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Speckle-tracking X-ray imaging is an attractive candidate for dynamic X-ray

imaging owing to its flexible setup and simultaneous yields of phase,

transmission and scattering images. However, traditional speckle-tracking

imaging methods suffer from phase distortion at locations with abrupt changes

in density, which is always the case for real samples, limiting the applications of

the speckle-tracking X-ray imaging method. In this paper, we report a deep-

learning based method which can achieve dynamic X-ray speckle-tracking

imaging with high-accuracy phase retrieval. The calibration results of a phantom

show that the profile of the retrieved phase is highly consistent with the

theoretical one. Experiments of polyurethane foaming demonstrated that the

proposed method revealed the evolution of the complicated microstructure of

the bubbles accurately. The proposed method is a promising solution for

dynamic X-ray imaging with high-accuracy phase retrieval, and has extensive

applications in metrology and quantitative analysis of dynamics in material

science, physics, chemistry and biomedicine.

1. Introduction

With the development of digital X-ray detectors and

high-brightness X-ray sources, dynamic X-ray imaging is

extensively utilized in many research fields at millisecond,

microsecond, nanosecond and picosecond time scales (Yashiro

et al., 2017; Yu et al., 2022; Xie et al., 2019). With the venture of

X-ray free-electron lasers (XFELs), femtosecond X-ray

imaging is also developing quickly (Kang et al., 2017).

Absorption contributes mainly to the contrast mechanism for

dynamic X-ray imaging. With the development of third- and

fourth-generation synchrotron radiation facilities (SRFs),

phase contrast X-ray dynamic imaging has been developed

and applied to dynamic systems including chemical reactions,

in vivo research of biomedical systems, phase transitions of

materials etc. (Gradl et al., 2018). Combined with micro-

tomography, 3D dynamic X-ray imaging is also applicable

either in absorption contrast or in phase contrast (Parker et al.,

2021; Xu et al., 2016; Cao et al., 2018; Liu et al., 2020; Chengjie

et al., 2017). To track the moving components in a complex

system, move contrast X-ray imaging is developed to eliminate

the interference of microstructure variation and high-

frequency noises associated with in vivo research (Wang et al.,

2020). Unlike the large-scale SRF or XFEL facilities, micro-

focus X-ray tubes can also be employed for phase contrast

X-ray imaging owing to their sufficient spatial coherence. Due

to low flux density, this tube-based X-ray imaging system canPublished under a CC BY 4.0 licence
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only be applied to cases with relatively low temporal or spatial

resolution.

Due the fact that all the detectors are sensitive only to the

intensity of the X-rays and absorption is proportional to

intensity, dynamic X-ray imaging is complemented mainly in

absorption contrast. As for phase contrast imaging, further

efforts are required to retrieve the phase information from the

intensity distribution. Among all the phase contrast imaging

methods, in-line or propagation-based phase contrast X-ray

imaging is most frequently employed for dynamic imaging by

directly employing the local-interference-introduced edge-

enhancement effect to image the outline of the soft tissues or

low-Z materials. Phase retrieval to the in-line outline images

can roughly differentiate the materials in the sample (Paganin

et al., 2002; Chen et al., 2011). Therefore, diffraction-based

methods including the crystal and grating are developed to

retrieve the phase accurately (Ando et al., 2014; Birnbacher et

al., 2021). Recently, speckle modulation was introduced to

supplement X-ray diffraction wth precision optical elements

of crystals or gratings and retrieve the phase by speckle-

tracking or speckle-scanning (Morgan et al., 2012; Berujon et

al., 2012). As is well known, speckle-scanning can retrieve the

phase accurately but multiple scanning prevents dynamic

phase contrast X-ray imaging (Berujon & Ziegler, 2015; Wang

et al., 2016, Zdora et al., 2020).

