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The calculation of intermolecular interactions in molecular crystals using model

energies provides a unified route to understanding the complex interplay of

driving forces in crystallization, elastic properties and more. Presented here is a

new single-parameter interaction energy model (CE-1p), extending the previous

CrystalExplorer energy model and calibrated using density functional theory

(DFT) calculations at the !B97M-V/def2-QZVP level over 1157 intermolecular

interactions from 147 crystal structures. The new model incorporates an

improved treatment of dispersion interactions and polarizabilities using the

exchange-hole dipole model (XDM), along with the use of effective core

potentials (ECPs), facilitating application to molecules containing elements

across the periodic table (from H to Rn). This new model is validated against

high-level reference data with outstanding performance, comparable to state-of-

the-art DFT methods for molecular crystal lattice energies over the X23 set

(mean absolute deviation 3.6 kJ mol�1) and for intermolecular interactions in

the S66x8 benchmark set (root mean-square deviation 3.3 kJ mol�1). The

performance of this model is further examined compared to the GFN2-xTB

tight-binding model, providing recommendations for the evaluation of

intermolecular interactions in molecular crystal systems.

1. Introduction

A detailed quantitative description of intermolecular inter-

actions – at low computational cost – is essential to the

modelling of molecular crystals and many other chemical

problems. This includes rationalization of crystal packing, the

factors driving crystal growth and dissolution, mechanical

properties of crystals and more. The study of these inter-

actions is well established, but the prediction and under-

standing of the relative energetic contributions and terms

driving these interactions is as important as ever. Moreover,

there is an ever-expanding taxonomy of intermolecular inter-

actions within the study of molecular crystals (and more

generally), which now include not only terms such as hydrogen

bonding and �–� stacking but also halogen, chalcogen, pnic-

togen and even aerogen bonding. Thus, accessible and accu-

rate methods to compute both intermolecular interaction

energies and their substituent factors are extremely useful, not

only for their predictive power but also for their capacity to

provide a unified view of intermolecular interactions as not

simply a collection of categorized interaction types or inter-

molecular ‘bonds’, but in terms of the fundamental underlying

physical forces and concepts.

Energetic approaches to understanding and rationalizing

intermolecular interactions can be broken down broadlyPublished under a CC BY 4.0 licence
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into two categories, composition and decomposition. The

former encompasses models that build up the total inter-

action energy from prediction of separate components, and

the latter encompasses those that start from a total energy

and break it down into components after the fact. There

are a myriad approaches to this end, with some compo-

nents (e.g. Coulomb or electrostatic interactions) being

more universally present than others. Further, the

boundary between these two approaches is often unclear –

some terms may be naturally more separable than others

due to their mathematical/physical derivation and, likewise,

it is always possible to produce decompositions that may

be more artificial than meaningful. In either case, though,

the motivation is not only to predict the total energy of a

given system, but also to understand the components

which lead to this energy and therefore, in the context of

a molecular crystal, rationalize why a particular interaction

may be present (or not) in the experimentally observed

structure.

For molecular crystalline solids, a natural composition (or

decomposition) approach is to consider the total energy as a

sum over all pairwise dimer energies within a given range.

Calculations of conventional quantum mechanical (QM)

dimer interaction energies involve three full self-consistent

field (SCF) calculations, where the interaction energy of the

system is computed as the difference between the total energy

of the dimer, AB, and the sum of the total energies of the

monomers, A and B, i.e. Eint = EAB � (EA + EB). In the

absence of a complete (or near-complete) basis set this can be

complicated by the basis-set superposition error (BSSE),

necessitating a counterpoise correction using either the full

dimer basis set (Boys & Bernardi, 1970) or approximations to

this correction such as the geometric counterpoise correction

(GCP) (Kruse & Grimme, 2012).

We have previously demonstrated the value of an alter-

native approach to computing dimer energies that involves

fitting scale factors to components from a QM method based

on the Hartree–Fock (HF) interaction energy (Su & Li, 2009)

to accelerate the determination of these interaction energies

(Turner et al., 2014; Mackenzie et al., 2017) and made this

available through the CrystalExplorer software (Spackman et

al., 2021), where it has found widespread use, particularly in

the field of crystal engineering. This model avoids the full

dimer (AB) SCF through approximating the change in mol-

ecular orbitals (MOs) from A interacting with B via super-

position of the two wavefunctions, along with a single

orthogonalization step for the orbitals to respond to one

another. This model, when coupled with scaling coefficients

and force field-like terms for polarization and dispersion, has

proved to be an effective and useful model for intermolecular

interactions to aid in rationalizing molecular packing (Tan et

al., 2019), mechanical slip planes (Wang & Sun, 2018), halogen

bonding (Brammer, 2017) and even prediction of crystal

growth (Spackman et al., 2023).

Despite their overall success, the previous models (CE-HF

and CE-B3LYP) suffered from several primary (technical)

shortcomings:

(i) The choice of the 6-31G(d,p) basis for the more accurate

CE-B3LYP model prevented its application to many heavier

elements.

(ii) The global dispersion model D2 (Grimme, 2006) does

not depend on the monomer wavefunctions, which limits its

accuracy.

(iii) The use of free atomic polarizabilities was a more

extreme approximation, as such quantities change significantly

when the atom is part of a molecule.

It is not only timely to address some shortcomings of the

previous method, but also to highlight the value that the

CrystalExplorer model energies, and other models such as the

density functional tight-binding (DFTB) method GFN2-xTB

(Bannwarth et al., 2019), can provide in our classification and

understanding of intermolecular interactions. Characteriza-

tion of the strengths, weaknesses and range of applicability of

these models, and making available a cohesive implementa-

tion to use both in the context of CrystalExplorer and on high-

performance computing systems, is our fundamental purpose

here. Thus in this work we aim to address these issues, while

producing a model that is more accurate and transferable

wherever possible.

