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Single-particle imaging using X-ray free-electron lasers (XFELs) is a promising

technique for observing nanoscale biological samples under near-physiological

conditions. However, as the sample’s orientation in each diffraction pattern is

unknown, advanced algorithms are required to reconstruct the 3D diffraction

intensity volume and subsequently the sample’s density model. While most

approaches perform 3D reconstruction via determining the orientation of each

diffraction pattern, a correlation-based approach utilizes the averaged spatial

correlations of diffraction intensities over all patterns, making it well suited for

processing experimental data with a poor signal-to-noise ratio of individual

patterns. Here, a method is proposed to determine the 3D structure of a sample

by analyzing the double, triple and quadruple spatial correlations in diffraction

patterns. This ab initio method can reconstruct the basic shape of an irregular

unsymmetric 3D sample without requiring any prior knowledge of the sample.

The impact of background and noise on correlations is investigated and

corrected to ensure the success of reconstruction under simulated experimental

conditions. Additionally, the feasibility of using the correlation-based approach

to process incomplete partial diffraction patterns is demonstrated. The proposed

method is a variable addition to existing algorithms for 3D reconstruction and

will further promote the development and adoption of XFEL single-particle

imaging techniques.

1. Introduction

Human beings have never stopped exploring the microscopic

universe of microorganisms, cells, organelles and biomacro-

molecules. Over the past four centuries, advances in micro-

scopy have been significant, with updated probes including

visible light, electrons and X-rays. In the past two decades,

coherent X-ray diffraction imaging (CXDI) (Miao et al., 1999)

has emerged as an innovative microscopy technique. It uses

coherent X-rays and records diffraction patterns to recover a

sample’s density distribution. Unlike other imaging techni-

ques, the resolution of CXDI is not limited by the aberration

of lenses, and hence its theoretical resolution can reach the

level of X-ray wavelength, of the order of Ångstroms. On this

basis, single-particle imaging using extremely strong pulses

from X-ray free-electron lasers (XFELs) appears particularly

appealing as it can avoid radiation damage resulting from

prolonged exposure. The technique involves continuously

feeding identical copies of a sample into the laser focus spot

and capturing a diffraction snapshot before each copy is

destroyed by the intense laser pulses (Neutze et al., 2000). By

collecting and analyzing a set of diffraction patterns, it is

possible to reconstruct the 3D diffraction intensity volume of

the sample and subsequently recover the sample’s 3D densityPublished under a CC BY 4.0 licence
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model. Since this technique can measure biological samples

under near-physiological conditions without being crystallized

or cryogenic, it is considered as a promising complement to

X-ray crystallography and cryo-electron microscopy. In the

past decade, along with the construction of XFEL facilities

and the development of instruments including detectors and

sample-delivery systems, a number of successful demonstra-

tions on nanomaterials (Xu et al., 2014; Nakano et al., 2022),

single cells (Kimura et al., 2014; van der Schot et al., 2015),

organelles (Hantke et al., 2014; Takayama et al., 2015), viruses

(Seibert et al., 2011; Ekeberg et al., 2015; Hosseinizadeh et al.,

2017) and biocomplexes (Gallagher-Jones et al., 2014) have

been reported.

In addition to the instruments, the development of

advanced algorithms is also crucial for XFEL single-particle

imaging. As the sample’s orientation in each diffraction

pattern is unknown, reconstructing the 3D diffraction intensity

volume without this critical information poses a significant

analytical challenge. So far, several classes of approaches have

been developed. The common arc approach (Huldt et al., 2003;

Shneerson et al., 2008; Bortel & Tegze, 2011; Yefanov &

Vartanyants, 2013) identifies the common intersection curve in

each pair of patterns and then determines the relative orien-

tations of all patterns. The correlation maximization approach

(Tegze & Bortel, 2012, 2021; Nakano et al., 2018), as well as the

expansion maximization compression method (Loh & Elser,

2009), iteratively optimizes a tentative 3D diffraction intensity

volume by inserting back each pattern at its most probable

orientation in that volume. The manifold embedding approach

(Fung et al., 2009; Giannakis et al., 2012; Schwander et al.,

2014) estimates the orientations of all patterns by mapping a

high-dimensional space of diffraction patterns, known as the

manifest space, to a 3D orientation space, known as the

manifold. Despite their differing details, we collectively refer

to these approaches as orientation-based approaches since

they all aim to find the orientation or the probability distri-

bution of the orientation of each diffraction pattern.

In this work, we focus on a distinct approach: the correla-

tion-based approach. Unlike the orientation-based approa-

ches mentioned above, it does not assign the orientation of

each diffraction pattern. Instead, it computes spatial correla-

tions of diffraction intensities in all patterns. Assuming that all

patterns are randomly oriented, which is typically the case in

XFEL single-particle imaging, it is possible to reconstruct the

3D diffraction intensity volume directly by analyzing the

correlations. The correlation-based approach was initially

proposed by Kam (1977, 1980) for processing electron

micrographs more than 40 years ago and regained much

attention 30 years later in the field of XFELs (Saldin,

Shneerson et al., 2010; Saldin, Poon et al., 2010; Saldin et al.,

2011; Kirian, 2012). Very recently, it has had some new theo-

retical developments again in the field of cryo-electron

microscopy (Lan et al., 2022; Bendory, Khoo et al., 2023;

Bendory, Boumal et al., 2023). As the correlation-based

approach can accumulate signals by averaging the correlations

over all patterns, it is well suited for processing experimental

data with a poor signal-to-noise ratio (SNR) of individual

patterns, which is a major challenge in current XFEL single-

particle imaging. Furthermore, as noted in its first proposal, it

can process experimental data of fluctuation X-ray scattering

(Kam et al., 1981; Pande et al., 2018), which captures the

diffraction pattern of multiple copies of the sample in one

snapshot. For these reasons, the correlation-based approach

warrants further attention and investigation.

However, reconstructing the 3D diffraction intensity

volume from correlations is not trivial. In most reports, the

complexity of the reconstruction is simplified by either

restricting the rotation to only one axis (Pedrini et al., 2013) or

using cylindrically symmetric samples (Starodub et al., 2012;

Chen et al., 2012). For 3D reconstruction of an irregular

sample rotated in any direction in 3D space, Donatelli et al.

developed a multitiered iterative phasing (MTIP) method

(Donatelli et al., 2015, 2017; Kommera et al., 2021) to optimize

the 3D diffraction intensity volume and retrieve its phases

simultaneously. This algorithm has been successfully applied

to experimental data of XFEL single-particle imaging (Kurta

et al., 2017) and fluctuation X-ray scattering (Pande et al.,

2018). Furthermore, von Ardenne et al. (2018) proposed

algorithms to determine the 3D diffraction intensity volume

by using three-photon correlations and Monte Carlo simu-

lated annealing. Still, further discussion on the correlation-

based approach is needed to improve its robustness and

applicability in processing diverse experimental data.