Speckle tracking requires only a single exposure to retrieve

the phase and certainly shows promise to achieve dynamic

X-ray imaging. Though efforts have been made to refine the

phase retrieval, the accuracy of the retrieved phase has been

difficult to improve significantly, especially for samples with

complex structures (Wang et al., 2015; Zanette et al., 2015;

Paganin et al., 2018). A double-exposure method is proposed

to reconstruct the phase accurately. However, an additional in-

line outline image is needed to implement the phase retrieval

(Wang et al., 2017; Yu et al., 2021). This means that dynamic

X-ray imaging with this method is still not practical. In this

paper, deep learning is employed to generate the in-line

outline image from the speckle image in the double-exposure

method. In this way, the double-exposure method can only be

implemented by a single exposure of the speckle image and

high-accuracy phase retrieval is anticipated. As a result,

dynamic X-ray speckle-tracking imaging with accurate phase

is feasible. Firstly, we introduce the principles underlying this

deep-learning based method. We then verify the method by

experiments with a plastic sponge, a phantom and dynamic

foaming. Finally, discussions and conclusions are given.

2. Methods

2.1. Principle

A schematic of X-ray speckle-tracking phase contrast

imaging is shown in Fig. 1. The X-ray beam passes through the

sandpaper to generate the speckle pattern. Then, the speckle

pattern is modulated by the internal microstructure of the

sample. After propagation over a certain distance in free

space, the light fields are recorded by an X-ray CCD or CMOS

detector. The intensity distribution at the detector plane is

expressed as (Wang et al., 2017)

Idetectorðx; yÞ ’ Tsampleðx; yÞ I0 þDðx; yÞ�Ir x� Sx; y� Sy

� �� �
;

ð1Þ

where Tsample(x, y) is the transmission of the sample, which is

actually the intensity distribution of the in-line phase contrast

image. I0(x, y) is the average intensity of the recorded image

field and D(x, y) is the dark-field signal. Ir(x, y) is the speckle-

only pattern and its spatial fluctuation is �Ir. Sx and Sy are

displacements due to X-ray refraction in the sample. In the

double-exposure method, an additional in-line phase contrast

image needs to be recorded to restore the phase with high

accuracy at locations with an abrupt change of density in the

sample, which prevents the method from imaging dynamic

processes. In this paper, we introduce deep learning with

CGAN to generate the target of an in-line phase contrast

image from the recorded speckle pattern of the sample, which

needs to be additionally recorded with the double-exposure

method. In this way, double-exposure speckle-tracking

imaging is achieved with only a single shot. As a result,

dynamic X-ray speckle-tracking imaging with high-accuracy

phase retrieval can be achieved.

2.2. Network structure of deep learning

Throughout the past years, deep learning has seen a wide-

spread adoption in image reconstruction, such as optical

imaging (Li et al., 2018), holographic imaging (Wang, Lyu &

Situ, 2018), super-resolution microscopy (Ouyang et al., 2018)

and phase unwrapping (Wang et al., 2019). Deep learning is

also used to speed up the image reconstruction in a mask-

based speckle-tracking method directed at real time X-ray

phase contrast imaging (Qiao et al., 2022). In this paper, deep

learning with conditional generative adversarial nets

(CGANs) is adopted to generate the target of an in-line phase

contrast image from the input of the speckle image recorded at

the detector plane. Although convolutional neural network

(CNN) is widely used in deep learning, it usually needs the loss

function to be set manually. In contrast, CGAN automatically

learns the loss function adapted to the data. Thus, it can be

applied to a variety of tasks, which need various loss functions,

and is well suited to image-to-image translation tasks.

Although the training process is time-consuming and data

hungry, only one training effort is needed. Once the model
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Figure 1
Experimental setup for the single-shot speckle-tracking X-ray imaging:
(a) schematic diagram, (b) photograph of the facilities.



parameters are trained, there is no need to retrain and the

model can be reused for different cases.