To the above end, the interaction model, along with its

software implementation, has been updated to incorporate the

use of effective core potentials (ECPs, see Section S2.2 in the

supporting information) which model core electrons in

heavier elements. This not only increases the speed of the

calculations for heavier elements, but enables the use of basis

sets parameterized for use with ECPs, for example the

Ahlrichs def2 basis sets (Weigend & Ahlrichs, 2005), which we

make use of in this work. Furthermore, the previously used D2

dispersion model (Grimme, 2006) has been replaced with the

theoretically motivated exchange-hole dipole model (XDM)

(Johnson & Becke, 2006; Becke & Johnson, 2007; Otero-de-la-

Roza & Johnson, 2012b). This yields molecule-dependent

dispersion parameters while also facilitating an elegant solu-

tion for atom-in-molecule polarizabilities, and is itself a drastic

improvement in the treatment of dispersion.

2. Methods

2.1. Reference values used in the fitting procedure

In order to fit and evaluate new models, a modified version

of the training set of molecular crystals used in the previous

CE model fitting (Mackenzie et al., 2017) was chosen. The

revised set consists of 1157 molecule/ion pairs extracted from

147 organic, inorganic and organometallic/metal–organic

molecular crystal structures, incorporating atoms up to and

including bromine, and also iodine and xenon. For each

molecular crystal structure, molecule/ion pairs were obtained

by generating a cluster of nearest-neighbour interactions

around each symmetry-unique molecule/ion in the crystal. A

complete list of the crystal structures, including Cambridge

Structural Database (CSD) refcodes (Groom et al., 2016) and

Inorganic Crystal Structure Database (ICSD) identifiers

(Levin, 2020), is available in the supporting information.
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Reference !B97M-V/def2-QZVP interaction energies were

then calculated via evaluation of the full dimer SCF energy,

subtracting the monomer energies (in the monomer basis).

The !B97M-V method (Mardirossian & Head-Gordon, 2016)

was selected because of its general accuracy and transfer-

ability across many problems, including non-covalent inter-

actions (Najibi & Goerigk, 2018). The large def2-QZVP

(Weigend et al., 2003; Weigend & Ahlrichs, 2005; Peterson et

al., 2003) basis set was chosen to minimize BSSE where

possible, while still being computationally feasible for dimers

comprising hundreds of atoms. All calculations were

performed using the ORCA software suite (Version 5; Neese,

2022). After evaluating reference energies, pairs with a

significant amount of charge transfer were removed from the

training set. This was deemed necessary since charge transfer

is not an aspect we are attempting to model in this work, and

so inclusion of values where this is a significant contribution to

the interaction energy would only serve to confound the

results of the fitting procedure(s) and error estimates.

Furthermore, particularly in the context of molecular crystals,

the charge transfer occurring in a gas-phase dimer does not

necessarily correspond well to that present when the dimer is

embedded in a crystalline environment with competing

charge-transfer possibilities. Significant charge transfer, where

a large portion of an electron has moved from one monomer

to another, was, for our purposes, defined as

jqA � q̂qAj þ jqB þ q̂qBj

2
> 0:4; ð1Þ

where qA is the resulting Löwdin net charge on monomer A in

the dimer calculation and q̂qA is the formal charge on monomer

A in the monomer calculation (along with the corresponding

definitions for monomer B). This resulted in the removal of 24

interaction pairs, all from the groups of organic salts and

organic salt solvates.

The final set consists of 221 neutral organic pairs, 276

neutral closed-shell organometallic/metal–organic pairs, 341

pairs from organic salts and 319 organic salt solvates; a full

listing of the crystal structures used is available in Table S1 in

the supporting information. As in our previous work, it is our

belief that the training set is well balanced, incorporating a

wide range of typical atom environments and interaction

types, and is robust enough that removal or addition of a few

structures will have a minimal effect on the outcomes.

2.2. Fitting procedure

The energy model utilized throughout this work can be

expressed as follows:

Etot ¼ Ecoul þ Erep þ Eexch þ Epol þ Edisp; ð2Þ

where the subscripts tot, coul, rep, exch, pol and disp indicate

total, Coulomb, repulsion, exchange, polarization and disper-

sion components of the energy, respectively. Additional details

of the evaluation of these terms are provided in the supporting

information in Section S2. In previous work, the term Eexch-rep

= Erep + Eexch was used in place of expressing the two

components separately. In that work, the Eexch-rep term was

denoted simply as Erep, but the notation has been changed

here to better express that it is a combination of the HF

exchange term and repulsion due to MO changes, rather than

a pure repulsive term. Likewise, the notation Ecoul has been

utilized here rather than Eele, although they are the same term.

The previous CE energy models utilized four empirical

parameters, one scale factor for each term Ecoul, Eexch-rep, Epol

and Edisp. Although we can simply fit the same parameters for

the model(s) pursued in this work, we have instead examined

the possibility of separately scaling the exchange and repul-

sion terms Eexch and Erep.

Likewise, there are free parameters in the XDM model that

may be fitted (see Section 2.4). As preliminary results and

examination showed that fitting these XDM parameters, in

addition to other scale factors, did not significantly improve

the quality of the fit, we elected not to fit them, instead

choosing simply to use values of a1 = 0.65 and a2 = 1.70 Å,

which are relatively close to those utilized for the B86bPBE-25

hybrid by Price et al. (2023). Similarly, preliminary exploration

of other terms outlined in Section 2.5, with (or without) their

own scale factors, demonstrated little improvement to the fit.

Since the introduction of more parameters (and terms), as

described above, was not found to give a systematic

improvement to the quality of the fit to our training data – a

strong indication that overfitting is occurring – three possible

models were evaluated:

(i) CE-1p, a global single-parameter fit for the repulsion

term and polarization term (i.e. krep = kpol, using the same

parameter regardless of wavefunction source).

