. This way, speckle patterns are encoded into embeddings

in a low-dimensional vector space, where the similarity of two

embeddings can be evaluated by their squared L2 distance.

3.2. Triplet loss function

We train the embedding model in each twin NN using a

triplet loss function described by Schroff et al. (2015). Each

input consists of a triplet of training examples, which are called

anchor xa, positive xp and negative xn. The anchor has the

same label as positive, but not negative. Together, (xa, xp)

forms a matching pair, while (xa, xn) forms an opposing pair.

During training, three embedding models (CNN + FC) f with

shared weights map each element in a triplet (xa, xp, xn) into a

unified embedding vector space. The objective of training is to

separate the two embeddings in each opposing pair by at least

a margin of � from the embeddings in the corresponding

matching pair in the vector space. Given N triplets, the

training objective can be stated as

k f ðxa
i Þ � f ðx

p
i Þk

2
2 þ �<k f ðxa

i Þ � f ðxn
i Þk

2
2; i ¼ 1 : : N : ð1Þ

Meanwhile, we enforce that every embedding has a unit length

of one in a d-dimensional vector space, namely f ðxÞ 2 Rd and

|f(x)|2 = 1. This means that any speckle pattern will be mapped

to a single point on a d-dimensional hypersphere with a radius

of one. The largest possible value of � is 4 in the squared L2

norm sense.

To facilitate the training, the objective in equation (1)

becomes the triplet loss function in equation (2):

XN

i¼1

�þ k f ðxa
i Þ � f ðx

p
i Þk

2
2 � k f ðxa

i Þ � f ðxn
i Þk

2
2

� �
þ
; ð2Þ

where ½��þ returns zero unless the input value is positive.

3.3. Selection of semi-hard triplets

A triplet can be randomly selected in three steps: (1)

randomly choose a class, (2) randomly sample two unique

examples from the chosen class, (3) randomly sample one

example from any class other than the chosen class. This

method, despite being easy to implement, might not deliver

fast convergence when there are too many easy triplets. To

explain in detail, we consider three kinds of triplets that might

exist during model training: easy, semi-hard and hard, as

shown in Fig. 3(a). In an easy triplet, the negative example is

already separated by at least a margin of � than the positive

example. In a hard triplet, the negative example is actually

closer to the anchor than the positive example. In a semi-hard

triplet, the negative example is farther away from the anchor

than the positive example with a margin smaller than �. The

problem with easy triplets is that they contribute to zero in the

triplet loss, and thus the model weights will be adjusted only

according to other triplets, namely semi-hard and hard triplets.

The problem with too many hard examples is that they mostly

constitute only a small fraction of the whole population. If the

optimization prioritizes separating them from their corre-

sponding anchors, the loss function is more likely to become

stuck in bad local minima. Therefore, selecting semi-hard

triplets for training is important. This strategy does not intend

to ignore hard examples. Instead, once a hard example is

pulled into the semi-hard zone, optimization can further drive

them into the easy zone. This allows the majority of the

negative examples to avoid their anchor by a considerable

margin of �. From a practical standpoint, the selection of semi-
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Figure 2
Network architecture of the embedding model. Each shaded rectangle is a volumetric data representation in the NN pipeline. The channel number of
each data representation is marked on the top row. The type of spatial dimension, such as two-dimensional tensors or a one-dimensional tensor of
neurons, is also annotated for each data representation in the bottom row. Notably, the initial spatial dimension of the input may change if cropping and
resizing are applied.



hard triplets is achieved at the mini-batch level, where our

model randomly selects a triplet that satisfies the following

condition:

k f ðxa
i Þ � f ðx

p
i Þk

2
2<k f ðxa

i Þ � f ðxn
i Þk

2
2<k f ðxa

i Þ � f ðx
p
i Þk

2
2 þ �;

i ¼ 1 : : N:

ð3Þ

However, complexity arises with semi-hard selections invol-

ving multiple single-particle samples. We choose to select

random anchor xa and positive xp from the same sample with

the same label, with the negative xn selected from any sample

with a different label. Under this selection scheme, we lay out

all scenarios for semi-hard selections when two unique single-

particle samples (particle X and particle Y) are present, as

shown in Fig. (b).

