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Many technologically important material properties are underpinned by

disorder and short-range structural correlations; therefore, elucidating struc-

ture–property relationships in functional materials requires understanding both

the average and the local structures. The latter information is contained within

diffuse scattering but is challenging to exploit, particularly in single-crystal

systems. Separation of the diffuse scattering into its constituent components can

greatly simplify analysis and allows for quantitative parameters describing the

disorder to be extracted directly. Here, a deep-learning method, DSFU-Net, is

presented based on the Pix2Pix generative adversarial network, which takes a

plane of diffuse scattering as input and factorizes it into the contributions from

the molecular form factor and the chemical short-range order. DSFU-Net was

trained on 198 421 samples of simulated diffuse scattering data and performed

extremely well on the unseen simulated validation dataset in this work. On a real

experimental example, DSFU-Net successfully reproduced the two components

with a quality sufficient to distinguish between similar structural models based

on the form factor and to refine short-range-order parameters, achieving values

comparable to other established methods. This new approach could streamline

the analysis of diffuse scattering as it requires minimal prior knowledge of the

system, allows access to both components in seconds and is able to compensate

for small regions with missing data. DSFU-Net is freely available for use and

represents a first step towards an automated workflow for the analysis of single-

crystal diffuse scattering.

1. Introduction

The properties of functional materials often depend on the

presence of defects and their arrangement at a local scale.

Measurement of the diffuse scattering arising from such

disorder provides a means to probe the local structure, facil-

itating understanding, and ultimately control, of the distribu-

tion of defects in order to tune the useful properties (Simonov

et al., 2020). While there are fairly routine practices for

studying diffuse scattering in powder samples, e.g. pair distri-

bution function (PDF) analysis (Billinge, 2019), the study of

single-crystal diffuse scattering has remained much more

niche, despite having a larger information content.

Typical modelling strategies for single-crystal diffuse scat-

tering fall into four categories: analytical, 3D-PDF, direct

Monte Carlo (MC) and reverse MC simulations. The latter two

are most commonly used because they are the most gener-

alisable; however, the modelling process is very challenging,

being highly sensitive to the inputs, either of the disorder

model or the parameterization of the algorithm. The devel-

opment of the 3D-�PDF method (Weber & Simonov, 2012)

and the Yell program (Simonov et al., 2014b) allows for the

direct refinement of local correlations in real space, but the

consequent necessity of using a Fourier transform requires

careful measurement and pre-treatment of the scattering data.Published under a CC BY 4.0 licence
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While analytical approaches are limited in their applic-

ability, they can provide a complete description of disorder for

certain systems. Analytical models allow the diffuse scattering

to be split into its constituent components (Krivoglaz, 1996),

meaning that each one can be analysed separately, greatly

simplifying the problem. In the case of pure binary substitu-

tional disorder, with one disordered site per unit cell, the

diffuse scattering can be simplified such that it is a product of

just two components: one arising from the absolute squared

difference in molecular form factors, IFF, and one from the

chemical short-range order, ISRO, correlations between sites.

Fig. 1 illustrates this factorization.

Schmidt & Neder (2017) showed that, in such systems, ISRO

can be obtained by dividing the diffuse scattering by the

known form factor difference squared, or, in the case where

this is not known, by dividing by an average form factor

squared. The resulting function can be projected into one

reciprocal-space unit cell, and the Warren–Cowley SRO

parameters (Warren et al., 1951) can be extracted directly from

it through a least-squares refinement, providing a quantitative

description of local correlations. With the same analytical

basis, Chodkiewicz et al. (2016) was able to use IFF to refine the

relative orientations of the disordered molecules of an organic

salt, leading to an improved average structure model.

The diffuse scattering cannot be factorized into these two

components numerically. While the SRO component can be

obtained from the data (Schmidt & Neder, 2017), access to the

form factor requires the SRO to be solved by other methods

first. An alternative approach would be to exploit the different

characteristics of each component: IFF is a slowly varying

continuous function with a symmetry related to the point

group of the disordered portion of the structure, while ISRO is

a periodic pattern that is often discontinuous, containing sharp

Bragg-like features.

The last few years have witnessed a revolution in the

application of machine-learning techniques to previously

unsolved problems. Deep learning, in particular, has been

used to make huge strides in a plethora of fields: for example,

in biophysics with solving protein structure from sequence

(Jumper et al., 2021), in large language models offering AI

chatbot assistants capable of nuanced conversation on any

topic (OpenAI, 2023) and in computer vision where complex

images can be generated given text prompts (Rombach et al.,

2022).

In crystallography, convolutional neural networks (CNNs)

have been used to extract lattice parameters and space groups

from X-ray diffraction patterns (Chakraborty & Sharma, 2022;

Aguiar et al., 2019), perform phase identification from powder

diffraction (Lee et al., 2020), classify diffraction images based

on scattering features (Wang et al., 2017), detect Bragg spots

(Ke et al., 2018; Hao et al., 2023; Liu et al., 2022), fill in gaps in

data collected on area detectors (Chavez et al., 2022), and

solve simple protein structures from single-crystal diffraction

(Pan et al., 2023). Variational autoencoders have been applied

to elucidate the phase composition of thin films from scat-

tering data (Banko et al., 2021); find structure–property rela-

tionships, e.g. band gaps, from powder diffraction data (Lee et

al., 2022); and even predict new structures with specific band

gaps (Ren et al., 2022). These are all examples of how neural

networks can learn to extract a wide range of crucial under-

lying features of a dataset given appropriate training. In this

context, deep-learning methods are well suited to solving the

issue of decomposing diffuse scattering data into ISRO and IFF.