(ii) CE-2p, a two-parameter fit for the exchange-repulsion

term and polarization term, fitting kexch-rep and kpol separately,

and using the same parameters regardless of wavefunction

source.

(iii) CE-5p, a five-parameter fit with separate scale factors

kcoul, krep, kexch, kpol and kdisp.

The main motivation for examining these particular fits

were the following theoretical arguments. The long-range

behaviour for Ecoul should be exact, along with it typically

being the dominant term (especially for charged systems).

Likewise, the XDM dispersion term is well defined and

theoretically sound, while the weakest terms theoretically are

the polarization treatment (which is only exact for spherical

atoms, which is not the case here) and the Erep term which

would be exact if the full dimer SCF were performed.

However, since we are only orthonormalizing the MOs for the

monomers in the dimer systems, this ought to overestimate the

repulsion as we are not allowing the MOs to relax after the

initial change in the dimer environment.

2.3. Monomer wavefunctions

There are two primary considerations when selecting a

source of monomer wavefunctions for the proposed model

energies: choice of method, be it HF, density functional theory

(DFT) or otherwise, and choice of basis set. All of the options

considered in this work utilize the def2-SVP (Weigend &

Ahlrichs, 2005) basis set. This was chosen because of its
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moderate cost (no diffuse functions, but retaining polarization

functions) and wide support for elements across the periodic

table (H to Rn), with corresponding ECPs (Peterson et al.,

2003) for heavier elements.

When considering candidate computational methods, we

would intuitively expect to see systematic improvement from

better molecular wavefunction sources, corresponding to the

generally accepted levels of theory in the broader computa-

tional chemistry context. As such, we evaluated several

different wavefunction sources: HF, LDA (SVWN5) (Dirac,

1930; Bloch, 1929; Vosko et al., 1980), BLYP (Becke, 1988b;

Lee et al., 1988; Miehlich et al., 1989), B3LYP (Stephens et al.,

1994), !B97x (Chai & Head-Gordon, 2008) and !B97M-V

(Mardirossian & Head-Gordon, 2016). HF and LDA were

chosen because of their ubiquity and simplicity, and because

they serve as good reference points for understanding the

contributions of relative errors and are well characterized. The

other choices represent different ‘rungs’ on the ladder of DFT

accuracy: BLYP remains a popular GGA (generalized

gradient approximation) density functional approximation,

with generally good accuracy for non-covalent interactions

when combined with appropriate dispersion corrections

(Goerigk et al., 2017). Likewise, dispersion-corrected B3LYP

(hybrid-GGA) has demonstrated accuracy for non-covalent

interactions and is the wavefunction source used in the CE-

B3LYP model from our previous work (Mackenzie et al.,

2017). Finally, as previously mentioned, !B97M-V has been

widely demonstrated to be a reliable functional for a variety of

chemical problems (most importantly non-covalent inter-

actions) (Najibi & Goerigk, 2018), and as such it was chosen

for reference calculations for the CE fitting data set. We also

investigated !B97x as a reference point, as it is more widely

implemented (range-separated hybrid GGA), and given that

the default in e.g. ORCA is to use the VV10 (Vydrov & Van

Voorhis, 2010) non-local correlation functional as a post-SCF

correction only, there should be only small differences in the

MOs between the two methods.

2.4. XDM dispersion implementation

The XDM dispersion model was implemented and tested

for correctness against the existing implementation in the

postg program (Otero-de-la-Roza & Johnson, 2013; Kanne-

mann & Becke, 2010). The present implementation makes use

of the Becke–Roussel (Becke & Roussel, 1989; Proynov et al.,

2008) density functional approximation for the exchange-hole

calculations, with the same sort of grids used in numerical

integration for DFT approximations in the code, namely the

Becke integration scheme (Becke, 1988a) using Lebedev

(1976) angular quadratures and the radial quadrature scheme

from Lindh et al. (2001).

For the Hirshfeld (1977) partitioning part of the model,

atomic wavefunctions from Koga et al. (1993, 2000) were used

for the spherically symmetric gas-phase atomic electron

densities. The grids used in the numerical integration were

generated using the typical Becke partitioning scheme (Becke,

1988a), as the implementation could use the existing frame-

work already present in DFT calculations.

Atomic polarizabilities utilized throughout were the same

as those used in the previous CE models (Turner et al., 2014),

and the resulting in-molecule polarizabilities are used

internally in the XDM methodology as follows:

� ¼
V

V 0
�0; ð3Þ

where � and V are the in-molecule polarizability and Hirshfeld

volume, respectively, and �0 and V0 are the corresponding

quantities for the free atom. This is a simple approximation

that accounts for the (typically contracted) atomic volume in a

molecule.

As formulated, the XDM dispersion model has two free

parameters associated with the damping at close range, a1 and

a2. The energy is formulated as follows:

Edisp ¼
Xatoms

i

Xatoms

j<i

Eij; ð4Þ

Eij ¼ �
c6;ij

r6
vdW;ij þ r6

ij

þ
c8;ij

r8
vdW;ij þ r8

ij

þ
c10;ij

r10
vdW;ij þ r10

ij

 !
; ð5Þ

rvdW;ij ¼ a1rcrit;ij þ a2; ð6Þ

rcrit;ij ¼
1

3

c8;ij

c6;ij

� �1=2

þ
c10;ij

c6;ij

� �1=4

þ
c10;ij

c8;ij

� �1=2
" #

; ð7Þ

where i and j are atoms, c are the coefficients specific to the

atom pair ij and r is the interatomic distance. Subscripts

vdW and crit indicate van der Waals and critical radius,

respectively. In essence, a1 is a scale factor for the critical

radius where all three terms (1/r6, 1/r8 and 1/r10) are equal, and

a2 is a constant in distance units.