3.4. Optimization

We trained our NN models using Adam (Kingma & Ba,

2017) with a learning rate of 10�3. The model weights are

initialized to random values from a Gaussian probability

distribution with a mean of 0.0 and a standard deviation of 0.2.

3.5. Data augmentation

Data augmentation is widely used in many machine-

learning tasks to address limitations imposed by expensive

human-labeling and improve model performance. In essence,

‘a data-augmentation is worth a thousand samples’ (Bales-

triero et al., 2022). We applied four data augmentation stra-

tegies to each speckle pattern in our dataset, including random

in-plane rotation, random masking, random zooming, and

random shifting in both the horizontal and the vertical

directions. Random in-plane rotation mimics the effect of

single-particle rotation. Random masking covers some area of

a speckle pattern with constant-value pixel intensities to be

more robust to bad pixels and parasitic scattering. Random

zooming and random shifting enforce the model to learn

features independent of detector distance, X-ray wavelength

and X-ray beam center. These data augmentation strategies

expand the data distribution for the model without manual

labeling.

An important caveat when applying data augmentation is to

partition the data into a training set and test set before the

augmentation. Otherwise it will lead to ‘data leakage’ as

explained by Kapoor & Narayanan (2022). One consequence

of ‘data leakage’ is the deceptively good model predictive

performance measured on a test set that already contains data

augmented or ‘leaked’ from the training set. In other words,

the ‘good’ performance can be mostly attributed to model

memorization or overfitting rather than generalization.

3.6. Four steps in classification

Our model maps speckle patterns into a unified embedding

space, without directly predicting labels. Instead, label

prediction is performed in a query-against-support manner,

that is, comparing inputs (queries) to labeled examples

(supports). This approach is also referred to as few-shot

classification, often implying novel classes for queries and

supports. In an N-way X-shot classification, N is the number of

classes and X is the number of labeled examples per class. The

classification takes four steps: (1) embed an unknown input

speckle pattern and all support examples in a unified

embedding space. (2) Calculate the Euclidean distances from

the input to every support example. (3) Average all distances

by class. (4) Rank all classes by average distance and select the

class with the shortest distance as the label of the unknown

speckle pattern. Fig. 4 demonstrates an example of 2-way 5-

shot classification.

4. Experiments

The ultimate goal of SpeckleNN is to accurately classify

speckle patterns. Our unified embedding model facilitates the

conversion of the speckle pattern classification problem into a

set of similarity measures. Here we demonstrate two classifi-

cation solutions, one with offline training and one with online

training. Offline training requires past experimental data to

train the model, which is then directly applied to classification

of speckle patterns in future experiments. However, online

training trains the model solely on newly collected data in an

ongoing experiment. Both offline and online training are

important for SPI experiments in high-data-rate facilities.

Offline training offers a ready-to-use model for a wide range

of samples, whereas online training provides a potentially

more accurate experiment-specific model for the sample of

interest.

As mentioned, training an offline model requires speckle

patterns from a variety of distinct samples. To date, successful

three-dimensional reconstructions from single-particle data-
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Figure 3
An illustration of the three types of negative examples. (a) xa represents
an anchor example and xp is a positive example. Two arcs in dashed lines,
both centered at xa, are used to divide the embedding space into three
areas. The inner arc has a radius of kf ðxa

i Þ � f ðx
p
i Þk

2
2, whereas the outer arc

has a radius that is larger by a margin of �. Negative examples will possess
three difficulty levels in model training based on the area where they are
situated. It is considered a hard negative example if it is located within the
inner arc, where kf ðxa

i Þ � f ðxn
i Þk

2
2 < kf ðx

a
i Þ � f ðx

p
i Þk

2
2. On the contrary, it is

considered an easy negative example when it goes outside the outer arc,
where kf ðxa

i Þ � f ðxn
i Þk

2
2 � kf ðx

a
i Þ � f ðx

p
i Þk

2
2 > �. Lastly, it becomes a semi-

hard negative example when it resides in the area bound between the two
arcs. Moreover, the loss function results in L ¼ � and L ¼ 0 when
xn

semi�hard is on the inner arc and outer arc, respectively. Our model
training will pull xn

semi�hard close to the outer arc as much as possible,
namely minimizing the loss. (b) Illustration of possible semi-hard
scenarios when two unique single-particle samples are involved.