CGAN-based image-generation models have been widely

applied in various fields (Li, Li et al., 2020; Li, Zhang et al.,

2020; Sargent et al., 2020). Due to advantages in generating

large-sized and high-definition images, model pix2pixHD

(Wang, Liu et al., 2018) is adopted for the main architecture of

CGAN used in this paper. It consists of two components:

generator G and discriminator D. The generator mainly

comprises three components: a down-sampling module, a

residual module and an up-sampling module. The input layer

is a 64 convolution kernel with stride 1 and kernel size 7. The

down-sampling module contains four convolutional layers

with stride 2 and kernel size 3. The residual module consists of

nine residual blocks. The residual block contains two convo-

lutional layers with kernel size 3 and stride 1. As for the up-

sampling module, it consists of four transposed convolutional

layers with kernel size 3 and stride 2. Note that the convolu-

tional layer of the above-mentioned modules follows Instance

Normalization (Ulyanov et al., 2016) and ReLU layers. The

output layer is a convolutional layer with kernel size 7 and

stride 1. Then Tanh activation was used to normalize the

outputs to �1 or 1. An input image of 1024 � 512 resolution

passed the G network and finally output an image of 1024 �

512 pixels. Connecting a local-enhancer can train an image

2048� 1024 pixels in size, but requires at least 24 GB memory

for the GPU.

As for the discriminator, two discriminators, referred to as

D1 and D2, which have the same network structure, were used

to train G(x) and Y at different scales. The discriminator D1 is

trained by the original scale G(x) and Y to obtain detailed

information. We down-sample G(x) and Y by a scale factor of

2 to train the discriminator D2 to enlarge the receiving field

and generate a globally consistent image. The structure of the

discriminator starts with a Conv-leaky ReLU block followed

by four conv-Instance norm-leaky ReLU blocks, each of the

convolutional layers has kernel size 4 and stride 2. The output

layer is a convolutional layer with kernel size 4 and stride 1,

which is followed by the Sigmoid neuron. G(�) and D(�) are

defined as mapping functions of the generator and discrimi-

nator, respectively. The loss function of conditional CGAN is

defined as

LCGANðG;DÞ ¼ Ey’pðyÞ½log Dðx; yÞ�

þ Ex’pðxÞ log 1�D½x;GðxÞ�
� �� �

:
ð2Þ

CGAN learns to map a known image X to an output image Y

via a maximized operator, where G aims to minimize LCGAN

while D tries to maximize it. Here a double-scale discriminator

is adopted, hence the objective refers to

min
G

max
D1;D2

X
i¼1;2

LCGANðG;DiÞ: ð3Þ

We also used a perceptual loss to match the features in a visual

perception network which is used to generate the image

required. The perceptual loss could help the model to

emphasize contents. VGG19 is leveraged to be a visual

perceptual network and denoted  . The perceptual loss is

expressed as

LpercðGÞ ¼ Ex;y

nX
K

Wk  kðyÞ �  k½GðxÞ�
�� ��o; ð4Þ

where Ex,y is the average,  k represents the kth layers of

convolution in the network  and Wk is the hyper-parameter

used to balance the contribution of the corresponding layer to

the loss. Here, Wk from k = 1–5 is assigned the values 1/32,

1/16, 1/8, 1/4, 1. Therefore, the final objective is

min
G

max
D1;D2

LCGAN þ �Lperc: ð5Þ

The hyper-parameter controls the impact of perceptual loss

and is set to 10 here.

2.3. Training strategy

The training strategy is shown in Fig. 2. The input of CGAN

is an image containing information of the second-order phase

and first-order speckle displacement, obtained by subtracting

the speckle-only image from the speckle-sample image. The

counterpart in-line phase contrast image is used as the target

to train the network, where the target is the desirable output

of the net for the input image.

For different types of test sample, the network needs to be

trained again to obtain new parameters, which means that the

network works well with samples with their class of images

included in the training dataset. For an artificial sponge, the

training dataset is obtained from sponges with similar struc-

tures. As for the artificial phantom, phantoms with different

sizes and different arrangements were taken as the training

dataset. In dynamic polyurethane foaming experiments, we

used images collected from fully foamed, stationary poly-

urethane foam as the training dataset. During CGAN training,

the training dataset needs to be arranged as a pair of input and

target images, and then the trained network is applied to the

imaging of the dynamic foaming processes. During the

acquisition of the training dataset, the samples were installed

on a rotation table to obtain their projections from different

angles, and hence to ensure the diversity of the dataset. In S2

of the supporting information we supply a few pieces of the

training dataset as examples to illustrate the training process

more intuitively.