The above expression is, of course, the total dispersion

energy for a system, not the interaction energy between two

molecules. The interaction energy Eint can itself be calculated

either by finding the corresponding energy terms for both

monomers and the dimer,

Eint
disp ¼ EAB

disp � EA
disp � EB

disp; ð8Þ

or, equivalently, by simply summing only over i 2 A and j 2 B

in equation (4).

One consideration here, given that we are not performing

an SCF for the dimer AB, is in the choice of XDM coefficients

– we can either re-use the coefficients calculated for the

monomers A and B (referred to as the monomer dispersion

model), or calculate the coefficients for the concatenated

dimer wavefunction and use equation (8) (referred to as the

dimer dispersion model in this work).

2.5. Other considerations

As briefly mentioned when discussing the fitting procedure,

we explored various possible low-cost enhancements and

modifications for the accuracy of the energy models in this
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work. Specifically, we evaluated the possible improvement in

performance when fitting the model variants against the S66x8

(Řezáč et al., 2011a,b; Brauer et al., 2016) benchmark set,

separately incorporating the geometric counterpoise correc-

tion (GCP) term (Kruse & Grimme, 2012) including the

accompanying small basis-set correction utilized in the HF-3c

model (Sure & Grimme, 2013), fitting both the XDM a1 and a2

parameters, using the larger def2-TZVP basis set, using a DFT

interaction model (see Section S2.1) and fitting a force field-

like repulsion term similar to that found in the DREIDING

model (Mayo et al., 1990) to correct interaction energies at

short distances.

Preliminary results demonstrated that none of the above

modifications systematically improved the performance of the

model energies against their training set when compared with

simply re-fitting scale factors in either the CE-B3LYP or CE-

5p models fitted to the same data. In other words, the only

improvements were attributed to the fitting of the parameters

to the set being evaluated, rather than the introduction of the

different terms. As such, none of these modifications were

incorporated into the models proposed in this work.

2.6. Rotation of molecular orbitals using pure spherical basis
sets

Since the model shown in this work, and the previous CE

models, start with isolated monomer wavefunctions, it is

expedient to re-use the same wavefunction (after rotation and

translation to the new position) rather than recalculate each

monomer multiple times, particularly in the context of mol-

ecular crystals where there is typically only one (or a handful

of) symmetry-unique molecules.

The above rotation was previously implemented only for

wavefunctions in a Cartesian spherical harmonic basis-set

convention, but has now been extended to direct rotation of

‘pure’ spherical harmonic basis sets. This has been imple-

mented using the already known recurrence relations (Ivanic

& Ruedenberg, 1998). Facilitating the use of pure spherical

basis sets is valuable as it allows for the use of other QM

programs (such as ORCA) which may only support the use of

pure spherical basis sets, and may help to reduce computation

times where many higher angular momentum (d, f, g etc.)

functions are included.

2.7. Reference lattice energies for molecular crystals

In previous work we highlighted the surprising success and

accuracy of the CE-B3LYP model in predicting lattice ener-

gies of molecular crystals when using direct summation. To

compare the models developed in this work against accurate

reference data, along with the previous model, we now

examine the performance on the X23 (Reilly & Tkatchenko,

2013) benchmark set, specifically using the revised reference

energies in the X23b set (Dolgonos et al., 2019).

We have examined the predicted lattice energies for both

the experimental geometry (after normalizing X—H bond

lengths to average crystallographic values) and the

PBE0+MBD/light optimized geometries given by Dolgonos et

al. (2019).

3. Results and discussion

3.1. Fitting results

The previous model fitted four parameters, the scale factors

kele, kexch-rep, kpol and kdisp. In this work we examine the CE-5p

model which separately fits five parameters (splitting the exch-

rep term, resulting in separate kexch and krep parameters), the

CE-2p model with two parameters (the scale factors kexch-rep

and kpol) and the single-parameter model CE-1p with only k =

krep = kpol. In part, the last two fits are motivated by the use of

a new (and more accurate) dispersion term, and it was thought

that fixing the corresponding scale factors for this and the

Coulomb term to unity (i.e. unscaled) would be a reasonable

starting point and might result in a more transferable fit to

other methods and/or basis sets.

To examine transferability, once all energy terms were

evaluated for the training set (see Section S2 for full details),

rather than simply performing a least-squares fit for the CE-1p

and CE-2p models to minimize the errors, we examined the

error over a range of k in the case of CE-1p, and a distribution

of kexch-rep and kpol in the case of CE-2p. The results for this

process are shown in Fig. 1 for the case of CE-1p and in Fig. S2

for the case of the CE-2p model.

In the case of CE-1p, there is substantial agreement

between different wavefunction sources for the optimal value

of the fitted k parameter, with a minimum in the case of

!B97M-V at 0.77850434 . . . , i.e. 0.78 (to 2 d.p.). The only

method with a significantly shifted minimum value is HF, but

even there the difference between the RMSD of 5.0 kJ mol�1

for the optimal value (k = 0.86) versus 5.7 kJ mol�1 for the HF

model is less than 1 kJ mol�1.

For the case of CE-2p, all methods yield minima in a similar

area and there is a region of the two-parameter space where

the error is relatively flat (plots are provided in Fig. S2). Given

that, intuitively, !B97M-V should be the most accurate

method against the reference (being the same method as used

in the reference), we elected to use two parameters from the

research papers

758 Peter R. Spackman et al. � Transferable quantum mechanical energy model IUCrJ (2023). 10, 754–765

Figure 1
Error distributions for HF, LDA, BLYP, B3LYP, !B97x and !B97M-V
methods over a range of k = krep = kpol values. While there are clearly
some differences between the models, it should be seen that the minimum
for !B97M-V at k = 0.78 (highlighted by the grey dot-dashed line) still
produces good results for the other models.



minima of this approach, located at krep = 0.485 and kpol =

0.803. However, it must be pointed out that the agreement

between the two-dimensional minima in CE-2p is much worse

than in the one-dimensional case of CE-1p, which indicates

that its transferability to different molecular wavefunction

sources is likely to be inferior.