sets are primarily from large viruses, such as mimivirus

(Seibert et al., 2011), rice dwarf virus (Hajdu et al., 2016) and

bacteriophage PR772 (Li et al., 2020). Therefore, we elected to

demonstrate the offline-trained model on simulated data.

Meanwhile, our model is designed to work on one sample of

interest when trained online. We chose to use real bacter-

iophage PR772 data collected at the LCLS for a demonstra-

tion of model training and testing.

4.1. Offline training

4.1.1. Dataset. We randomly selected 100 Protein Data

Bank (PDB) entries for model training and validation, and

another 345 PDB entries for model testing. The number of

atoms in those PDB entries ranges from 104 to 105. For every

PDB entry, we simulated 400 speckle patterns, with 100 per hit

category, from randomly oriented particles in the form of

single-hit, double-hit, triple-hit and quadruple-hit. For training

purposes, we keep the single-hit label but relabel the rest as

multi-hit. The beam profile employed in the simulation has a

radius of 0.5 mm and a photon energy of 1.66 keV, and

contains 1012 photons per pulse. We simulated all speckle

patterns using skopi (Peck et al., 2022) on a square detector

with the dimensions 172 � 172 pixels. To replicate the

conditions similar to real experiments, we first applied a 6 � 8

pixel binary mask mimicking a beam stop at the center and

another 172� 4 pixel binary mask resembling a gap dividing a

detector in the middle. Then, X-ray fluence jitter and shot

noise were introduced to the dataset. Specifically, during

model training, we introduce fluence jitter by rescaling the

intensity of speckle patterns with a multiplier sampled from an

experimental photon number distribution shown in Fig. 5. We

also added Gaussian noise with zero mean and 0.15 standard

deviation. Each speckle pattern is also cropped at the center

with a window size of 96� 96. Data augmentation described in

the method section was subsequently applied. Input patterns

are intensity normalized prior to model training and inference.

Note that the effects of X-ray fluence jitter can not be fully

normalized away.

The speckle patterns simulated from the 100 PDB entries

are split into 70% for training and 30% for validation. With

data augmentation, we obtained 30 000 speckle patterns for

model training and another 10 000 for model validation. We

found that applying data augmentation can add significant

latency to the training process, so decided to cache all speckle

patterns into CPU memory. But it is possible to pack even

more data for model training through better practices, such as

applying data augmentation to a new batch of data while

training on the previous batch is still underway.

The test set was formed by simulating speckle patterns from

345 PDB entries. For model prediction, we generated 1000

speckle patterns for each PDB entry through random in-plane

rotation as the only data augmentation strategy. The main

reason is that speckle patterns are not subject to random

masking, random shifting or random zooming as long as the

experimental setup remains unchanged. We computed a

confusion matrix for each PDB entry and reported accuracy

and F-1 scores in the following results.

4.1.2. Performance and photon fluence. X-ray photon

fluence jitter is often present in SPI speckle patterns. To

illustrate how fluence jitter affects our model performance, we

scanned a range of fluence scaling factors from 10�2 to 102 by

multiplying by 100.5 at each step. These scaling factors are then

applied to simulated speckle patterns in the test set. Mean-

while, we also measured model performance in three unique

few-shot classification scenarios, including 1-shot, 5-shot and

20-shot. At the baseline photon fluence, our model achieves an

average accuracies of 84.3, 89.1 and 89.6% with 1-shot, 5-shot

and 20-shot classifications, respectively. The corresponding

F-1 scores are 82.0, 87.4 and 87.9%, respectively. Accuracy and

F-1 scores both rise in response to the increase of photon

fluence, and converge at about 100.6, �4.0� the baseline

photon (Fig. 6).