Since our ultimate goal is to translate input images (recon-

structed planes of diffuse scattering) into topologically related

images, we opted to apply a Pix2Pix generative adversarial

network (Pix2PixGAN) (Isola et al., 2018), which has

demonstrated its strength in a variety of image-processing

tasks, such as in converting satellite imagery to digital road

maps.

This article presents the curation of a large simulated

training dataset; the design, training and validation of a

tailored Pix2PixGAN; and its subsequent successful applica-

tion to a real experimental example.

2. Methods

2.1. Creating a dataset

Our Pix2PixGAN required both input scattering data and

the corresponding ground truth (GT) ISRO or IFF output for
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Figure 1
The diffuse scattering components of binary substitutional disorder with
one disordered site per unit cell. The site can be occupied by either
molecule A or molecule B, as shown in the top panel. Molecule A has a
smaller central atom, the red atoms sit closer to the central atom and the
scattering power is lower than that of molecule B. The difference between
their molecular form factors causes structured scattering shown by IFF.
The middle panel illustrates SRO, i.e. whether molecule A is more likely
to be found next to molecule B or vice versa. It gives rise to a periodic grid
of maxima, ISRO. The bottom panel shows the whole disordered crystal
structure and the total diffuse scattering, ID.



training. A typical problem such as this requires tens of

thousands of samples for adequate training and to ensure that

the network will be generalisable to unseen problems.

However, the amount of available data on real systems where

similar analysis has been performed is extremely small

(Schmidt & Neder, 2017; Chodkiewicz et al., 2016). It was,

therefore, necessary to use a simulated dataset to train the

networks. A mathematical description of the two components

is given below.

For a crystal with one disordered site per unit cell, occupied

by either molecule A or B (a molecule could also be an atom

or molecular fragment), the IFF(Q) component of the diffuse

scattering comes from the difference in molecular form factors

between A and B:

IFFðQÞ ¼ NmAmBjFAðQÞ � FBðQÞj
2; ð1Þ

where N is the number of unit cells, and mA and mB are the

average concentrations of A and B. FA(Q) is the molecular

form factor of molecule A, equal to

FAðQÞ ¼
PNmol

i

fiðQÞ expðiQxiÞ; ð2Þ

where Nmol is the number of atoms in the molecule; xi and

fi(Q) are the atomic position, in Cartesian coordinates, and

atomic form factor of atom i, respectively; and Q is the scat-

tering vector in units of Å�1. The chemical SRO component of

the diffuse scattering is given by

ISROðQÞ ¼
P

v

�v cosðQvÞ; ð3Þ

where v is the intermolecular vector between two sites in the

crystal and the sum is over all possible vectors. The term �v is

the Warren–Cowley SRO parameter (Warren et al., 1951) for

v, defined as

�v ¼ 1�
PAB

v

mAmB

; ð4Þ

with PAB
v equal to the pair probability of finding a molecule of

type B at a vector v from the molecule A. The overall diffuse

scattering is given by the product:

IDðQÞ ¼ IFFðQÞISROðQÞ: ð5Þ

To obtain a sufficiently general dataset that encompasses all

the factors that affect both components of the diffuse scat-

tering, we simulated the scattering of many different pairs of

molecules [FA(Q), FB(Q)] distributed on a range of lattices (v)

with varying concentrations (mA, mB) and pair probabilities

(PAB
v ).

To collate a list of A and B species, we extracted all

examples from an online molecular-fragment library (Guzei,

2014), excluding those that were too similar, amounting to a

diverse set of 58 molecules. A further four single atoms were

added to the list as well as eight variations on the perovskite

unit cell to include at least some extended structure types in

the dataset. Forty-three of the molecules were randomly

rotated about the Cartesian axes to expand the dataset

further. Molecules were grouped according to their size and

shape; details for this whole procedure are provided in Section

1.1 of the supporting information. A small selection of mole-

cules in each group was set aside to be included in a validation

dataset of roughly 5–10% the size of the training dataset to

test the network’s generalizability. Within each group, a list of

molecule pairs was made using all possible combinations,

resulting in a training dataset of 1049 pairs of molecules and a

validation set of 98 pairs.

For the SRO component, lists of the Warren–Cowley SRO

parameters for each intermolecular vector (up to a certain

cutoff, see Section 1.3 of the supporting information),

consistent with the concentrations of A and B, were generated.