The five-parameter model (CE-5p) was also examined, with

scale factors fitted using least squares, and the resulting

coefficients are given in Table 1. For the five-parameter fit,

values for all scale coefficients were fixed in the range [0, 3],

with the exception of krep, which was bounded in the range

[0.6, 3]. These boundaries were introduced because of the

potential for over-fitting – it was found that freely optimizing

the parameters introduced negative scale factors or scale

factors close to zero, with very small improvements to the

errors for the model. Based on the exploration of the para-

meter space for the CE-1p model, krep � 0.6 was chosen to

allow enough flexibility to alter the krep parameter while

constraining the fit to more (theoretically) reasonable para-

meters. It can be seen here that the Coulomb scaling coeffi-

cient is very close to unity for all wavefunction sources, which

is rationalized by the number of charged systems in the

training set, where this will be the overwhelmingly dominant

term for most of them.

Error distributions for the training set are shown in Fig. 2,

where it is notable that, for all sources other than HF, the five-

parameter fit produces only negligible improvements in

overall energy errors relative to the transferable one and two-

parameter fits. This, coupled with the need to introduce

constraints, is indicative that it is likely we are in the realm of

overfitting. To examine this further, we must look outside the

training set to evaluate the behaviour against external refer-

ence data.

3.2. S66x8 set

The primary use case for the proposed energy models, and

indeed the major use case for the previous models, is inter-

molecular interactions in organic molecular crystals, i.e.

intermolecular interactions between neutral organic species.

To this end, the S66x8 benchmark set (Řezáč et al., 2011a,b;

Brauer et al., 2016) constitutes an excellent test set to evaluate

the performance of the fitted models over a range of inter-

molecular interaction distances and understand its behaviour

for different interaction types. The overall results are shown in

Table 2. Unsurprisingly, the previously fitted model (CE-

B3LYP) performs very well for neutral systems, just as it did

on the training set and in previous work. Likewise, across all

fits, the B3LYP, !B97X and !B97M-V wavefunction sources

are significantly better choices than HF, LDA and BLYP. This

is not a surprising result, but it is consistent with intuition

when it comes to the superior accuracy of (hybrid) DFT

functionals.

Perhaps the most important conclusion from the results for

this test set is that the five-parameter fits are only marginally

better in performance (or sometimes worse) than the two-

parameter fits. The performances for !B97x and !B97M-Vare

almost identical, but this is unsurprising when we consider

how similar the models are in terms of their wavefunctions

(the VV10 non-local correlation functional has only been

applied as a post-SCF correction).

Similar to the results for the training set in the previous

section, in Fig. 3 it is apparent that using more parameters

does not necessarily lead to wholesale improvement of the

reliability of the model, and where it does the improvement is

relatively minor when considering potential applications to

non-covalent interactions. The best result for CE-5p, for

example, was actually HF with an RMSD of 2.5 kJ mol�1,

versus the best result for CE-1p being !B97X with an RMSD

of 3.2 kJ mol�1. This is not totally insignificant, but when put

in the context of the training data and the kinds of interactions
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Table 1
Fitted scaling coefficients for the different components in the CE-5p
model when using the six different wavefunction sources explored in this
work, HF, LDA, BLYP, B3LYP !B97X and !B97M-V.

See equation (2) for the relevant energy expression. Note that krep values of
0.6 correspond to the fixed lower bound in the least-squares fitting procedure.

Coefficient HF LDA BLYP B3LYP !B97X !B97M-V

kcoul 0.999 1.011 1.011 1.007 1.005 1.005
kexch 1.487 0.717 0.761 0.702 0.666 0.670
krep 1.109 0.600 0.600 0.600 0.600 0.600
kpol 0.780 0.824 0.826 0.808 0.794 0.793
kdisp 0.990 1.036 1.039 1.068 1.065 1.051

Figure 2
Kernel density estimate plots, showing the errors for the predicted
energies versus the reference (!B97M-V/def2-QZVP) dimer interaction
energies in the training set when using the previous CE-B3LYP model,
and GFN2-xTB, along with the fitted CE-1p, CE-2p and CE-5p using the
six wavefunction sources explored in this work (top to bottom): HF, LDA
(SVWN5), BLYP, B3LYP, !B97X, !B97M, with RMSD values provided
to the right-hand side of each plot. Each wavefunction source has been
shifted on the y axis to facilitate visual inspection of the distributions.



that are present in the S66x8 data set, and the difference

between five parameters (that may be less transferable) and

only a single parameter, we believe the trade off of around

0.5 kJ mol�1 (which largely corresponds to a shift in mean

error) is worthwhile.

With few exceptions (BLYP and HF in some cases), the

error distributions are largely symmetric about zero, though

there are longer and denser tails in the over-binding direction,

which may be explained through the trends at different

intermolecular separations in the S66x8 set. Once again, in this

context the B3LYP, !B97M-V and !B97x methods are clearly

superior in their reliability, particularly for the more trans-

ferable CE-1p model.

It is worth comparing our results with the recently

published !B97X-3c composite method (Müller et al., 2023),

which has also been evaluated against the S66 set (i.e. the

subset of the S66x8 set with separation scale factor r = 1.0).

Müller et al. (2023) gave !B97X-3c an MAD of roughly

1.2 kJ mol�1 over these interactions, compared to, say, the

corresponding !B97X variant of the CE-1p model at roughly

1.8 kJ mol�1 (the corresponding value for CE-B3LYP is

2.5 kJ mol�1). Likewise, natural comparison methods for the

approach are the SAPT(DFT) and SAPT0 methods, for which

the corresponding MAD values, taken from Xie et al. (2022),

are 1.4 kJ mol�1 for SAPT(DFT) and 4.1 kJ mol�1 for SAPT0.