research papers

IUCrJ (2023). 10, 568–578 Cong Wang et al. � Unified embedding for real-time speckle pattern classification 573

Figure 4
Illustration of a 2-way 5-shot classification. The speckle patterns in this
figure are simulated from a type VI secretion system (PDB entry 6n38;
Park et al., 2018). A queried speckle pattern is shown in the first row that
has a ground truth label of single-hit. The second and third rows represent
the single-hit and multi-hit support sets, respectively. Five patterns are
used in each support set. The query-to-support distance is annotated at
the bottom left corner of each speckle pattern. The average query-to-
support distance is denoted d. The single-hit class has a shorter d than the
multi-hit class, resulting in a single-hit label for the query pattern.
Additionally, a question mark in the first row indicates a to-be-
determined label of a queried particle. To illustrate a single-hit example,
we use a simple cartoon representation of a 6n38 molecule in the second
row. Likewise, a multi-hit example is depicted by a cartoon representation
of two 6n38 molecules with distinct colored outlines.

Figure 5
Probability distribution of photon numbers in 332 single-hit speckle
patterns, obtained from the LCLS experiment of bacteriophage PR772 at
the AMO instrument [experiment ID: amo06156; run numbers: 90, 91, 94,
96 and 102 (Li et al., 2020)]. Dividing by mean photon numbers (�1.5 �
107) produces scaling factors specified in the upper x axis.



There are two main lessons we learned from this result.

Firstly, the improvement in classification diminishes quickly

with increasing support size. For example, a 5-shot classifica-

tion has a much better performance than a 1-shot classifica-

tion, but it delivers a comparable performance to a 20-shot

classification. If we were to deploy SpeckleNN at an under-

going experiment, it would be more appealing to label only 5

examples per category rather than 1 or 20 examples. Secondly,

as free-electron laser technology improves in peak brightness

(Li et al., 2022), the benefit of having higher photon fluence

can directly improve the accuracy of SpeckleNN. Interestingly,

a 4� photon fluence improvement is sufficient to maximize

model performance.

4.1.3. Performance and particle size. PDB entries vary

significantly in particle size from hundreds to millions of

atoms, and their sizes are unevenly distributed. It is not good

practice to form a training dataset by randomly picking PDB

entries, which might result in many entries aggregated within a

small size range. Models trained on such datasets might

perform well only on the highly populated size ranges, but less

so otherwise. We pick roughly equal numbers of PDB entries

from 20 evenly spaced intervals from 104 to 105 atoms. The

distribution of PDB entries over particle size used in our

model training is visualized in Fig. 7(a). The PDB entries used

in the test set were also sampled from the same size range.

We pointed out that particle size is a limiting factor in model

prediction but conditioned on photon fluence. As shown in

Fig. 7(b), the average test accuracy of our model at the

baseline photon fluence (1� condition) is positively correlated

with particle size in the region 1 � 104 to 3 � 104 atoms. The

average test accuracy becomes stable when particle size is

larger than 3 � 104 despite the presence of outliers. Likewise,

we repeated model prediction at 100� larger photon fluence.

No further size-dependent correlation is observed across the

whole size range, as shown in Fig. 7(c). A similar observation

was also evident in the F-1 scores as shown in Fig. 7(e).

Despite the overall improvement in average accuracy and

F-1 scores resulting from increased photon fluence, our model

shows only slight improvement for certain proteins larger than

50 000 atoms. Closer examination revealed that these proteins

are pseudo single-hit particles, which are essentially crystal-

lization-induced dimers or higher-order oligomers. In some

cases, protein dimers or oligomers can be observed in crystal

structures due to the specific packing arrangements of protein

molecules within a crystal structure. For instance, Tuske et al.

(2005) deposited two Thermus thermophilus RNA polymerase

holoenzyme structures into the PDB, where 2cw0 is the apo

protein and 1zyr is the complex with the antibiotic streptoly-

digin. Each of the two PDB entries, utilized to simulate

speckle patterns, contains two biological units. This led to an

interesting situation shown in the t-SNE visualization in Fig.