We firstly collect several groups of projection images of the

sample, which is in the same class of the test sample, with and

without sandpaper. Since the input layer that the network

accepts is 1024� 512 pixels, we crop the original image of 2048

� 2048 pixels at random positions before training. In this way,

the diversity of the training dataset remains. Note that the

crop position of the input and target images needs to be one-

to-one correspondence. A total of 2880 pairs of input–target

images were used to train the network. The buffer size and

batch size were set to 1, the number of epochs was 100. About

30 h were needed to accomplish the training.
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3. Experimental results

Experiments were carried out at the BL13HB X-ray imaging

beamline of the Shanghai Synchrotron Radiation facility (Xie

et al., 2020), with the photon energy of the X-ray beam set to

15 keV. A piece of sandpaper with an average grain size of

8.6 mm was selected as a wavefront modulator to generate the

speckle pattern. The test sample was mounted on a motorized

rotation stage located 34 m from the super-bending magnet

source. The detector was placed 60 cm downstream from the

sample, a 2^ microscope objective lens was used to collect the

visible fluorescence on the scintillator and finally a CMOS

camera with a pixel size of 6.5 mm was employed to take the

image.

3.1. Three-dimensional microstructure of an artificial sponge

An artificial sponge, which is usually used to protect

instruments from vibration or shock during transportation, is

employed to evaluate the imaging method. The sponge is

made of polymers and full of air chambers, in which the

chamber walls act as pure phase objects and their interface

with the air acts as locations with abrupt changes of density.

The artificial-sponge-filled PE tube was selected as a pure

phase phantom to demonstrate the capabilities of the

proposed method. Fig. 3 demonstrates how to generate in-line

phase contrast images from the original set of speckle images

of the sample via deep learning. The test input image of

CGAN shown in Fig. 3(a) is an image obtained by image

subtraction of speckle images with and without sample, which

is in fact the transmission image reconstructed by the tradi-

tional speckle-tracking imaging method, taking a subset size of

one pixel (Zdora, 2018). As shown in Figs. 3(b) and 3(c), i.e.

the enlarged images of areas noted in Fig. 3(a) with yellow and

blue frames, respectively, it is obvious that artifacts attributed

to the speckle modulation severely deteriorate the image

contrast at locations with abrupt changes in density. Fig. 3(d)

shows the in-line phase contrast images achieved by deep

learning with CGAN, and Figs. 3(e) and Fig. 3( f) are the

enlarged images of areas noted in Fig. 3(d) with frames. As

shown in Figs. 3(e) and 3( f), the fine structures of the sponge

are revealed in the in-line phase contrast image retrieved by

CGAN and the artifacts attributed to speckle displacement

are successfully eliminated. Hereafter, we use the CGAN-

generated in-line phase contrast image for further phase

retrieval based on the double-exposure method. As for the

efficiency in retrieving an in-line phase contrast image by deep

learning, the time needed for a single frame with an INVIDIA

GeForce RTX 2080Ti GPU is 200 ms.

Then, the in-line phase contrast image achieved by deep

learning is used to eliminate the phase distortion according to
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Figure 2
Architecture of the CGAN used for phase retrieval, where Conv,k3,s1,n means a convolution with kernel size 3, stride 1, and n indicates that the
convolution (or deconvolution) has n filters.