A full list of the MAD values for the S66 set is provided in

Table S4. We believe this represents excellent agreement

considering the relative cost of the methods, with our model

not requiring an SCF for the combined dimer wavefunction.

3.3. Trends in error versus separation distance

In the context of molecular crystals, it is of course important

for dimer interaction energies to be accurate over a range of

intermolecular separations. Furthermore, characterization of

the kinds of errors and their trends with distance and inter-

action type gives insight into where models are accurate and

where their accuracy may be limited, be it systematic or

otherwise.

Careful examination of Fig. 4 shows that the distribution of

errors surrounding the mean error when using the CE-5p fit is

marginally narrower, but it appears that the CE-5p fit is indeed

over-fitted, as its systematic over-binding at closer-than-equi-

librium intermolecular separations (0.9, 0.95 in the separation

scale) is more extreme than for both the previous CE-B3LYP

model and the CE-1p model. This trend, coupled with the

marginal difference in overall performance for the CE-1p fit

versus the CE-5p fit (3.3 kJ mol�1 for CE-1p using B3LYP,

versus 2.5 kJ mol�1 RMSD for the best CE-5p model which

used HF) is, in our judgement, enough to recommend usage of

the CE-1p model, with only a single free parameter that is

clearly transferable across wavefunction sources.

Errors at closer-than-equilibrium separations are of parti-

cular relevance to high-pressure studies of molecular crystals,

and previous work (Eikeland et al., 2017) has shown that the

CE-B3LYP model demonstrated significant errors compared

to counterpoise-corrected B3LYP calculations on dimers in

hydroquinone clathrates of methanol and acetonitrile. This

was at least partly attributed to the kexch-rep scaling coefficient

affecting repulsion at close separations. To examine this

behaviour with the now larger repulsion scaling parameter for

the CE-1p model relative to the previous CE-B3LYP model (k

= 0.78 versus kexch-rep = 0.6177), we evaluated dimer inter-
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Table 2
Error statistics for the S66x8 data set, showing mean absolute deviation
(MAD), mean signed deviation (MSD) and root-mean-square deviation
(RMSD) in kJ mol�1, rounded to 1 decimal place.

CE-1p

Statistic CE-B3LYP HF LDA BLYP B3LYP !B97X !B97M-V

MAD 2.4 3.3 2.6 2.6 2.1 2.0 2.0
MSD �0.8 �3.1 �0.4 1.2 0.2 �0.5 �0.5
RMSD 3.8 5.6 3.8 4.2 3.3 3.2 3.3

CE-2p

Statistic HF LDA BLYP B3LYP !B97X !B97M-V

MAD 3.7 2.2 2.3 2.1 2.1 2.1
MSD �3.4 �0.5 0.9 �0.1 �0.8 �0.7
RMSD 6.9 3.7 3.7 3.3 3.6 3.5

CE-5p

Statistic HF LDA BLYP B3LYP !B97X !B97M-V

MAD 1.7 2.6 2.8 2.0 1.7 1.8
MSD �0.1 �1.7 �1.5 �0.8 �0.5 �0.4
RMSD 2.7 4.6 5.0 3.5 2.9 2.9

Figure 3
Kernel density estimate plots for the S66x8 set using the CE-1p, CE-2p
and CE-5p fits, the previous CE-B3LYP model and the six wavefunction
sources used in this work (top to bottom): HF, LDA (SVWN5), BLYP,
B3LYP, !B97X, !B97M-V, with RMSD values provided on the right-
hand side of each plot. Each wavefunction source has been shifted on the
y axis to facilitate visual inspection of the distributions.



action energies for the same systems as Eikeland et al. (2017)

when using !B97M-V/def2-svp as the wavefunction source.

The results of these calculations, comparing CE-B3LYP, CE-

1p and GFN2-xTB, are summarized in Figs. S3 and S4. The

results are mixed: some systems show improvements over the

previous CE-B3LYP model, others do not. The CE-1p model

cannot be said to be an improvement in this regard over the

old model, but neither can it be said to be worse. This is

indicative that, despite the previous discussion by Eikeland et

al. (2017), the errors are not solely associated with the

repulsion scale factor, as there is a significant interplay

between the dispersion damping coefficients as well. Ulti-

mately, if we wish to have an improved model at closer

intermolecular separations then, at a minimum, the training

data set would need to be re-examined, along with changes

probably being required in the assumptions of the model (e.g.

a departure from global scaling parameters), which is outside

the scope of this work. However, it is worth emphasizing that,

as interactions get stronger at closer separations, we should

expect that the errors get larger for almost any method, and

that the present model, where we are assuming relatively little

deformation in the molecular electron density, will eventually

break down at close enough separations where significant

overlap between monomer wavefunctions becomes a reality.

4. Lattice energies for molecular crystals

The previous CE models, particularly CE-B3LYP, have

already been successfully applied to the prediction of lattice

energies for neutral molecular crystals via the direct summa-

tion technique. Prediction of such lattice energies is particu-

larly challenging due to the interplay of intermolecular

interactions over a variety of distances where systematic

errors will tend to manifest themselves largely as wrong

absolute values for the lattice energies. At present, the X23

benchmark set (Reilly & Tkatchenko, 2013; Dolgonos et al.,

2019), itself an extension of the C21 set (Otero-de-la-Roza &

Johnson, 2012a), constitutes the most reliable and robust set of

reference values for molecular crystal lattice energies.