In this work, we explore an alternative method using high-

order correlations. Just as many algorithms in XFEL single-

particle imaging are inspired by those developed for cryo-

electron microscopy, the basic idea of this method was first

described by Kam & Gafni (1985) for reconstructing the

structure of human wart virus from electron micrographs.

However, it has seldom been implemented since then. In the

present work, for the first time, we complete this method with

essential technical details, illuminating how it can be practi-

cally implemented through numerical procedures, and we also

evaluate its performance in XFEL single-particle imaging.

More importantly, we investigate the impact of various sources

of noise and backgrounds on correlations, and present

formulas to correct the impact. This innovation of noise

correction is crucial for making the method practically work-

able, at least under simulated experimental conditions.

Additionally, we demonstrate the feasibility of using the

correlation-based approach to process incomplete partial

diffraction patterns. We also discuss its differences from and

potential connections to other approaches.

2. Theory

2.1. Reconstructing 3D diffraction intensity volume using
double, triple and quadruple correlations

We express the 3D diffraction intensity volume in spherical

coordinates as I(k, �, �). It can be expanded as a linear

combination of spherical harmonics (SH) Yl,m(�, �) of degree l

and order m as

I k; �; �ð Þ ¼
P1
l¼0

Pm¼l

m¼�l

Il;m kð ÞYl;m �; �ð Þ: ð1Þ
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Thus, once the SH coefficients Il,m(k) are obtained from

experimental diffraction patterns, the 3D diffraction intensity

volume can be reconstructed.

A diffraction pattern recorded by a planar detector is a part

of an Ewald sphere. We first resample the recorded pattern in

polar coordinates as I(�, �) by using bicubic interpolation, and

then find its coordinates in reciprocal space as k = (k, �, �) via

� ¼ arctan �=Lð Þ þ �½ �=2 and k ¼ 2 sin � � �=2ð Þ=�, where L is

the sample-to-detector distance and � is the incident wave-

length. The double correlations are computed via

C k1; k2;  ð Þ ¼ hI k1ð ÞI k2ð Þick1k2k1k2¼ 
; ð2Þ

where the angle brackets denote the average, first over all

available (k1, k2) pairs in the same pattern, with the included

angle from k1 to k2 being  , and then over all patterns. The

included angle  from k1 to k2 is calculated using the following

equation:

cos ¼ cos �1 cos �2 þ sin �1 sin �2 cos �2 � �1ð Þ: ð3Þ

When the Ewald sphere is approximated as flat, it follows that

�(k1) = �(k2) = �/2, and thus  = �2 � �1.

At each (k1,k2), we expand the double correlations

C k1; k2;  ð Þ into Fourier–Legendre series asP1
l¼0

Cl k1; k2ð ÞPl cos 1ð Þ ¼ C k1; k2;  1ð Þ

P1
l¼0

Cl k1; k2ð ÞPl cos 2ð Þ ¼ C k1; k2;  2ð Þ

..

.

P1
l¼0

Cl k1; k2ð ÞPl cos nð Þ ¼ C k1; k2;  nð Þ; ð4Þ

where Pl is the Legendre polynomial of degree l and n is the

number of  angle points. In the practical applications, we set

the upper limit of l as lmax. Thus, in the linear system in

equation (4), the number of unknown Fourier coefficients

Cl(k1,k2) is lmax + 1. In general, this number is much smaller

than the number of sub-equations n. Therefore, we can obtain

Cl(k1,k2) for 0 � l � lmax by solving the overdetermined linear

system (Aster et al., 2013). We refer to the kmax � kmax square

matrix Cl as the partial correlation matrix in the l subspace.

The partial correlation matrices Cl for 0 � l � lmax are

obtained from experimental diffraction patterns. In parallel,

they are theoretically related to the SH coefficients Il,m(k) of

the 3D diffraction intensity volume (Kam, 1977) as

Cl k1; k2ð Þ ¼
Pl

m¼�l

Il;m k1ð ÞI
�
l;m k2ð Þ: ð5Þ

Here, we consider expressing Il,m(k) as a linear combination of

basis vectors obtained from Cl. To obtain the basis vectors, we

decompose Cl into its normalized eigenvectors ul,i(k) and the

corresponding eigenvalues �l,i for 1 � i � kmax. Since the 3D

diffraction intensity volume I(k, �, �) is real, we have

Il;�m kð Þ ¼ �1ð ÞmI�l;m kð Þ. Thus, Cl should be real and

symmetric. All of its eigenvectors are orthogonal to each other

and all of its eigenvalues are real. The number of non-zero

eigenvalues equals the rank of Cl. As Cl should also be a real

Gram matrix, all of its eigenvalues are non-negative, and its

rank is no larger than min 2l þ 1; kmaxð Þ. Therefore, Cl has at

most min 2l þ 1; kmaxð Þ positive eigenvalues. We define the ith

basis vector in the l subspace as cl,i ul,i(k), where cl,i = (�l,i)
1/2

and i ranges from 1 to 2l + 1. Note that cl,i is zero when i > kmax.

Using these basis vectors, the SH coefficients can be

expressed as

Il;m kð Þ ¼
P2lþ1

i

Ul;m;i cl;i ul;i kð Þ; ð6Þ

where Ul,m,i are the elements of a (2l + 1) � (2l + 1) unitary

matrix Ul, as a requirement to satisfy equation (5). Since Ul

can be an arbitrary unitary matrix, each basis vector can be

freely aligned, and correspondingly the SH coefficients cannot

be fixed. That is to say, when considering only correlations C,

the 3D diffraction intensity volume has a general solution and

an infinite number of possibilities. Additional information is

needed for 3D reconstruction.

In this work, we compute high-order correlations and use

the constraint between different orders of correlations to

narrow down the general solution to particular solutions.

Quadruple correlations D(k1,k2, ) are computed to char-

acterize the 3D squared diffraction intensity volume S(k, �, �):

S k; �; �ð Þ ¼ I2 k; �; �ð Þ ð7Þ

and

D k1; k2;  ð Þ ¼ hS k1ð ÞS k2ð Þick1k2k1k2¼ 
: ð8Þ

In analogy to equations (4)–(6), the SH coefficients Sl,m(k) of

S(k, �, �) can again be expressed as a linear combination of

the basis vectors dl, j vl, j(k) obtained from partial correlation

matrices Dl, as

Sl;m kð Þ ¼
P2lþ1

j

Vl;m;j dl;j vl;j kð Þ; ð9Þ

where Vl,m, j are the elements of a unitary matrix Vl.