the double-exposure method. Fig. 4 shows the results of the

retrieved phase images. As a comparison, the phase contrast

image retrieved by the traditional speckle-tracking method is

also given, as shown in Fig. 4(a). Due to the overlap of air

chambers of the sponge in the projection, the test sample is in

fact a complexity with plenty of microstructures to be

discerned. From Fig. 4(a), it is obvious that phase distortion

appears frequently in the retrieved image at locations with an

abrupt change in density, i.e. the polymer–air interface. Shown

in Fig. 4(c) is the phase image retrieved with the deep-learning

based method and phase distortions are eliminated effectively

compared with Fig. 4(a), which demonstrates the capability of

the proposed method for phase contrast imaging of a sample

with a complex structure. To reveal the effect of phase

restoration explicitly, 3D contours of the phase are given in

Figs. 4(b) and 4(d) which correspond to Figs. 4(a) and 4(c),

respectively. Fig. 4(b) shows the 3D distribution of the

retrieved phases by the traditional speckle-tracking method

and the saltation points shown as sharp peaks in deep red or

deep blue can be found scattered over the whole phantom of

the sponge. These saltation points shown in Fig. 4(b) mean

that the phase is not retrieved accurately due to the abrupt

change in density at the interface of the polymer and the air

inside the sponge. As a comparison, after artifact removal by

deep-learning based methods, the results shown in Fig. 4(d)

demonstrate that the phase distortion is eliminated effectively.

With successful removal of the phase distortion, the dark

image of the sponge phantom is also achieved, as shown in Fig.

3(e), in which the outline of the sponge structure is distin-

guishable based on X-ray scattering at the walls of the air

chamber. Due to the overlapping of the multilayers in a thick

sample like the sponge, it is hard to demonstrate the effect of
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Figure 4
Retrieved phase images of the sponge phantom, reconstructed by the (a) standard speckle-tracking method and (c) deep-learning based method. (b) and
(d) 3D contours of the phase distribution in (a) and (c), respectively. (e) Dark-field image reconstructed by the deep-learning based method. The scale
bars in the right corners are 500 mm.

Figure 3
Test results with a phantom of artificial sponge: (a) image obtained by subtraction of speckle images with and without sample; (b) and (c) enlarged images
of areas noted in (a) with yellow and blue frames, respectively; (d) image reconstructed by CGAN; (e) and ( f ) are the corresponding enlarged images of
areas hghlighted in (d) with frames. The scale bars at the right corner of the original image are 500 mm.



phase distortion distinctly with a single project image. Tomo-

graphy is needed to confirm the ability of the proposed

method to retrieve the microstructure of the sponge accu-

rately.

To achieve tomographic reconstruction of the artificial

sponge, a total of 360 projections were collected over 180�

with a step of 0.5�. After phase retrieval, the projections are

reconstructed by the FBP algorithm with the Shepp–Logan

filter in the PITRE software (Chen et al., 2012). The results of

the tomographic reconstruction after phase retrieval are

shown in Fig. 5. Fig. 5(a) shows the slice of the 3D image

reconstructed via the traditional speckle-tracking method, and

Fig. 5(b) is the corresponding longitudinal section. Notably,

the radial artifacts in Fig. 5(a) severely deteriorate the contrast

of the sponge wall. As a result, it is hard to distinguish the air

chamber of the sponge separately due to the severe inter-

ference of the artifacts as shown in Fig. 5(b). According to the

results shown in Fig. 4(a), Fig. 4(c) and the principle of CT,

these artifacts can be attributed to the phase distortion at

locations with abrupt changes in density, i.e. the interface of

the sponge wall and the air. The same sample is also recon-

structed with the deep-learning based method. As shown in

Fig. 5(c), the radial artifacts are evidently eliminated and the

wall of the sponge is revealed in high clarity. Similarly, the

longitudinal section of the 3D image is also given in Fig. 5(d).

It is evident that the nature of the material interface region of

the sponges is successfully revealed and an abrupt, smooth

interface between the polymer and air chamber of the artificial

sponge is depicted explicitly, compared with the results shown

in Fig. 5(c). Accordingly, the tomography results demonstrate

that accurate phase retrieval with a single speckle image of the

test object is achieved by the proposed deep-learning based

method. This suggests that dynamic X-ray phase contrast

imaging with high-accuracy phase retrieval is technically

feasible via speckle tracking.

3.2. Accuracy calibration of phase retrieval
Furthermore, an artificial phantom is employed to calibrate

the accuracy of phase retrieval by a deep-learning based

method. Solid spheres of polyoxymethylene (POM) filling a

polyethylene (PE) tube comprise the phantom, and the

nominal density of the materials for the spheres and tube are

1.41 and 0.945–0.96 g cm�2, respectively. Accordingly, the

phase profile of the phantom at an energy of 15 keV of the

incident X-ray beam can be obtained theoretically based on

the size and refractive index of the materials. Fig. 6(a) is the

phase image retrieved from a single projection of the

phantom. To quantitatively investigate the phase-retrieval

accuracy, the profile at positions denoted with a line in Fig.