Since the SRO parameters, �v in equation (3), are highly

interdependent, it is not possible to just use random values to

give a realistic configuration. Instead, we specified three target

parameters, �[001], �[010] and �[100], along each crystallographic

axis, and generated an atomic configuration consistent with

these values using an MC simulation (further information can

be found in Section 1.2 of the supporting information). The

remaining SRO parameters were then calculated directly from

the MC model. Five sets of intermolecular vectors, defined as

V5 ¼ v ¼

u

v

w

0
@

1
A�����ð0�u� 5Þ\ð0�v�5Þ\ð0�w�5Þ

8<
:

9=
;; ð6Þ

were included in all SRO calculations. This process was

repeated �12 000 times starting from random A/B concen-

trations and random �[001], �[010], and �[100] to create a pre-

computed list of realistic SRO parameters that could be

applied to any of the molecule pairs discussed above.

Although this MC method gave a good random selection of

realistic SRO parameters, it neglected any symmetry

constraints that would likely be present in real higher-

symmetry systems. For example, in a hexagonal structure with

a unique c axis, local ordering along [100] would likely be

equal to that along [110]. We therefore supplemented the

dataset with samples exhibiting such behaviour via an alter-

native approach. The values of the SRO parameters were

defined using the damped oscillator function:

�x ¼ A expð�dxÞ cosð!xÞ; ð7Þ

where x represents the set of symmetry-equivalent interatomic

vectors, taking integer values from 1 denoting the nearest-

neighbour shell to which the set of vectors belongs. A is the

amplitude, d is a decay constant and ! is the frequency, with

values varying randomly in the ranges 0.6–1.5, 0.1–1.2 and 0–1,

respectively. These ranges were chosen to keep the maximum

values of � between�1 and 1, and to ensure that they decayed

to zero before the last shell of neighbours. The concentration

of each molecule was held constant at 0.5. This produced a

further 3864 sets of correlation parameters to use with mole-

cules on hexagonal systems and 10 024 for tetragonal/cubic

systems (equivalent to 14 additional disorder models per

molecule pair).

We also considered the kind of experimental artefacts that

could be present in real data. For example, reconstructed

planes of diffuse scattering are not perfectly square and might
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contain dead zones from detector module gaps or masks. Such

instrumental artefacts were extracted from five real single-

crystal test datasets collected on BM01 at SNBL, ESRF. Each

one was reconstructed in Meerkat (Simonov, 2019) on a

256 � 256 � 256 grid, and the areas where the scattering was

equal to zero were extracted.

Having prepared lists of molecule pairs, SRO coefficients

and artefacts, the complete training and validation datasets

were generated using the following steps. For each molecule

pair:

(1) A set of SRO parameters and A/B concentrations was

randomly selected from the pre-computed list, and the lattice

parameters of the model were recalculated based on the sizes

of A and B, their respective concentrations and assuming

Vegard’s law.

(2) Several hkl planes were selected. For the MC-generated

SRO, 12 were selected – 4 along each axis. For the symmetry-

restricted SRO, 4 were selected normal to the unique axis. See

Section 1.4 of the supporting information for further details on

how planes were selected.

(3) IFF(Q), ISRO(Q) and ID(Q) were calculated using

equations (1), (3) and (5) for the selected planes. Grids of

256 � 256 pixels were used, as a compromise between reso-

lution and data storage, with a Qmax of between 6 and 8 Å�1,

corresponding to a typical data collection on BM01 at SNBL

(Dyadkin et al., 2016) at a wavelength of 0.7 Å.

(4) Stages (1)–(3) were repeated 28 times with different

SRO parameters.

(5) A Wasserstein distance check (see Section 1.5 of the

supporting information) was performed across the scattering

planes generated. This examines the topological uniqueness of

each sample and removes redundant planes, as too many such

samples would result in our network overfitting and devel-

oping bias.

(6) The square roots of the remaining scattering planes were

taken to emphasize low-intensity features, and they were each

normalized between �1 and 1 (as opposed to normalizing by

the most extreme samples). This normalization was performed

to avoid any bias arising from scaling and had the benefit of

not minimizing the importance of any individual sample owing

to a smaller scaling factor.

(7) Each sample was multiplied by a randomly selected

artefact plane. Regions where artefacts were present became

the lower bound of �1, while everywhere else retained its

previous intensity value.

The final training dataset thus comprised 1049 molecule pairs,

each with 28 sets of SRO parameters. Two-hundred scattering

planes were generated for each molecule pair (144 from MC-

generated SRO models and 56 from symmetry-restricted

models), totalling 209 800 data samples. Subsequently, 5.4% of

samples were deemed not unique as a result of the Wasserstein

distance check, reducing the total number of samples to

198 421. For the validation set, there were 98 molecule pairs,

each with 12 MC-generated SRO models. Twelve scattering

planes were calculated per model, giving 14 112 samples. This

was reduced by the Wasserstein distance check, leaving 12 607

final validation samples.

2.2. Network construction

A Pix2PixGAN (Isola et al., 2018) is based on a GAN, a

class of deep-learning frameworks developed by Goodfellow

et al. (2014). GANs comprise two neural networks: a discri-

minator, D, and a generator, G. The goal of D is to estimate

the probability that any input sample belongs to the training

data distribution, y � pd(y). In other words, it is trained to

correctly guess whether a given IFF(Q) sample is associated

with the pool of IFF(Q) images. In contrast, G takes a latent

variable z � pz(z) and attempts to learn pd, i.e. the underlying

features that describe IFF(Q), such that it can faithfully

produce a new but realistic image. The two are trained in an

adversarial manner, where D aims to label the training

samples as real and those from G as fake, while G tries to trick

the discriminator into believing its samples are real.