In the reconstruction, the 3D diffraction intensity volume to

be determined must satisfy equations (6) and (9) simulta-

neously. This constraint determines the particular solutions of

the SH coefficients and thus the volume. However, searching

for the answer in the Ul and Vl sets for 0 � l � lmax, which are

indirectly coupled through equation (7), remains a challenging

task.

To find the answer for the coupled Ul and Vl sets, we first

assume a set of unitary matrices U0l for 0 � l � lmax. Then, we

calculate the corresponding 3D diffraction intensity volume

I0(k, �, �) via equations (6) and (1). After that, the corre-

sponding 3D squared diffraction intensity volume S0(k, �, �) is

expanded into SH coefficients S0l;m kð Þ. The corresponding set

of matrices V0l are calculated by inverting equation (9), taking

advantage of the fact that the eigenvectors vl, j(k) within the

same l subspace are orthogonal to each other:

V 0l;m;j ¼
Xkmax

k¼1

S0l;m kð Þ
1

dl;j

vl;j kð Þ: ð10Þ
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In equation (10), dl, j and vl, j(k) are computed from experi-

ment diffraction patterns, whereas the SH coefficients S0l;m kð Þ

are expanded from the square of the assumed 3D diffraction

intensity volume. For an arbitrary assumed set of unitary

matrices U0l and the corresponding assumed 3D volume, the

resulting matrices V0l are not guaranteed to be unitary.

In order to search for the set of U0l that makes all V0l unitary,

we need to define an objective function that is numerically

optimizable. For this purpose, the introduction of triple

correlations is essential. We define a constraint matrix W0l to

summarize the coupling relation between U0l and V0l. This

matrix W0l has dimensions of (2l + 1) � (2l + 1). Its (j, i)

element is calculated via

W 0l;j;i ¼
Pl

m¼�l

V 0l;m;jU
0
l;m;i
�; ð11Þ

where the star superscript denotes conjugation.

The equivalent constraint matrices Wl can be estimated

from experimental data. For this, we compute triple correla-

tions T from all experimental diffraction patterns:

T k1; k2;  ð Þ ¼ hS k1ð ÞI k2ð Þick1k2k1k2¼ 
: ð12Þ

Again, partial correlation matrices Tl for 0 � l � lmax are

obtained by solving a linear system similar to that in equation

(4). Using a relation analogous to equation (5), and equations

(6) and (9), the (j, i) element in the experimental constraint

matrix Wl is calculated via

Wl;j;i ¼
Xkmax

k1;k2¼1

1

dl;j

vl;j k1ð ÞTl k1; k2ð Þ
1

cl;i

ul;i k2ð Þ: ð13Þ

We need to ensure that the assumed constraint matrices W0l
are equal to the matrices Wl that are directly obtained from

the experimental diffraction patterns. If the assumed

constraint matrices W0l are equal to the experimental

constraint matrices Wl for all degrees of l from 0 to lmax, the

assumed U0l sets and the corresponding 3D diffraction inten-

sity volume are valid. In this way, the process of searching for

the answer can be simplified into minimizing a non-linear

error function F :

F U0l;m;i
� �� �

!
Plmax

l¼0

P2lþ1

i;j

W 0l;i;j �Wl;i;j

�� ��2: ð14Þ

2.2. Implementation of the algorithm

While most of the formulas in Section 2.1 were first

described by Kam in 1985 (Kam & Gafni, 1985), some addi-

tional technical details are crucial to making the reconstruc-

tion method work effectively. In this section, we will present

the necessary supplementary formulas and illustrate how this

reconstruction method can be practically implemented. We

will also point out some factors essential for the rationality

and success of this method.

The primary concern is to construct the unitary matrices U0l,

which serve as the input of the error function F in equation

(14). A commonly used method to construct a unitary matrix

is QR decomposition of a complex square matrix. However, a

unitary matrix of dimension N has N2 degrees of freedom,

whereas a complex square matrix has 2N2 variables.

Obviously, the constructed unitary matrix and the set of 2N2

variables are not one-to-one mapped. This can fail the

numerical optimization of error function F . Another well

known method is to set N2 independent variables of Euler

angles, as once described by Zyczkowski & Kus (1994) and

referred to as Hurwitz’s method here. However, it is unsui-

table for the present work for reasons explained later. In the

end, we formulated our own method to construct unitary

matrices, as described below.

In a specified l subspace, the unitary matrix U0l has a

dimension N = 2l + 1. When l = 0, we set U0l to be either [+1] or

[�1]. When l > 0, U0l has N2 degrees of freedom, and therefore

its reconstruction requires N2 independent variables.

However, in this work, we restrict its freedom to N(N� 1)/2 to

ensure the symmetry of Il;�m kð Þ ¼ �1ð ÞmI�l;m kð Þ and to ensure

that the corresponding 3D diffraction intensity volume

I(k, �, �) is always real. We assume that all variables {�i} are

angle values, where �i 2 [0, 2�) for i ¼ 1; 2; � � � ;N N � 1ð Þ=2.

First, we use the first (N � 1) variables to construct a unit

vector in an N-dimensional unit sphere:

½cos�1 x2sin �1 x3sin �1 x4sin �1 � � � xN�1sin �1 xNsin �1�
T;

ð15Þ

where

x2 ¼ cos�2

x3 ¼ sin �2 cos�3

x4 ¼ sin �2 sin �3 cos �4

..

.

xN�1 ¼ sin �2 sin �3 sin �4 � � � sin �N�2 cos �N�1

xN ¼ sin �2 sin �3 sin �4 � � � sin �N�2 sin �N�1: ð16Þ

Second, we construct other (N � 1) N-dimensional unit

vectors that are orthogonal to the initial unit vector and to

each other. The resulting vectors form an orthogonal matrix

ON (Mayer, 2003):

cos�1 �x2 sin �1 �x3 sin �1

x2 sin �1 1þ x2
2ðcos�1 � 1Þ x3x2ðcos�1 � 1Þ

x3 sin �1 x2x3ðcos �1 � 1Þ 1þ x2
3ðcos�1 � 1Þ

x4 sin �1 x2x4ðcos �1 � 1Þ x3x4ðcos�1 � 1Þ

..

. ..
. ..