Table 3 shows the resulting error statistics in lattice energies

for the models explored in this work compared with those for

the CE-B3LYP model. Optimized geometries that were

previously used in the X23 revised benchmark (Dolgonos et

al., 2019) were used, as well as experimental geometries with

normalized hydrogen-bond lengths; the results for the

experimental geometries are available in Table S7. When

interpreting these data, it is worth noting that the standard

error (�) for sublimation enthalpies is typically in the region of

4 kJ mol�1 (Chickos, 2003) and the correction procedure
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Table 3
Error statistics for the X23 data set, showing mean absolute deviation
(MAD), mean signed deviation (MSD) and root mean-square deviation
(RMSD) in kJ mol�1 for the CE-1p, CE-2p and CE-5p models
investigated in this work, along with the GFN2-xTB method (calculated
using the same method of direct summation of dimer energies).

All values here are calculated using the PBE0+MBD/light optimized
geometries used by Dolgonos et al. (2019). For the corresponding values in
the experimental geometries see Table S7.

CE-1p

Statistic CE-B3LYP HF LDA BLYP B3LYP !B97X !B97M-V

MAD 7.3 18.4 4.3 4.7 3.6 5.2 5.9
MSD �6.3 �18.4 �2.8 3.0 �1.0 �4.1 �4.9
RMSD 9.7 23.2 5.8 5.6 4.8 7.1 7.6

CE-2p

Statistic GFN-xTB HF LDA BLYP B3LYP !B97X !B97M-V

MAD 11.2 21.0 6.0 4.7 6.3 8.2 7.9
MSD �7.6 �20.9 �4.2 1.3 �3.4 �6.7 �6.7
RMSD 15.2 27.6 7.7 5.6 8.4 11.2 10.9

CE-5p

Statistic HF LDA BLYP B3LYP !B97X !B97M-V

MAD 5.4 12.0 13.2 9.5 7.3 7.4
MSD �3.6 �11.5 �12.7 �9.1 �6.7 �6.8
RMSD 8.1 14.0 15.6 11.8 9.6 9.7

Figure 4
Trends in errors across different scaled separations for the S66x8
benchmark set when using different models in this work: CE-B3LYP
(top), and CE-1p (upper middle), CE-2p (lower middle) and CE-5p
(bottom) for the B3LYP wavefunction source. The solid lines indicate the
mean error value, while the shaded regions represent the 95% confidence
interval. The separation scale is relative to the equilibrium separation, i.e.
a value of 1.0 is at equilibrium, while a value of 0.9 is 90% of the
equlibrium separation. Values between explicitly calculated separations
(0.9, 0.95, 1.0, 1.05, 1.1, 1.25, 1.5, 2.0) have been linearly interpolated in
order to show the behavioural trends.



involving vibrational contributations to the sublimation

enthalpy will further introduce its own errors. It is also worth

highlighting that six of the molecules in the X23 set are

present in the training set, namely urea (UREAXX), benzene

(BENZEN01), imidazole (IMAZOL13), formamide

(FORMAM02), succinic acid (SUCACB09) and uracil

(URACIL). However, the training set is based only on the

nearest dimers (rather than the dozens or hundreds of ener-

gies contributing to the lattice energy) and uses a different

reference method than in the reference X23 data.

It can be seen in Table 3 that the errors for different models

are nowhere near as uniform as they were for the S66x8

benchmark set. This should not be surprising – any systematic

over- or under-estimation for interactions will be amplified

when summing across many interactions/dimer pairs. The

transferable single-parameter model demonstrates excellent

performance and transferability across different wavefunction

methods, though the success is significantly diminished when

examining the HF results.

There is little doubt that the accuracy of the models

presented here, when using direct summation for the lattice

energies, is reliant on cancellation of errors (though the same

may be said for all other methods). Nevertheless, the results

for the CE-1p model using B3LYP, with an MAD of only

3.6 kJ mol�1, compares very favourably with the current state

of the art (Price et al., 2023), where the best method (a

composite of B86bPBE-25-XDM//B86bPBE-XDM approa-

ches including a basis-set correction) reported had an MAD of

2 kJ mol�1. For comparison, the same work reported PBE0-

MBD giving an MAD of 3.5 kJ mol�1 when using the ‘Tight’

basis set.

The relative behaviour of the CE-1p, CE-2p and CE-5p

models when using the B3LYP functional against CE-B3LYP

may be seen in Fig. 5, which indicates that the single-para-

meter model is an improvement over the alternatives across

almost every system. The results for cytosine indicate that

there may be some systematic error in the models, which

merits further investigation into polarization as discussed in

the next sub-section.

4.1. Crystal polarization effects

There are several sources of possible error in the direct

summation method used here for lattice energies, with one of

the more significant sources of error being the treatment of

polarization. In a crystalline environment, the framework

utilized in the CE energy models assumes that the polarization

contributions are pairwise additive. However, the true polar-

ization energy is fundamentally many-body in nature because

of the quadratic dependence on magnitude of the electric field:

Ei
pol ¼ �

1

2
�ij F
!

ij
2: ð9Þ

Here i is the i th atom, �i is its polarizability, Ei
pol is the

polarization energy for this atom and F
!

i is the electric field at

atom i from its environment, either from the neighbouring

monomer (in the case of a pair) or from the crystal environ-
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Figure 5
Errors in predicted X23 energies (difference from reference values) for the CE-B3LYP (grey dotted line) and the CE-1p (blue), CE-2p (orange) and CE-
5p (black) models using B3LYP/def2-SVP as the wavefunction source. The overall error statistics for all models are given in Table 3. All values here are
calculated using the PBE0+MBD/light optimized geometries used by Dolgonos et al. (2019). For the corresponding values in the experimental
geometries see Table S7.



ment. While the field is just the pairwise sum over neighbours,

the square of this quantity is no longer separable.