In a Pix2PixGAN, the generator has a U-Net architecture

(Ronneberger et al., 2015) (see Fig. 3 of the supporting

information), and, in our case, takes scattering data, x, as

input. It encodes this input into a low-dimensional latent space

before decoding it into yi, where i can be the IFF(Q) or ISRO(Q)

target data. Noise, z, is included through a 50% dropout rate

in G. This approach follows Isola et al. (2018) and ensures the

network captures inherent uncertainty in mapping between

the input scattering and respective output domains, prevents

overfitting to the training data, and encourages exploration to

improve the diversity and quality of output. The discriminator

is a standard CNN (see Fig. 4 of the supporting information),

which takes as input either yi|x or yi,GT|x, with GT corre-

sponding to the ground-truth target. In practice, x is conca-

tenated to the input y along the channel dimension before

being fed into the discriminator.

We employed two Pix2PixGANs, one each for IFF(Q) and

ISRO(Q), that were trained in parallel. At the end of each

iteration, we included an additional training step that took the

IFF(Q) and ISRO(Q) outputs from the two generators and

multiplied them, with the goal of optimizing the product to

match the input scattering data. Fig. 2 provides a schematic

diagram for the whole training process, and specific archi-

tecture details are given in Section 2.1 of the supporting

information.

Given that the goal of G is to minimize the probability that

D classifies its samples as fake, conditioned on scattering input

x, we applied the objective function used by Isola et al. (2018):

arg min
G

max
D
LGANðG;DÞ ¼Ex;yGT

½ln Dðx; yGTÞ�

þ Ex;z ln 1�D x;Gðx; zÞð Þð½ Þ�;

ð8Þ

where G(x, z) represents generated output yFF or ySRO. The

term E represents the expectation value. G in a Pix2PixGAN

differs from a conventional GAN by also employing a pixel-

wise L1 loss (equivalent to the pixel-wise mean error) between

the GT and generated output:

LL1ðGÞ ¼ Ex;yGT;z
yGT �Gðx; zÞ
�� ��� �

: ð9Þ
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Thus, the loss for each of the parallel Pix2PixGANs can be

written as

LðGÞ ¼ arg min
G

max
D
LGANðG;DÞ þ �LL1ðGÞ; ð10Þ

where we took � as 100, following Isola et al. (2018). G and D

had their weights and biases frozen when training their

respective opponent. For the additional training stage that

used the output from the IFF(Q) generator as auxiliary infor-

mation to the optimization of the ISRO(Q) generator, and vice

versa, we multiplied the output of GSRO and GFF and calcu-

lated the smooth L1 loss between this and the GT:

LL1SmoothðGFF;GSROÞ ¼

Ex;yGT;z
½0:5jyGT �Gðx; zÞj2�; if jyGT �Gðx; zÞj< 1

Ex;yGT;z
½jyGT �Gðx; zÞj � 0:5�; otherwise

(

ð11Þ

where

yGT �Gðx; zÞ � ySRO;GT yFF;GT �GSROðx; zÞGFFðx; zÞ: ð12Þ

Due to the Cauchy–Schwarz inequality, the two outputs

multiplied did not correspond exactly to the normalized input

scattering data we fed into D and G. Therefore, we compared

the output with the product of the normalized IFF(Q) and

ISRO(Q) GTs. The smooth L1 loss combines the advantages of

both L1 and L2 losses [L2 here referring to the pixel-wise

mean squared error (MSE)]: we had steadier gradients when

yGT � G(x, z) was large and smaller oscillations in our model

parameters when yGT � G(x, z) was small.

We found that D could not distinguish between artefacts

present in the scattering input and any still present in yi owing

to the mixing of x and y in the CNN if we used artefact-stained

inputs to the discriminator. Consequently, G would never

learn to remove them and would even add them when applied

to clean examples. We, therefore, opted to use clean scattering

inputs to D. This did not impact the final model for a general-

use case where only G is required.

We tested some alternative architectures, including trans-

formers (Vaswani et al., 2017), different training strategies and

loss functions over the course of the network development

(more detail is given in Sections 2.2 and 2.3 of the supporting

information), but found they were a detriment to overall

network performance. Therefore, the following results were

obtained through the network as described above.

We implemented the parallel Pix2PixGANs in Python using

the PyTorch module (Paszke et al., 2019) and trained both

simultaneously on the 198 421 scattering planes for 200 epochs

beyond loss convergence on a NVIDIA RTX 3090. The final

models are available on GitHub (https://github.com/dclw29/

DSFU-Net), including the trained generators, collectively

referred to as DSFU-Net (diffuse scattering factorization U-

Net) from hereon in, for users to extract their own IFF(Q) and

ISRO(Q) data. There is also a pipeline script to perform the

necessary pre-processing. To use DSFU-Net, prospective users

need only prepare their input to be a size of 256 � 256 pixels.