6(a) is given in Fig. 6(b) together with the corresponding

theoretical profile supplied for comparison. From Fig. 6(b), it

is obvious that the retrieved profile is highly consistent with

the theoretical one. Even for positions with an abrupt change

of phase, the trends of the profile retrieved by the proposed

method is in accord with the theoretical prediction. Therefore,
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Figure 5
CT images of the artificial sponge reconstructed with the real part of the
refractive index: (a) slice reconstructed by the traditional speckle-
tracking method; (b) longitudinal section of the corresponding 3D image;
(c) and (d) results of the deep-learning based method corresponding to
the slice and 3D image, respectively. The scale bar represents 500 mm.

Figure 6
Calibrating the accuracy of the phase retrieval by the deep-learning based method with a phantom: (a) retrieved phase image; (b) line profile of the
retrieved phase image at positions denoted in (a) with a blue line, with the theoretical profile supplied for a comparison according to the known size of
the phantom.



we can conclude that high-accuracy phase retrieval can be

achieved by the proposed method from a single speckle image

of the object. This means that the deep-learning based method

has the potential for dynamic characterization of the micro-

structural evolution in low-Z materials. Combined with

dynamic CT, it is also possible to reveal the 3D evolution of

microstructures inside phase objects such as polymers, light

alloys and biomaterials.

3.3. Dynamic imaging of a foaming process

Polyurethane foaming is selected to evaluate the practic-

ability of the proposed method for dynamic X-ray imaging.

The 3D stack of bubbles during foaming results in a compli-

cated microstructure. Obviously, the polyurethane foam is a

pure phase object and has significant edge-enhancement

effects at the polymer–air interface during in-line phase

contrast X-ray imaging. This means that phase distortion by

the traditional speckle-tracking method will severely dete-

riorate the precise revealing of the bubbles. During the

experiments, the black and white materials for polyurethane

foaming were poured into a PE tube and then stirred evenly to

trigger the foaming process. Then the speckle images of the

dynamic evolution of bubbles were recorded by an X-ray

detector with a frame rate of 20 frames s�1 and the exposure

time for a single frame is 50 ms.

After data acquisition for the dynamic process of poly-

urethane foaming, phase retrieval was implemented by means

of traditional speckle-tracking and deep-learning based

methods, and the results are shown in Fig. 7. To evaluate the

time-resolving ability of the proposed method, three frames

recorded at the initial stage of foaming are selected. Figs. 7(a),

7(b) and 7(c) show the phase-retrieval results of the tradi-

tional speckle-tracking method, corresponding to time nodes

of 50, 150 and 250 ms, respectively. Similar to Fig. 4(a), phase

distortion is observed scattered throughout the image field in

Figs. 7(a)–7(c). As a result, edges of the bubbles in the foaming

stack are obscured, especially for the bubbles with multiple

stacks in the direction of the incident X-rays. Accordingly, the

proposed method is employed to eliminate the effect of phase

distortion and the corresponding results are shown in Figs.

7(d)–7( f), respectively. It is obvious that the phase distortion

is eliminated effectively by the deep-learning based method.

Without the disturbance of artifacts, the complicated profiles

of the bubble stack are depicted distinctly.

During the experiments, the frame rate of data acquisition is

20 frames s�1 and the foaming process is relatively slow.

According to the direct observation of the images given in Fig.

7, it is hard to identify significant change among all the well

retrieved images collected on the time scale of 250 ms.