.

xN sin �1 x2xNðcos�1 � 1Þ x3xNðcos �1 � 1Þ

2
6666666664
� � � �xN sin �1

� � � xNx2ðcos�1 � 1Þ

� � � xNx3ðcos�1 � 1Þ

� � � xNx4ðcos�1 � 1Þ

� � � ..
.

� � � 1þ x2
Nðcos �1 � 1Þ

3
7777777775
: ð17Þ
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In a similar way, we use the next (N� 2) variables to construct

an orthogonal matrix ON�1. This process is repeated until

ON�2, . . . , O2 are constructed using all remaining �i angles.

Third, we transform the right-most two column vectors in

O3 by multiplying them by O2 from right, and recursively

repeat this process until the right most (N � 1) columns in ON

have been transformed. The generated matrix RN is a special

orthogonal matrix with N(N � 1)/2 degrees of freedom.

Finally, we convert RN to U0l. Assuming the elements in the

matrix U0l are indexed with (m, i) where �l � m � l and 1 � i

� 2l + 1, the conversion is given by

U0m;i ¼

R�2m;i þ jR�2mþ1;i; m < 0

R1;i; m ¼ 0

ð�1ÞmðR2m;i � jR2mþ1;iÞ; m > 0

8<
: ð18Þ

where j denotes an imaginary number.

In the reconstruction, we do not need to align all basis

vectors (in other words, determine all column vectors) in the

corresponding unitary matrices U0l. Similar to singular value

decomposition, the most significant features of an object are

represented by the top few principal components. In this work,

the 3D diffraction intensity volume I(k, �, �) is constructed by

aligning basis vectors obtained through eigen decomposition

of partial correlation matrices Cl for 0 � l � lmax. The major

features of I(k, �, �) can be sufficiently captured by aligning

only a few basis vectors with large norms, rather than aligning

all basis vectors. In each l subspace, it is possible to limit the

number of employed basis vectors to a certain imax,l in equa-

tion (6) and jmax,l in equation (9). Reducing the number of

employed basis vectors can reduce the number of independent

and dependent variables in the error function F in equation

(14). This will greatly simplify the complexity of the mini-

mization process. To specify, if there are only imax,l basis

vectors employed in the l subspace, according to equation (6),

we only need to construct the left-most imax,l columns in U0l
rather than the entire unitary matrix U0l. In this case, only

orthogonal matrices ON, ON�1, . . . , ON�imaxþ1 are necessary.

The required number of independent variables is reduced to

imax(2l + 1) � imax(imax + 1)/2. As a comparison, Hurtwitz’s

method to construct unitary matrices lacks this flexibility. In

Hurtwitz’s method, no matter how many column vectors are

required, N2 independent variables are always needed.

The secondary concern is to introduce weight factors. This is

to ensure the rationality of the error function F in equation

(14). According to equations (6), (9) and (11), the (j, i)

element in W0l is the inner product of the ith unit column

vector in U0l and the jth column vector in V0l, which align the

basis vectors cl,i ul,i(k) and dl, j vl, j(k), respectively. We need to

account for the influence of the norms cl,i and dl, j on the 3D

diffraction intensity volume I0(k, �, �) and 3D squared

diffraction intensity volume S0(k, �, �), respectively. There-

fore, we introduce a weighting factor of cl,i(dl, j)
1/2 for Wl, j,i in

the error function F in equation (14) so that the basis vectors

with larger norms are aligned more carefully than those with

smaller norms.

The third concern is about the unitary check of V0l. In the 3D

reconstruction, we aim to find an answer that allows both U0l

and V0l to be unitary. However, given an arbitrary set of

unitary matrices U0l for 0 � l � lmax, the unitarity of the

corresponding V0l is not guaranteed. Our experience has

shown that it is impractical to include the unitary check of V0l
in the error function F in equation (14), as the iterative

optimization process can easily get trapped at the very

beginning. However, we have noticed that checking the unit

norm of the first column vector in V0l is essential when there is

only one basis vector dl,1 vl,1(k) employed in the l subspace.

The weighting factor of the check is dl,i. This unit-norm check

determines the success or failure of reconstructing cylin-

drically symmetric models. We do not check V0l when there are

more than one basis vectors employed in the l subspace.

In this work, the minimization of the error function F in

equation (14) is achieved through progressive and iterative

optimization. The iterative optimization is performed using

the trust region reflective algorithm (Branch et al., 1999),

implemented by the least_squares function in the Python

package scipy.optimize. Additionally, aligning all basis vectors

simultaneously is a challenging task. To simplify, we begin by

aligning the basis vectors with larger norms and then gradually

introduce those with smaller norms. After finalizing each

alignment, the optimized results become the initial parameters

for the next alignment, in which the previously aligned basis

vectors are realigned simultaneously with the newly intro-

duced basis vector. This progressive approach ensures a robust

process of optimization. In the l subspace, when a certain

number of basis vectors cl,i ul,i(k) are employed for

constructing the 3D diffraction intensity volume via equation

(6), we cannot accurately decide the optimum number of basis

vectors dl, j vl, j(k) that are employed for characterizing the

corresponding 3D squared diffraction intensity volume via

equation (9). As a compromise, we set these two numbers as

equal.

2.3. Correcting the impact of noise and background on
correlations

In practical experiments, the measured coherent diffraction

patterns contain not only the coherent scattering signals from

the sample but also scattering backgrounds from various

sources. The measurement is also affected by multiple types of

noise. For many years, it has been recognized that, compared

with double correlations, high-order correlations are more

susceptible to noise (Kirian, 2012; von Ardenne et al., 2018;

Singer, 2019). This is probably the reason why the recon-

struction method in this work, although its basic idea was

described nearly 40 years ago, has seldom been implemented.

However, in this section, we will demonstrate that the impact

of noise on high-order correlations can be eliminated as long

as the second moment of the noise can be estimated. This

noise elimination has not been reported before in the field of

XFEL imaging; however, it is exactly the key that makes the

present reconstruction method potentially applicable to noisy

experimental data. We will also present the formulas to

subtract the impact of background on correlations.
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In our model under simulated experimental conditions, we

use I(k) to denote the coherent scattering signal, ICompt(k) to

denote the incoherent (Compton) scattering background from

the sample itself and Iinst(k) to denote the scattering back-

grounds from the instruments, the environment or the solution

used to preserve the sample, which are collectively referred to

as the instrument background. The intensities of I(k),

ICompt(k) and Iinst(k) together form the overall source intensity

Is(k) to be measured:

Is kð Þ ¼ I kð Þ þ ICompt kð Þ þ Iinst kð Þ: ð19Þ

We further assume that the measurement of Is(k) is affected

by photon shot noise, denoted as �s(k), and detector noise,

including Fano noise and system electronic noise, denoted as

�d(k). We use Id(k) to denote the intensity measured by the

detector:

Id kð Þ ¼ Is kð Þ þ�s kð Þ þ�d kð Þ: ð20Þ

Detailed explanations on ICompt, Iinst, �s and �d are presented

in Appendix A.