3. Results and discussion

3.1. Validation dataset

The 12 607 unseen scattering planes reserved as the vali-

dation dataset were input into DSFU-Net, and the IFF(Q) and

ISRO(Q) outputs were analysed to assess DSFU-Net’s perfor-

mance. Fig. 3 shows two examples of input scattering planes,

the generated outputs and the corresponding GTs. According

to the mean squared differences between the outputs and the

GTs, these two correspond to some of the best and worst

examples.

In the first example, the visual match between the generated

output and the GT is excellent; the network essentially

completely reproduces the form factor and SRO components.
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Figure 2
A schematic diagram of the network architecture (see Section 2 of the supporting information for more details). The discriminators were fed GT and
generator output samples. They were trained to label the former as real and the latter as fake. Both inputs to the discriminators were paired with their
respective clean scattering data (i.e. without the artefacts). The generators were trained adversarially, receiving the scattering data with artefacts as input
into both IFF(Q) and ISRO(Q) U-Net generators, which encoded and decoded this into our desired output. After one full iteration of training for the
discriminators and generators, an additional training stage occurred where the IFF(Q) and ISRO(Q) generated outputs were multiplied, and the error
between this and the clean scattering data was used to train the generators.



The second example has areas where the decomposition is

very good, but DSFU-Net struggles to recover the correct

intensities in areas with low scattering. In this example, this is

most noticeable at the top of the plane, which corresponds to a

dead zone in the input scattering. While the general pattern of

ISRO(Q) is still produced, the quality of the match to the GT

becomes worse in this area, and DSFU-Net has trouble

predicting any significant intensity for IFF(Q). However, for

smaller gaps in the input scattering, such as the rounded

corners and the elliptical lines, DSFU-Net is able to adeptly fill

in these areas based on the surrounding context, demon-

strating its robust understanding of the task derived from the

training data.

To make a similar quantitative comparison over all 12 607

validation samples, we employed two commonly used metrics

in the deep-learning community that measure the difference

between two sets of distributions: the Fréchnet inception

distance (FID) (Heusel et al., 2018) and the kernel inception

distance (KID) (Binkowski et al., 2021) (see Section 3.1 of the

supporting information for more details). We also used the

more familiar pixel-wise MSE. FID and KID are singular

values, while the MSE provided in Table 1 represents the

average of all individual sample comparisons. For all three

metrics, two identical distributions would return a value of

zero, and, as an upper limit, we provide a baseline comparison

between a dataset of uniform noise and the GT.

In all the metrics, the scores for ISRO(Q) and IFF(Q) are at

least an order of magnitude smaller than the respective noise

comparison. In terms of the general magnitude of the FID and

KID scores, both ISRO(Q) and IFF(Q) are closely aligned with

those from established benchmarks used to assess GANs in

the computer-vision field (Betzalel et al., 2022). The average

MSE shows the same trend. Looking in more detail at the

distribution of validation MSEs (see Fig. 6 of the supporting

information), 90% of the DSFU-Net generated ISRO(Q)

planes have an MSE of less than 0.032 compared with the GT.

The IFF(Q) component performs even better, with 90% having

an MSE of less than 0.014. These low scores, compared with

noise, indicate that DSFU-Net has successfully learnt the

underlying features of the data distribution and can map an

input scattering plane to the desired factorized components.

The IFF(Q) scores are noticeably larger than ISRO(Q). This

can be attributed to the greater diversity of intensity topology

in these images and the fact that ISRO(Q) tends to have lower

intensities. In the latter case, Fig. 6 of the supporting infor-

mation demonstrates that the ISRO(Q) noise–GT comparison

is much flatter, in some cases less than the noise–noise

comparison, which could lead to an artificial decrease in the

scores.

Finally, the training scores are marginally better than those

for the validation. This fact is unsurprising as the validation set

contains entirely new molecules leading to novel scattering

examples never seen by DSFU-Net during training. However,

these differences are very small, demonstrating that the

network has generalized beyond the training set and is

applicable to unseen examples.

3.2. Application to an experimental example

The next step was to benchmark DSFU-Net against a solved

experimental example. One such case is the molecular crystal

tris-tert-butyl-1,3,5-benzene tricarboxamide. The structure,

solved from single-crystal data (Kristiansen et al., 2009)

(illustrations and coordinates are provided in Section 3.2 of

the supporting information), consists of columns of molecules

stacked along the c axis in one of two orientations. Molecule

orientation is constant along each column, determined by a

research papers

IUCrJ (2024). 11, 34–44 Fuller and Rudden � Unravelling diffuse scattering using deep learning 39

Table 1
FID, KID and MSE between the DSFU-Net-generated and GT scattering planes for the validation (12 607 total samples) and training datasets (random
selection of 50 000 samples) compared with a dataset of uniform noise versus the validation GT as a baseline.

Validation Training
Noise versus GT Generated versus GT Generated versus GT

ISRO(Q) FID 372 13.1 8.35
KID 0.741 0.003 0.002
MSE 0.951 0.015 0.010

IFF(Q) FID 464 36.9 33.3
KID 0.761 0.008 0.018
MSE 1.00 0.006 0.004

Figure 3
Two examples of scattering inputs from the validation dataset and their
corresponding DSFU-Net outputs and GTs, representing one of the best
performances (top) and one of the worst (bottom). Scattering planes are
shown on a square-root scale to better emphasize low-intensity features.



network of hydrogen bonds, but the columns have a negative

nearest-neighbour correlation in the ab plane. This leads to a

diffuse scattering pattern consisting of a hexagon surrounding

each Bragg peak, modulated by the form factor difference

between the two molecule orientations. The ISRO(Q) compo-

nent was extracted analytically by Schmidt & Neder (2017).