The practical difference in the case of crystals may be seen

in Fig. 6, where the sum of pairwise polarization terms over-

estimates the polarization energy of the crystal, especially

for cytosine. In contrast, summing the field experienced by a

monomer over all interactions in the crystal, before

computing the polarization energy, significantly improves

most energies for the X23 data set. It should be noted that

there is a further effect of using gas-phase wavefunctions

that may lead to underestimation of the polarization in

comparison to the corresponding wavefunction in the solid

state. Since gas-phase wavefunctions are used throughout

the current procedure, we are likewise underestimating the

polarization of the initial molecular wavefunction. These two

factors will compete and we may (or may not) experience

cancellation of errors, but this is an aspect that must be

understood if, in future, molecule-in-crystal wavefunctions,

for example, were to be used with this energy model to

estimate lattice energies.

For now, we can examine the influence of evaluating the

polarization energy using the theoretically more correct

approach of summing over contributions to the field before

computing the energy. This manifests in changes in the error

statistics: the MAD value shifts to 4.4 kJ mol�1 (versus

3.6 kJ mol�1), largely due to the systematic shift in MSD to

2.2 kJ mol�1 (versus �1.0 kJ mol�1), while the RMSD only

shifts to 5.3 kJ mol�1 (versus 4.8 kJ mol�1).

This suggests that if the goal is to predict relative lattice

energies, as it so often is in the context of molecular crystals,

then using a polarization term based on the electric field of the

crystal should be considered. Indeed, there is a minor increase

in error (less than 1 kJ mol�1) for the absolute values of the

lattice energies compared with the reference values, but the

errors are likewise more systematic which tends to improve

the relative energies. Furthermore, in ionic systems the effects

of the pairwise approximation for polarization are even

greater. An illustrative example is cubic NaCl, which has zero

net electric field at the ion positions, but when calculated

pairwise there is an erroneous net polarization energy of

around 400 kJ mol�1.

5. Conclusions

We have implemented, fitted and demonstrated the accuracy

of a new single-parameter intermolecular interaction energy

model, CE-1p, which is transferable across different wave-

function sources. The model constitutes an excellent accuracy/

computational cost trade off, with an MAD of 2.0 kJ mol�1

across the S66x8 benchmark set, and near state-of-the-art

performance when predicting lattice energies for the X23

benchmark set, with an MAD of 3.6 kJ mol�1, while using the

simplest pairwise sum in real space. While there is little doubt

that this model (and others) exhibits error cancellation, we

believe it constitutes an efficient and accurate method for

quantitative predictions of intermolecular interactions which
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Figure 6
Errors in predicted X23 energies (difference from reference values) for the CE-1p method using B3LYP/def2-SVP as the wavefunction source when
using two different polarization models. Here ‘Pairwise field’ corresponds to the usual method of calculating the polarization term for the lattice energy,
i.e. each pair is calculated individually, whereas ‘Crystal field’ evaluates the electric field from all neighbours at the atomic positions of the symmetry-
unique molecule(s) in the crystal. See equation (9).



may also be rationalized and understood through sensible

separation of the energy into distinct contributions.

We have also examined the performance of the GFN2-xTB

tight-binding model as a rapid method for similar purposes,

with only relatively minor loss in accuracy for dimer energies

in organic neutral systems. In particular, for neutral organic

molecules (which constitute a large part of the chemical

systems of interest in molecular crystals) using GFN2-xTB

through visualization software such as CrystalExplorer

provides near-instant feedback and allows for real-time

exploratory evaluations, as in most cases it is one to two orders

of magnitude faster than our energy model.

Our recommendations for the end user of these methods,

who wishes to rationalize the intermolecular interactions in a

molecular crystal, are as follows:

(i) First, calculate the interaction energies using GFN2-xTB,

which is extremely low cost for pairwise interactions. It is

particularly worth examining interactions beyond nearest-

neighbours using such methods, as their long-range behaviour

should be reliable. These can be visualized using energy

frameworks (Turner et al., 2014).

(ii) Calculate the same energies using the CE-1p model,

using B3LYP, !B97x or !B97M-V functionals, depending on

which is available in your QM software of choice.

(iii) If these models are not in agreement with respect to the

relative strength of interactions, further detailed investigation

with higher-level methods is warranted.

(iv) If lattice energies are of interest, strongly consider the

polarity of the molecule(s) in your system, and whether or not

the pairwise approximation for polarization is appropriate.

There are several avenues for further improvements and

developments, including:

(i) The possibility of fitting a model using DFT exchange

correlation rather than HF exchange, given the reduction in

computational cost over evaluating the exact exchange

matrices for the two monomers (A and B) and the better

scaling speed-ups available for the Coulomb term, particularly

if the overall accuracy of the model is not sacrificed.

(ii) Departing from global scaling parameters, particularly

at close intermolecular separations, though this would be a

significant change to the model.

(iii) Examination of the connection between the orthogo-

nalized electron population (see Section S9) and the repulsion

and exchange terms for development of low-cost approxima-

tions.

In summary, the new single-parameter CE-1p model is

generally more accurate, is significantly more transferable (not

only to other wavefunction methods but in its coverage of

more of the periodic table, which enables application to more

chemical problems) and has (qualitatively) a more sound

theoretical basis than the existing CE-B3LYP model. Hence,

we view it as an excellent replacement for the previous

method which will no doubt find broad application across a

variety of chemical problems, particularly in the domain of

molecular crystals.

This work has been implemented and is already available in

the open source software occ made available on GitHub

(https://github.com/peterspackman/occ) The incorporation of

the newly proposed CE-1p model, along with access to GFN2-

xTB, will be available in a forthcoming release of Crystal-

Explorer and we are optimistic that both will be valuable

additions for the community.

6. Related literature

For further literature related to the supporting information,

see van Eijck & Kroon (1997) and Thomas et al. (2018).
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