8(a), where a single-hit speckle pattern, such as speckle No.

161, exhibits pronounced interference patterns similar to

those in multi-hit examples like speckle No. 62. In fact,

SpeckleNN actually captures the close proximity between

these two patterns demonstrated in the t-SNE feature space,

indicating its understanding of their similarity. Furthermore,

another issue adding to the complexity is the selection of
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Figure 7
(a) Distribution of particle size, as characterized by the number of atoms,
among PDB entries used in training the model. (b)–(e) 2-way 20-shot
classification accuracy [(b) and (c)] and F-1 scores [(d) and (e)] plotted
against the number of atoms in each PDB entry under two respective
fluence conditions, 1� the baseline fluence and 100� the baseline fluence.
These conditions are labeled on the y axes.

Figure 6
Two-way X-shot (X = 1, 5, 20) classification performance of our model, as
measured by accuracy and F-1 scores under a range of fluence conditions.
The baseline fluence is 1012 photons per X-ray pulse.



support examples, which are highlighted in red in the same

figure. For example, speckle No. 0 in Fig. 8(b), selected as a

support example for multi-hit, possesses features that closely

align with those pseudo single-hit particles. Unfortunately, the

available metadata within these PDB entries do not provide a

means to identify these outliers prior to the analysis.

4.2. Online training
4.2.1. Dataset. We obtained speckle data from an LCLS

experiment of bacteriophage PR772 collected at the AMO

instrument [experiment ID amo06156; run numbers: 90, 91, 94,

96 and 102 (Li et al., 2020)]. We prepared 332 single-hit, 165

multi-hit and 98 non-sample-hit patterns to form our source

dataset. Non-sample-hit patterns do not exist in simulated

data and are unique to experimental data, which are largely

caused by parasitic scattering. We split data into 50% training

set, 25% validation set and 25% test set. All speckle patterns

were subject to data augmentation, specifically random rota-

tion and random masking, from the source dataset. We limit

only 40 and 20 labeled examples per category for model

training and validation, respectively. The purpose of imposing

this restriction is to reproduce the shortage of labeled exam-

ples in a real experiment. However, we applied data

augmentation to boost the number of examples per category.

Consequently, there were 1374 non-sample-hit, 1288 single-hit

and 1338 multi-hit patterns for model training, while there

were 1359 non-sample-hit, 1352 single-hit and 1289 multi-hit

patterns for model validation. We emphasize that the online

model is trained on only the sample used during the experi-

ment and bacteriophage PR772 is the sole specimen used to

demonstrate the capabilities of our model. Two-dimensional t-

SNE plots of the evolution of the unified embeddings during

training are provided in Fig. S1 of the supporting information.

4.2.2. Robust classification despite missing detector area.

To illustrate robust classification despite missing detector area,

we need to choose a baseline model as a reference point for

comparison. We decided to use the model by Shi et al. (2019)

for this purpose, which we will refer to as Shi19 herein. It

consists of a CNN vision backbone and a multi-layer percep-

tron (MLP) that outputs probabilities of each label. It

reportedly achieved 83.8% accuracy in predicting single-hits.

We reimplemented the Shi19 model in PyTorch to measure its

performance. Note that we need to relabel non-sample-hit and

multi-hit as non-single-hit to accommodate the training of the

Shi19 model, as it was initially designed for binary classifica-

tion. We still used the original three labels to train our model,

and only relabel them when producing compatible confusion

matrices.

A performance comparison between models was conducted

for two scenarios: (1) 100% detector area is available, (2) 25%

detector area is available. The second scenario is more

commonly observed in modular detectors, where a certain

area of the detector needs to be masked out due to spurious

noise or damaged panels. Sometimes, data from some detector

panels must be completely ignored to reduce computation

time and thus allow rapid data collection. If speckle pattern

classification can be accurately performed on only a fraction of

a detector area, it opens the door to solving the ‘data reduc-

tion’ problem that bottlenecks high-throughput SPI experi-

ments. That is to say, it can save a considerable amount of time

by eliminating the need for assembling and calibrating all

detector panels for the classification process.