Since DSFU-Net requires no prior knowledge of the average

structure, we used their equivalent method (dividing by the

average form factor squared and projecting into a single

Brillouin zone) as the benchmark. The IFF(Q) component can

be calculated directly from the known disordered structure.

Experimental data for the hk1 scattering plane were

obtained from Simonov et al. (2014a) with kind permission,

having had the Bragg peaks and background already removed

(see note on the importance of this in Section 3.3 of the

supporting information). The data were reconstructed on a

square 256 � 256 pixel grid using the torchvision.

resize method in Python, and input into DSFU-Net using

the available pipeline, taking seconds to produce the outputs

shown in Figs. 4(a) and 5(a).

3.2.1. Short-range order. Fig. 4(a) shows the raw DSFU-Net

ISRO(Q) output in the top right. It captures the expected

honeycomb pattern, performing particularly well in regions

with the highest input scattering intensity. Outside these

regions, the pattern becomes noisy as DSFU-Net struggles to

recapitulate the correct intensity owing to the low-intensity

values, in agreement with the earlier performance assessment

on the most challenging validation samples. With these

experimental data, low intensities imply that the signal-to-

noise ratio decreases. Therefore, while DSFU-Net can ignore

some small fluctuations in intensity and indeed ‘fill in’ blank

regions, the output is noisier than it would be for a clean input

(see Fig. 8 of the supporting information for comparison). This

could potentially be improved by adding statistical noise to the

training data.

Following the method of Schmidt & Neder (2017), quanti-

tative SRO parameters can be obtained from this output by

projecting it into a single reciprocal-space unit cell. To mini-

mize the effect of noise from low intensity, regions where the

intensity is below 5% were excluded and sixfold rotation

symmetry was applied. The result is shown in Fig. 4(b) and

looks qualitatively very similar to that obtained by Schmidt &

Neder (2017). The cosine series in equation (3) multiplied by a
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Figure 4
(a) The hk1 scattering plane from tris-tert-butyl-1,3,5-benzene tricarbox-
amide that was used as the DSFU-Net input, and the corresponding
output ISRO(Q). (b) The DSFU-Net output projected into one reciprocal-
space unit cell, a reciprocal unit cell calculated from the SRO parameters
refined in this work, and the difference between them.

Figure 5
(a) The hk1 scattering plane from tris-tert-butyl-1,3,5-benzene tricarboxamide that was used as the DSFU-Net input, and the corresponding output
IFF(Q). Below is the IFF(Q) calculated from the known molecular structures (given in Table 5 of the supporting information) and the same calculated
pattern corrected by the DW factor to make it consistent with the experimental scattering. (b) A plot of the mean square error between the DSFU-Net
output IFF(Q) and the calculated IFF(Q) as the tert-butyl group is rotated about the N—C bond. Insets show the calculated IFF(Q) at different angles.
Below, the published average structure of tris-tert-butyl-1,3,5-benzene tricarboxamide, with carbon, oxygen, nitrogen and hydrogen atoms shown in grey,
red, blue and white, respectively. The hydrogen-bond interactions between the amide hydrogens and oxygen in the molecule are stacked above. A
zoomed section highlighting the two tert-butyl orientations at each of the minima (palatinate purple and grey), the rotation axis (cyan line), and the
formation of an additional hydrogen-bond-like interaction between an oxygen atom and a methyl hydrogen for � = 16	 (circled in blue) is shown on the
right. The black lines show the orientation chosen to have � = 0	.



scale factor was fitted to this projected reciprocal unit cell

using a linear least-squares refinement. Since the scattering

pattern has sixfold rotation symmetry, we applied restrictions

to the SRO parameters, for example, �[100] = �[110] = �[010] etc.,

and, given that there is no disorder along the c axis, we

excluded any vector where vz 6¼ 0 from the refinement.

The refined values are listed in Table 2 compared with those

obtained by Schmidt & Neder (2017) using two established

methods: (1) refinement of the 3D-�PDF in the Yell program

and (2) a least-squares refinement against the ISRO(Q)

extracted through the division of the scattering data by the

average form factor squared (Schmidt & Neder, 2017).

The refined SRO parameters provide an ISRO(Q) that is a

great fit to the projected intensities, as demonstrated by the

difference map in Fig. 4(b). Therefore, these parameters are a

reasonable model for the disorder in this material. They are

also consistent with those obtained through the established

method from Schmidt & Neder (2017). While there are some

minor discrepancies, we are able to reproduce the relative

magnitudes and, crucially, the correct signs. Comparative

results refined without any pre-processing are shown in

Section 3.3 of the supporting information and corroborate this

finding. This result demonstrates that the DSFU-Net output is

of sufficiently high quality that it could be used for quantita-

tive analysis.