We first eliminate the impact of photon shot noise and

detector noise on the correlations, and then we discuss the

process of background subtraction. The correlations Cd, Td

and Dd are directly computed from the measured patterns

Id(k). After noise elimination, the correlations Cs, Ts, and Ds

characterizing the source intensity Is(k) can be obtained.

According to the mean and the second moment of �s(k) and

�d(k) in equations (A8), (A9), (A14) and (A15), when k1 6¼

k2, the equations for noise elimination are given as follows:

Cdðk1; k2;  Þ ¼ hIdðk1ÞIdðk2Þick1k2k1k2¼ 

¼ h½Isðk1Þ þ�sðk1Þ þ�dðk1Þ�

� ½Isðk2Þ þ�sðk2Þ þ�dðk2Þ�ick1k2k1k2¼ 

! Csðk1; k2;  Þ; ð21Þ

Tdðk1; k2;  Þ ¼ hI
2
dðk1ÞIdðk2Þick1k2k1k2¼ 

¼ h½Isðk1Þ þ�sðk1Þ þ�dðk1Þ�
2

� ½Isðk2Þ þ�sðk2Þ þ�dðk2Þ�ick1k2k1k2¼ 

! Tsðk1; k2;  Þ þ ð1þ �ÞCsðk1; k2;  Þ

þ �Isðk2Þ ð22Þ

and

Ddðk1; k2;  Þ ¼ hI
2
dðk1ÞI

2
dðk2Þick1k2k1k2¼ 

¼ h½Isðk1Þ þ�sðk1Þ þ�dðk1Þ�
2

� ½Isðk2Þ þ�sðk2Þ þ�dðk2Þ�
2
ick1k2k1k2¼ 

! Dsðk1; k2;  Þ þ ð�þ 1ÞTsðk1; k2;  Þ

þð�þ 1ÞTsðk2; k1;� Þþð�þ 1Þ2Csðk1; k2;  Þ

þ �I2
s ðk1Þ þ �I2

s ðk2Þ þ ð�þ 1Þ�Isðk1Þ

þ ð�þ 1Þ�Isðk2Þ þ �
2: ð23Þ

In equations (22) and (23), Is kð Þ is the angular average of the

source intensity Is(k). It can be obtained by averaging all the

measured patterns Id(k):

Is kð Þ ! Id kð Þ: ð24Þ

I2
s kð Þ is the angular average of the square of the source

intensity Is(k). It can be obtained by averaging the square of

all the measured patterns Id(k) and then making corrections:

I2
s kð Þ ! I2

d kð Þ � 1þ �ð ÞIs kð Þ þ �
� �

: ð25Þ

In equations (22), (23) and (25), � and � are parameters

related to the detector’s Fano noise and system electronic

noise, respectively. Their definitions and typical values are

given in Appendix A4. When their values are small enough,

the correction terms containing � and � can be approximately

omitted. Then, the above equations are solely concerned with

eliminating the photon shot noise. In this work, we assume

that the values of � and � can be accurately determined

according to the detector’s specifications and remain constant.

However, in a real experiment, they may fluctuate with

changes in environmental conditions and the detector’s state.

Nevertheless, we can approximately ignore their fluctuations

and focus solely on the overall statistical distribution of

detector noise, as explained in Section S6 of the supporting

information. Furthermore, as indicated in Appendix A4, when

using modern X-ray detectors, the values of � and � typically

fall within the order of 10�4, suggesting that the impact of

detector noise on high-order correlations is relatively minor.

For this reason, if the values of � and � are unknown, we can

attempt 3D reconstructions by initially setting them to zero

and then gradually adjusting their values based on the quality

of the reconstructions.

According to equation (21), noise elimination is not needed

for the double correlations Cd. This is because the mean of the

noise is zero. On the other hand, the noise elimination for Td

and Dd in equations (22) and (23) relies on the second moment

of the noise. When resampling the measured diffraction

patterns by interpolation, the second moment of the noise may

change, and the correction terms in equations (22) and (23)

should also change accordingly. A simple approach is to use

the nearest interpolation method. The roughness of correla-

tion functions caused by nearest interpolation can be

addressed separately using smoothing methods, when neces-

sary.

Very recently, the idea of using the second moment of noise

to obtain unbiased high-order correlations was mentioned in

some works on cryo-electron microscopy (Lan et al., 2022;

Bendory, Khoo et al., 2023). However, unlike XFEL imaging,

the noise in cryo-electron microscopy occurs in the measure-

ment of 2D real-space projections, whereas correlations are

computed to characterize the Fourier space. Consequently, the

deduction of the impact of noise on correlations would require

more complex approaches.

After eliminating the shot noise and the detector noise, the

obtained correlations Cs, Ts and Ds may be used for recon-

structing a 3D diffraction intensity volume. In this approach,

the contaminating 3D background caused by ICompt(k) and
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Iinst(k) need to be subtracted before performing phase

retrieval. Alternatively, the background in correlations can be

subtracted directly from the correlations prior to 3D recon-

struction. As discussed in Appendices A1 and A2, ICompt(k)

and Iinst(k) are assumed to be isotropic and can be either

estimated or measured separately. We use Ib(k) to denote the

total background as Ib(k) = ICompt(k) + Iinst(k). After back-

ground subtraction, the target correlations C, T and D for the

coherent scattering intensity from the sample, I(k), can be

obtained. The equations for background subtraction are given

as follows:

Csðk1; k2;  Þ ¼ hIsðk1ÞIsðk2Þick1k2k1k2¼ 

¼ h½Iðk1Þ þ Ibðk1Þ�½Iðk2Þ þ Ibðk2Þ�ick1k2k1k2¼ 

! Cðk1; k2;  Þ þ Iðk1ÞIbðk2Þ

þ Iðk2ÞIbðk1Þ þ Ibðk1ÞIbðk2Þ; ð26Þ

Tsðk1; k2;  Þ ¼ hI
2
s ðk1ÞIsðk2Þick1k2k1k2¼ 

¼ h½Iðk1Þ þ Ibðk1Þ�
2
½Iðk2Þ þ Ibðk2Þ�ick1k2k1k2¼ 

! Tðk1; k2;  Þ þ 2Cðk1; k2;  ÞIbðk1Þ

þ Iðk2ÞI
2
bðk1Þ þ I2ðk1ÞIbðk2Þ

þ 2Iðk1ÞIbðk1ÞIbðk2Þ þ I2
bðk1ÞIbðk2Þ ð27Þ

and

Dsðk1; k2;  Þ ¼ hI
2
s ðk1ÞI

2
s ðk2Þick1k2k1k2¼ 

¼ h½Iðk1Þ þ Ibðk1Þ�
2
½Iðk2Þ þ Ibðk2Þ�

2
ick1k2k1k2¼ 

! Dðk1; k2;  Þ þ 4Cðk1; k2;  ÞIbðk1ÞIbðk2Þ

þ I2ðk1ÞI
2
bðk2Þ þ I2ðk2ÞI

2
bðk1Þ

þ 2Tðk1; k2;  ÞIbðk2Þ þ 2Tðk2; k1;� ÞIbðk1Þ

þ 2Iðk1ÞIbðk1ÞI
2
bðk2Þ þ 2Iðk2ÞI

2
bðk1ÞIbðk2Þ

þ I2
bðk1ÞI

2
bðk2Þ: ð28Þ

In equations (26)–(28), I kð Þ is the angular average of the

coherent scattering intensity I(k). It can be obtained by

correcting Is kð Þ in equation (24):

I kð Þ ¼ Is kð Þ � Ib kð Þ: ð29Þ

I2 kð Þ is the angular average of the square of the coherent

scattering intensity I(k). It can be obtained by correcting I2
s kð Þ

in equation (25):

I2 kð Þ ¼ I2
s kð Þ � I2

b kð Þ þ 2I kð ÞIb kð Þ
� �

: ð30Þ

Here, we assume that the instrument background is isotropic.

However, in certain scenarios, such as parasitic scattering at

upstream components, the instrument background can

become anisotropic. In such situations, it becomes necessary to

make corresponding adjustments to equations (26)–(28).

At the end, after noise elimination and background

subtraction, the obtained correlations C, T and D for the

coherent scattering signals I(k) are put into the same recon-

struction pipeline as mentioned in Sections 2.1 and 2.2.

3. Results

3.1. Structure determination and resolution

As a demonstration, we reconstruct the structure of yeast

nucleolar pre-60S ribosomal subunit (PDB ID 6c0f; Sanghai et

al., 2018). Its electron-density model in real space is calculated

with Chimera (Pettersen et al., 2004), having 1993 voxels and a

voxel size of 0.4 nm. We simulate 10 000 diffraction patterns at

random orientations.

The Ewald sphere is assumed to be flat. Photon shot noise is

not introduced as a first demonstration. Following equations

(2), (12) and (8), we compute the double, triple and quadruple

correlations C(k1, k2,  ), T(k1, k2,  ), and D(k1, k2,  ) from

the 10 000 diffraction patterns.

As Friedel’s law ensures that the 3D diffraction intensity

volume is symmetric, we only need to compute the correla-

tions in the range  2 [0, �). In addition, when the number of

diffraction patterns of random orientations is large enough,

the correlations should converge to be symmetric about  = �/

2 according to equation (2). To illustrate, Fig. 1 plots three

orders of correlations at k1 = 0.15 nm�1 and k2 = 0.25 nm�1.

The correlations of different orders display similar oscillatory

patterns, but with different amplitudes. In practical experi-

ments, these oscillations may indicate the basic symmetry of

the sample (Wochner et al., 2009) and serve as a promising clue

to check the validity of experimental data prior to recon-

struction.

Following equation (4), we obtain partial correlation

matrices Cl with setting lmax to 30. Next, we obtain basis

vectors cl,i ul,i(k) through eigen decomposition of Cl. As the

correlations should be symmetric about  = �/2, all elements

in Cl should be zero when l is odd. This is because Pl cos ð Þ in

equation (4) is an odd function with respect to  = �/2 when l

is odd, and an even function with respect to  = �/2 when l is

even. Therefore, there are no basis vectors in odd l subspaces.

Fig. 2(a) visually represents the norms cl,i of all basis vectors

in the subspaces of l, no larger than 8. It is clear that their

magnitudes have a significant variation. This motivates the

idea of employing only those basis vectors with large norms

and ignoring those with small norms. For this reason, we sort

all 495 basis vectors in the subspaces of l no larger than 30

according to their norms, from the maximum to the minimum.

The norms cl,i of the top 21 basis vectors are shown in Fig. 2(b),

with the corresponding degree l and order i marked on the left

side. Among these 21 basis vectors, the maximum degree l is

14. Based on the method of constructing unitary matrix U0l in

Section 2.2, we need to optimize 1176 independent variables to

align all basis vectors in the subspaces of l no larger than 14.

However, as we only align the top 21 basis vectors, this

number is reduced to 250.

To demonstrate how the model’s basic shape is dominated

by a small number of basis vectors with larger norms, we

extract the 3D diffraction intensity volume corresponding to

the basis vectors of interest and recover the corresponding

real-space density model by phase retrieval. To do this, we

start by calculating the set of unitary matrices Ul using the

known SH coefficients Il,m(k) of the original model, based on
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an equation similar to equation (10). Next, we extract the 3D

diffraction intensity volume using equation (6) with setting all

other basis vectors to zero. Details of the phase retrieval are

presented in Appendix A.

Figs. 3(c), 3(d) and 3(e) show the extracted models corre-

sponding to the top 11, 21 and 31 basis vectors with the largest

norms, respectively. To align the basis vectors, 89, 250 and 381

independent variables need to be optimized, respectively. Fig.

3(a) plots the Fourier shell correlations (FSCs) between the

extracted models and the original model. The corresponding

half-period resolutions were determined to be 3.32 nm,

2.66 nm and 2.26 nm, respectively, by reading out the critical k

value at the threshold of 0.5. As expected, the inclusion of

additional basis vectors provides more detail.

Next, the reconstruction using our progressive iterative

optimization algorithm is performed. We employ the top 21

largest basis vectors as alignment subjects. To mitigate the

impact of optimization convergence toward local minimum,

we run 20 independent trials, each starting with varying

random initial values of the parameters, and then average the

results of the optimized 3D diffraction intensity volumes. The

final optimization errors are discussed in Section S1. The

runtime for a single optimization process typically takes 1 h on

a consumer-grade laptop equipped with an Intel Core i5-

7300U processor (2.6 GHz, 2 cores). To run 20 independent

optimizations in parallel, we use a workstation with dual Intel

Xeon Gold 6336Y processors (2.4 GHz, 48 cores in total), and

the runtime remains 	1 h.