Altogether, we randomly selected 345 single-hit and 655

non-single-hit speckle patterns to form the test set, with non-
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Figure 8
Two-dimensional t-SNE plots depicting the NN embeddings of simulated
speckle patterns for PDB entries (a) 2cw0 and (b) 1zyr (Tuske et al.,
2005). The embeddings of support examples used for X-shot classification
are highlighted in red. The underlying speckle patterns are visualized on
the right side of each t-SNE plot. The numbers provided are solely
intended for reference purposes and do not represent any inherent
physical significance. In addition, S and M stand for single-hit and multi-
hit, respectively.



single-hit made up of 331 non-sample-hit and 324 multi-hit.

SpeckleNN classifies speckle patterns in a 5-shot manner,

whereas the Shi19 model uses a probability threshold of 0.9 for

the classification task. The model accuracy and F-1 scores are

summarized in Table 1. Note that data augmentation enhances

the accuracy of the Shi19 model significantly from 83.8 to 98

when 100% detector area is available. Meanwhile, under the

same circumstances, SpeckleNN and the Shi19 model have the

same accuracy and F-1 scores, respectively. But SpeckleNN

outperforms the competing model by a large margin when

only 25% detector area is available. Figs. 9 and 10 are

demonstrations of 3-way 5-shot classification with SpeckleNN

on speckle patterns with 100 and 25% detector area available,

respectively. This result suggests that SpeckleNN is a more

robust speckle pattern classifier and thus better suited for

high-throughput SPI experiments. CNN models are also

robust to shot-to-shot changes in beam center positions due to

the translation invariance property of its convolution

operator.

5. Conclusions

In this work, we have introduced SpeckleNN, a unified

embedding model for real-time speckle pattern classification

in X-ray SPI with limited labeled examples. The embedding

model, trained with twin NNs, can directly map speckle

patterns to a unified vector space, where similarity is char-

acterized by Euclidean distance. We have provided two

distinct speckle pattern classification solutions. Firstly, the

model trained on multiple samples offline allows few-shot

classification of new never-seen single-particle samples.

Secondly, the model trained on one sample of interest online

exhibits notably improved performance in the presence of

substantial missing detector area, compared with the Shi19

model, a simple yet effective NN-based single-particle classi-

fier. The ability of our model to classify speckle patterns with

partial detector information presents a significant opportunity

for the development of a rapid speckle pattern vetoing

process. Additionally, data augmentation is crucial in both

offline and online training of our model, with a greater impact

in online training.

Although our results show promising progress, future work

is needed to transfer the model trained on simulated data to

real experimental data. To improve the transferability of the

model, two potential approaches can be considered: (1) utilize
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Table 1
Model accuracy (Acc) and F-1 scores in two scenarios: (1) 100% detector
area is available, (2) 25% detector area is available.

The percentage detector area visibility is given as a subscript. In addition, we
performed a 5-shot classification using SpeckleNN, and the probability
threshold used in the Shi19 model is 0.9

Model Acc100% F-1100% Acc25% F-125%

SpeckleNN 0.98 0.97 0.94 0.92
Shi19 model 0.98 0.97 0.74 0.64

Figure 9
3-way 5-shot classification on speckle patterns with 100% detector area available.



generative models like diffusion models (Sohl-Dickstein et al.,

2015; Rombach et al., 2021) or generative adversarial networks

(GANs) (Goodfellow et al., 2014): GANs can be employed to

generate more realistic speckle patterns that closely resemble

those observed in real world scenarios. By training a genera-

tive model to produce synthetic speckle patterns, the model

can learn to capture the intricacies and complexities of real

data, enhancing the transferability to experimental settings.

(2) Employ a mixture of simulation and experimental data:

introducing a combination of simulated and experimental data

into the training set can facilitate contrastive learning. This

approach enables the model to learn the common and distinct

characteristics of both datasets, aiding its adaptation to real

speckle patterns.
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