3.2.2. Form factor. The network output IFF(Q) is shown in

Fig. 5(a). The similarities between the input and output are

clear, and DSFU-Net appears to have captured the key

features. The IFF(Q) calculated from the published structure is

shown in the bottom left. Relative to this, the output IFF(Q)

accurately reproduces the positions of the main features very

well; however, there are some areas where the intensities are

not correctly predicted. Firstly, the circular regions of low

intensity that appear as small holes in the inner part of the

pattern. This is probably another manifestation of the inherent

limitations in regions of very low scattering intensity.

The other noticeable difference is that the overall inten-

sities of the DSFU-Net output appear to decay faster with Q.

On simulated scattering from tris-tert-butyl-1,3,5-benzene

tricarboxamide, calculated using equation (5), DSFU-Net was

able to reproduce the two components almost exactly (see

Section 3.4 of the supporting information, revealing that this

additional Q dependence is a feature of the experimental data

and not a limitation with the network.

The source of this discrepancy is the assumption that we can

neglect all displacive disorder in the crystal. A more complete

description of the diffuse scattering is given by

ID / expð�DwQ2
Þ ISDSðQÞ þ ITDSðQÞ
� �

; ð13Þ

where Dw is the Debye–Waller factor (DW); ISDS is the diffuse

scattering from static disorder, encompassing both static

displacements and chemical SRO; and ITDS is the thermal

diffuse scattering arising from dynamic structural displace-

ments (Mezger et al., 2006). In this material, static displace-

ments are expected to be negligible as both molecular

orientations are the same size. Most TDS comes from atomic

motions associated with the acoustic phonons and appears

very close to the Bragg peaks, which, in this case, were only a

few pixels wide and were removed during pre-processing. The

DW factor is therefore expected to account for a large part of

the inconsistency between the DSFU-Net IFF(Q) and the

calculated one. A suitable correction could therefore be

applied to the calculated IFF(Q) by multiplying by the expo-

nential term in equation (11). Dw could potentially be calcu-

lated from the average structure or even refined against the

DSFU-Net output IFF(Q). However, a refined value may not

correspond to the experimentally determined thermal para-

meters as it will be sensitive to any other displacive disorder

that may be present. Nevertheless, this method was used to

generate the DW-corrected image in the lower right corner of

Fig. 5(a), significantly improving the match between the

calculated IFF(Q) and the DSFU-Net output.

Using this DW correction, the DSFU-Net output IFF(Q)

could be applied to discriminate between two similar struc-

tural models, comparable to the analysis carried out by

Chodkiewiez et al. (2016). As an example, consider the

orientation of the tert-butyl groups. Fig. 5(b) shows the known

structure of tris-tert-butyl-1,3,5-benzene tricarboxamide

viewed down the c axis and a zoom of one of the tert-butyl

groups, with the grey carbon atoms indicating the position of

the tert-butyl in the published structure. Fig. 5(b) also explores

IFF(Q) as a function of rotation angle around the C—N bond,

shown as the cyan line in the zoomed structure, to assess

whether it would be possible to refine the angle using the

network output. For each angle, the mean square error

between the network output IFF(Q) and the calculated IFF(Q)

was found and is plotted in red. The result varies smoothly

with angle from a fairly flat and wide minimum centred at 0	

up to maxima at 
60	. The published structure, shown as the

inset ringed in grey, sits comfortably within this minimum at

�7	, while the maximum at 60	 corresponds to the inset ringed

in orange. Comparing the two, it is immediately apparent that

the published structure provides a better match to the DSFU-

Net output, and the molecule probably prefers this orientation

research papers

IUCrJ (2024). 11, 34–44 Fuller and Rudden � Unravelling diffuse scattering using deep learning 41

Table 2
The SRO parameters refined by Schmidt & Neder (2017) using (1) Yell
and (2) a linear least-squares refinement following division by the average
form factor squared, compared with (3) the least-squares refinement
following the application of DSFU-Net.

v† Yell Division by |faverage|2 DSFU-Net

(1,0,0) �0.2516 �0.2212 �0.2474
(2,0,0) 0.0984 0.1042 0.1094
(2,1,0) 0.0950 0.1033 0.0824
(3,0,0) �0.0345 �0.0218 �0.03075
(3,1,0) �0.0532 �0.0330 �0.0529
(3,2,0) �0.0435 �0.0394 �0.0378
(4,0,0) 0.0164 0.0156 0.0109
(4,1,0) 0.0256 0.0211 0.0186
(4,2,0) 0.0310 0.0332 0.0252
(4,3,0) 0.0165 0.0225 0.0107
(5,0,0) �0.0090 �0.0044 �0.0026
(5,1,0) �0.0128 �0.0046 �0.0055
(5,2,0) �0.0175 �0.0148 �0.0104
(5,3,0) �0.0149 �0.0110 �0.0086
(5,4,0) �0.0073 �0.0069 �0.0037

† v is given here in reciprocal lattice units.



to avoid steric crowding between the oxygen atom and one of

the methyl carbons.