The reconstructed density model is obtained after phase

retrieval, as shown in Fig. 3( f). Its FSC with respect to the

original model is plotted in Fig. 3(a), indicating a half-period

resolution of 4.07 nm, which is 	12.7% of the model’s 32 nm

diameter. The resolution difference between the recon-

structed model and the extracted model, both using the top 21

greatest basis vectors, uncovers the limit of the current

progressive iterative optimization algorithm. Nevertheless,

despite the limited resolution, the reconstructed model reveals

the basic shape of the original model. This impression can be

reinforced by comparing the reconstructed model with a low-

resolution model obtained by applying a 4 nm full width at

half-maximum (FWHM) Gaussian filter to the original model,

as shown in Fig. 3(g). The method to average the optimized 3D

diffraction intensity volumes is described in Appendix B. The

method of phase retrieval is described in Appendix C.

3.2. Performance under simulated experimental conditions

To evaluate our method’s performance under practical

experimental conditions, we simulate a total of 50 000

diffraction patterns, with the inclusion of Compton scattering

background, instrument background, photon shot noise and

detector noise. The instrument background in a pattern is set

to 5% of the coherent scattering intensity. Three different

incident laser fluxes of I0 = 1012, 1013 and 1014 photons per

square micrometre per shot are considered. The detector is

assumed to be pnCCD (Strüder, 2000). Detailed explanations

on the background and noise are presented in Appendix A. In
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Figure 2
(a) Norms of all basis vectors in the subspaces of l no larger than 8. There
are no basis vectors in odd l subspaces. (b) The top 21 basis vectors with
the greatest norms among all basis vectors in the subspaces of l no larger
than 30. The term l denotes the degree of the subspace and i represents
the ith basis vector in that subspace.

Figure 1
Double correlations C(k1, k2,  ), triple correlations T(k1, k2,  ) and
quadruple correlations D(k1, k2,  ) at (k1, k2) = (0.15 nm�1, 0.25 nm�1),
as a function of  . They are computed from 10 000 simulated diffraction
patterns.



this simulation, the incident wavelength is set to 1 nm,

equivalent to an X-ray photon energy of 1239.8 eV. The

density model in real space consists of 803 voxels with a voxel

size of 2.5 nm. The wavenumber at the edge of the diffraction

patterns is 0.2 nm�1. We still assume a flat Ewald sphere.

Examples of the simulated patterns are displayed in Fig. S2 in

Section S2 of the supporting information.

Fig. 4 plots the correlations Cd, Td and Dd computed from

all simulated diffraction patterns, at k1 = 0.12 nm�1 and k2 =

0.08 nm�1. For ease of comparison, the target correlations are

calculated directly from the original model and plotted.

Additionally, the correlations Cs, Ts and Ds after noise elim-

ination, as well as the correlations C, T and D after further

background subtraction, are also plotted. It is evident that the

final corrected correlations C, T and D overlap well with their

respective target correlations, demonstrating the effectiveness

of our method for noise elimination and background

subtraction. The gaps between Cs, Ts and Ds and their

respective target correlations represent the impact of back-

ground. Similarly, the gaps between Cd and Cs, Td and Ts, and

Dd and Ds represent the impact of noise. According to

equation (21), for double correlations, since the mean of the

noise is zero, uncorrelated noise has been canceled out. The

impact of noise is zero, and therefore noise elimination is not

needed. This is represented by the complete overlap of Cd and

Cs in Fig. 4. In contrast, for triple and quadruple correlations,

we can visually observe the impact of noise, and therefore

noise elimination is essential. The impact of noise is domi-

nated by the incident laser flux I0. When I0 = 1014, Td and Dd

exhibit only minor deviations from Ts and Ds. However, as I0

decreases to 1013 and 1012, the deviations increase, indicating a

greater susceptibility to noise.

To quantify the deviations between two correlations at the

same (k1, k2) pair, we calculate the root mean square error

(RMSE) following equation (S1) in Section S3 of the

supporting information. Since the diffraction intensities in low

k and high k regions have orders of magnitude difference, it is

necessary to normalize the RMSE values to describe their

relative impact on the correlations in different k regions. The
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Figure 4
Double, triple and quadruple correlations at (k1, k2) =
(0.12 nm�1, 0.08 nm�1). The thick gray lines represent the target
correlations calculated directly from the original model. The short-
dashed red, green and blue lines represent the correlations Cd, Td and Dd

computed from 50 000 simulated diffraction patterns including back-
ground and noise, with the incident laser flux set to 1012, 1013 and 1014

photons per square micrometre per shot, respectively. The long-dashed
lines are the corresponding correlations Cs, Ts and Ds after noise
elimination. The thin solid lines are C, T and D after further background
subtraction, which are less noticeable as they are overlapped with the
thick gray lines.

Figure 3
(a) FSCs of the extracted models and the reconstructed model with
respect to the original model. (b) The original model of a yeast nucleolar
pre-60S ribosomal subunit. (c), (d) and (e) show the extracted models
corresponding to the top 11, 21 and 31 basis vectors with the largest
norms, respectively. Their half-period resolutions are 3.32, 2.66 and
2.26 nm, respectively. ( f ) The model reconstructed from 10 000 simulated
diffraction patterns by aligning the top 21 basis vectors. Its half-period
resolution is 4.07 nm. (g) A low-resolution model obtained by applying a
4 nm FWHM Gaussian filter to the original model. In (b)–(g), the
isosurfaces are plotted at 10% of the maximum density.



normalization factor at (k1, k2) is determined to be the

magnitude of the target correlation, which is calculated

following equation (S2). Finally, the normalized RMSE

(NRMSE) values at all (k1, k2) pairs, calculated via equation

(S3), are visually depicted in Fig. 5. The second and fourth

columns in the figure display the normalized deviations

between Td and Ts, and between Dd and Ds, respectively,

illustrating the impact of noise. The impact of noise appears

acceptable at I0 = 1014, but becomes apparently large from k =

0.10 nm�1 when I0 = 1013 and from k = 0.05 nm�1 when I0 =

1012. This suggests that the reliable range of k for high-order

correlations is severely limited by a weak incident laser flux

without noise elimination. In other words, our noise elimina-

tion is the key to enabling the present reconstruction method

using high-order correlations to be potentially feasible with

practical experimental data.