Therefore, profiles of the retrieved phase at positions marked

with a light blue line with a length of 800 pixels from (1000,

592) to (1800, 592) are given in Fig. 8 to investigate the

evolution of the bubbles at time nodes of 50, 100, 150, 200,

250 ms. The phase evolution retrieved by the traditional

speckle-tracking method is shown in Fig. 8(a). Due to the

interference of phase distortion, obvious phase fluctuation can

be observed especially in the range of pixel Nos. 1000–1350. In

addition, sharp peaks appeared frequently in the profiles due

to phase distortion at positions with density saltation, i.e. the
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Figure 7
Dynamic imaging of polyurethane foaming: (a)–(c) projections obtained
by the traditional speckle-tracking method at 50, 150, 250 ms, respec-
tively; (d)–( f ) counterpart projections retrieved with the deep-learning
based method. Scale bar at the lower right corner is 500 mm.

Figure 8
Line profiles of the phase images at time nodes of 50, 100, 150, 200, 250 ms: (a) traditional speckle-tracking method, (b) deep-learning based method.



polyurethane–air interface. This implies that it is hard to

measure the phase evolution quantitatively with the tradi-

tional speckle-tracking method. The corresponding results of

the deep-learning based method are given in Fig. 8(b), in

which profiles of the retrieved phase are smooth overall and

the sharp peaks in Fig. 8(a) are eliminated. This is consistent

with the nature of a piece of polymer sponge. With the

successful elimination of phase distortion, quantitative

evaluation of phase evolution by the proposed method is

conceivable. According to Fig. 8(b), only a slight variation

occurs in the profiles of the retrieved phase from (1000, 592) to

(1300, 592) within the time duration of 50–250 ms, which is

consistent with the qualitative analysis of the phase images

shown in Figs. 7(d)–7( f). As for the profiles in the range from

(1745, 592) to (1800, 592), which is close to the inner wall of

the container, only minute phase changes were observed on

the contrary to the significant fluctuation retrieved by the

traditional speckle-tracking method as shown in Fig. 8(a).

From (1300, 592) to (1745, 592), an apparent phase change is

resolved by the proposed method, which means that the

foaming process in this range is more intense than the other

ranges investigated. Certainly, all the characteristics of the

phase evolution cannot be revealed by the traditional speckle-

tracking method. Videos of the whole foaming process are

provided in the supporting information, in which the dynamic

evolution of the bubbles retrieved by the traditional speckle-

tracking method (Viideo S1) and the deep-learning based

method (Video S2) can be investigated directly. The experi-

mental results imply that the deep-learning based method is

capable of quantitatively characterizing the structure evolu-

tion of phase objects.

4. Conclusions

We report a method for dynamic X-ray speckle-tracking

imaging with high-accuracy phase retrieval based on deep

learning. Our approach is in fact a deep-learning based

method that uses the CGAN to generate the in-line phase

contrast image from a single speckle image of the object,

which needed to be collected separately using the double-

exposure method (Wang et al., 2017; Yu et al., 2021). This

means that dynamic X-ray imaging with high-accuracy phase

retrieval can be achieved by the deep-learning based method.

Calibration with a phantom shows that the profile of the

retrieved phase is highly consistent with the theoretical

prediction. Dynamics of polyurethane foaming were

employed to demonstrate the proposed method and the

results show that the evolution of the complicated micro-

structure of the bubbles was revealed accurately by the deep-

learning based speckle-tracking method. In conclusion, the

dynamic X-ray speckle-tracking imaging with high-accuracy

phase retrieval is achieved by the proposed deep-learning

based method.

As for the CGAN training process used in the proposed

method, it is usually data hungry and time-consuming.

However, it requires only one training effort. Once the CGAN

parameter is established, we no longer need to retrain the

network. For the test sample, we used the training set of a

sample which is of the same type as the test sample but with a

different structure in a targeted manner. The results show that

only one set of projections of the sample from different angles

are needed to train an effective network. This paper focuses

on the accuracy of phase retrieval of the proposed method and

all the demonstrations are performed on pure phase objects.

The effect of absorption on artifact elimination requires

further investigation. In general, the network of deep learning

can work well with test samples that belong to the types of

samples trained previously. Therefore, we believe that adding

different types of pure phase samples to the training set can

increase the versatility of the network for low-Z materials.

This means that the proposed method can find extensive

applications in metrology and quantitative analysis of

dynamics in material science, physics, chemistry and biome-

dicine.
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