We find that between �20 and 20	, the IFF(Q) is very

similar, yet the MSEs show two minima. The corresponding

tert-butyl orientations are overlaid in the zoomed structure in

Fig. 5(b) in grey and palatinate purple. The first minimum, at

�11	, is very close to the published structure, demonstrating

the suitability of the network output to be used in structural

refinements. The structure corresponding to the second,

slightly deeper, minimum at 16	 has one of the methyl

hydrogens 2.0 Å away from the oxygen atom, indicating the

possibility of a hydrogen-bond-like interaction [highlighted in

Fig. 5(b) by the blue circle]. While we cannot say for certain

that this double minimum is real and not just stochastic

variations in a flat landscape, the presence of this potential

hydrogen bond seems chemically plausible. Regardless, this

quantitative use of the DSFU-Net output IFF(Q) shows that it

can be a valuable source of structural information, one that is

not readily available by any existing method. Given the

sensitivity of IFF(Q) to small changes in molecular structure, it

could be used to elucidate more precise chemical structures

than Bragg diffraction alone.

3.3. Limitations

DSFU-Net will produce two components from any input,

providing that the size is correct. Since it was trained to

separate periodic sharp patterns from continuous ones, it will,

for example, separate Bragg peaks from a smooth back-

ground. However, the output components will only be

meaningful if the assumptions and mathematics underpinning

the training data can be applied to input scattering data. To be

able to interpret the output as the scattering due to chemical

SRO and molecular form factors, the system in question must

have binary substitutional disorder with one disordered site

per unit cell and, for the best quantitative results, disorder

from displacement and phonons should be negligible. Tris-tert-

butyl-1,3,5-benzene tricarboxamide is known to have a small

size-effect relaxation (Simonov et al., 2014a); therefore, small

deviations from these assumptions can be tolerated. However,

as displacive disorder becomes more prevalent, the resulting

DSFU-Net IFF(Q) may be different from any calculated ones

as it will also be sensitive to any internal molecular distortions

arising from the relaxations or other such displacements.

4. Conclusions

We have designed a deep-learning method, DSFU-Net, based

on the Pix2PixGAN (Isola et al., 2018), which takes as input a

plane of diffuse scattering and separates the contributions

from the molecular form factor and the chemical short-range

order, facilitating local structure modelling. DSFU-Net was

trained on 198 421 samples of simulated scattering data and

performed extremely well on 12 607 simulated validation

datasets, with >90% of outputs having a mean square error of

<0.04, relative to the ground truth, even when the inputs

included dead zones from detector gaps. We have demon-

strated that DSFU-Net also generalizes to real experimental

data, and that the output IFF(Q) and ISRO(Q) are both of

sufficient quality that refinement of disorder parameters or

structural elements is possible. A key success is that DSFU-

Net offers a means of extracting the form factor directly,

without requiring understanding of either the average struc-

ture or the short-range order.

This method builds on the diffuse scattering analysis tech-

niques implemented by Schmidt & Neder (2017) and Chod-

kiewiez et al. (2016) by providing direct access to both the

form-factor and short-range-order components for single-

crystal systems exhibiting pure binary substitutional disorder.

Our neural-network approach requires minimal prior knowl-

edge of the system, negates the need for difficult division

owing to mathematical instabilities when dividing by regions

of low intensity and is able to compensate for small regions

with missing data. It takes seconds to obtain the separate

components, providing immediate qualitative understanding

and facilitating an improved starting point for more complex

modelling. As such, DSFU-Net would be well suited to being

integrated as part of an automated pipeline, for example, on a

beamline, to direct decision making in real time.

For a more quantitative description of disorder, the

Warren–Cowley SRO parameters can be extracted directly

from ISRO(Q) using least-squares refinement. Visual inspec-

tion of IFF(Q) can be used to distinguish between similar

models, helping to uncover the disordered components of the

structure. Since IFF(Q) is very sensitive to structure, perhaps

more so than Bragg data, our network output can also be used

to refine structural details, such as the relative orientations of

molecules A and B or, as exemplified here, the position of

functional groups. In the special case where FB is zero (i.e. B is

a vacancy), the structure of A could potentially be solved by

phasing the network output IFF(Q) directly, similar to the

analysis of Simonov et al. (2017). This opens up possibilities of

structure solution using only diffuse scattering, an attractive

option considering continuous scattering does not suffer from

the phase problem (Ayyer et al., 2018), and it could be parti-

cularly beneficial if crystallinity or crystal size is an issue.

DSFU-Net is available on GitHub (https://github.com/

dclw29/DSFU-Net) with documentation and scripts allowing

users to apply the trained neural networks to their own

problems. If required, the applicability of DSFU-Net could be

easily extended to other systems with one disordered site per

unit cell. For example, those containing pure displacement

disorder or potentially a mixture of displacement and substi-

tutional disorder, given an appropriate training dataset. Our

GitHub provides the means to generate new training data and

retrain the neural network. However, expansion to more

complex systems is beyond the scope of the existing archi-

tecture.

As deep-learning techniques are continually improving and

their use becoming more widespread, it is evident that they

will become increasingly relevant to solving long-standing

problems within crystallography. In this work, we have

demonstrated, to the best of our knowledge, the first appli-

cation of generative deep learning to disentangle components

of diffuse scattering data. Our work sets the foundation for the
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use of deep learning as a tool to tackle more complex

problems within the field, such as the inclusion of displace-

ment disorder, ultimately working towards a general and

automated workflow for the analysis of single-crystal diffuse

scattering.
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