As a comparison, we also plot the normalized deviations

between the final corrected correlations (C, T, D) and their

respective target correlations. Clearly, after noise elimination

and background subtraction, the deviations become much

smaller. This is consistent with the overlap of correlations at

(0.12 nm�1, 0.08 nm�1) in Fig. 4.

Even after noise elimination and background subtraction, a

noticeable deviation is still present at k1 = k2 for all C, T and

D. This deviation locates at  = 0, i.e. k1 = k2, where the noise,

�s(k1) + �d(k1) and �s(k2) + �d(k2), is self-correlated and

cannot be canceled out, as derived in equations (21)–(23). To

mitigate this effect, we exclude the data points around  = 0

from our analysis. This reduces the number of  angle points,

namely the number of sub-equations in equation (4).

However, since the number of sub-equations is still much

greater than the number of unknowns, this exclusion does not

affect the subsequent analysis.

Finally, we put the corrected correlations (C, T and D) into

the same reconstruction pipeline as mentioned in Section 3.1.

To distinguish errors arising from the progressive iterative

optimization process, we also make a reconstruction using the

target correlations, as shown in Fig. 6(a). The models recon-

structed from the simulated diffraction patterns at I0 = 1014,

1013 and 1012 are presented in Figs. 6(b), 6(c) and 6(d),

respectively. We plot their FSCs with respect to the original

model. Their half-period resolutions are 3.66, 3.97, 4.17 and

4.16 nm, respectively. Despite the slightly lower resolutions, all

three reconstructions from the simulated diffraction patterns

reveal the basic shape of the original model, demonstrating

the effectiveness of our method for noise elimination and

background subtraction, as well as the robustness of our

reconstruction method under simulated experimental condi-

tions. In Fig. 6, the reconstructed models appear smeared

simply due to their large voxel size of 2.5 nm.

To assess the requirements of the number of diffraction

patterns for the convergence of high-order correlations in the

presence of noise, we evaluate the performance of our

reconstruction with different numbers of patterns – specifi-

cally, 50 000, 5000 and 500 simulated patterns. The incident

laser flux I0 is set to 1013 and 1012 photons per square micro-

metre per shot. For simplicity, here we add only photon shot

noise, which is the major source of noise, to the simulated

patterns. Fig. S5 in Section S4 plots the target correlations and

the corrected correlations computed from the simulated

patterns at k1 = 0.12 nm�1 and k2 = 0.08 nm�1. Overall, the

corrected correlations agree with their respective target
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Figure 5
NRMSE between the final corrected correlations C, T and D and their respective target correlations at all (k1, k2) pairs. The NRMSE between Td and Ts,
as well as Dd and Ds, is also plotted to visualize the impact of noise.



correlations. At I0 = 1013, when the number of patterns is 500

or 5000, the corrected correlations have small fluctuation

errors, and the fluctuation errors become negligible when the

number is increased to 50 000. This observation is consistent

with the NRMSE colormap at all (k1, k2) pairs in Fig. S6. Fig.

S7 presents the reconstructed models and their FSCs with

respect to the original model. The half-period resolutions

using 50 000, 5000 and 500 patterns are 4.07, 4.26 and 4.14 nm,

respectively. This small resolution difference suggests that, in

our method, although the number of patterns is the larger the

better, when the incident laser flux has sufficient intensity, a

smaller number, such as 500, can still be acceptable for the

convergence of high-order correlations and reasonable

reconstruction. At I0 = 1012, employing 50 000 patterns is

sufficient to achieve convergence in high-order correlations

and produce a successful reconstruction with a resolution of

3.99 nm. In contrast, using 5000 patterns results in a roughly

acceptable reconstruction but it has a poorer resolution of

4.63 nm. This implies that, when the incident laser flux has a

weaker intensity of I0 = 1012, the required number of patterns

falls within the range of 5000–50 000.

3.3. Reconstruction from partial diffraction patterns

When computing correlations C(k1, k2,  ) from a diffrac-

tion pattern via equation (2), one takes an average over all

available (k1, k2) pairs, with the included angle from k1 to k2

being  . This does not require k1 or k2 to form a complete

circle in the diffraction pattern. In other words, the recorded

diffraction pattern can be incomplete, with some areas

missing. For example, Fig. 7(a) shows a simulated diffraction

pattern with two large corners in the second and fourth

quadrants removed. When both k1 and k2 are located within

the remaining area, the (k1, k2) pair is included in the

computation of correlations. However, if either k01 or k02 are

located within the missing area, the (k1, k2) pair is excluded

from the computation. In this way, the correlations C can still

be computed from a set of partial diffraction patterns.

To illustrate, we remove the same two corners in all 10 000

simulated diffraction patterns that are used to reconstruct the

model in Fig. 3( f). Fig. 7(b) shows the double correlations

C(k1, k2,  ) at k1 = 0.15 nm�1 and k2 = 0.25 nm�1 computed

from the partial diffraction patterns. They overlap well with

the correlations C in Fig. 1, which are computed from the full

diffraction patterns.

Next, we obtain partial correlation matrices Cl for 0 � l �

lmax by solving the overdetermined linear system in equation

(4). Even at the same (k1, k2) position, for different  values,

the number of available ðk1; k2Þck1k2k1k2¼ 
pairs being averaged is

different. This suggests that the reliability of different sub-

equations is different. To account for this, we denote the total

number of available ðk1; k2Þck1k2k1k2¼ i

pairs as Ni and apply a

weighting factor of (Ni)
1/2 (Aster et al., 2013) to the ith sub-

equation of C(k1, k2,  i). After computing T and Tl and D and

Dl in a similar way, we employ the same reconstruction

pipeline as mentioned in Section 3.1.

Fig. 7(c) shows the model reconstructed from the partial

diffraction patterns. Its FSC with respect to the original model

is plotted in Fig. 7(d). When compared with the FSC of the

model reconstructed from full diffraction patterns in Fig. 3(a),

it is evident that their resolutions are quite similar. This

demonstrates the feasibility of using the correlation-based

approach to process incomplete partial diffraction patterns.

4. Discussion

In the correlation-based approach, the 3D diffraction intensity

volume is constructed based on basis vectors obtained from

double correlations from the diffraction patterns. However,

since each basis vector can be freely aligned, additional

constraints are required to narrow down the general solution

to particular solutions of the volume. In our method, we

characterize not only the 3D diffraction intensity volume using

double correlations but also the 3D squared diffraction

intensity volume using quadruple correlations. The internal

constraint between the double and quadruple correlations

allows us to find the particular solutions. In order to define an

objective function that is numerically optimizable, we intro-

duce triple correlations as the bridge between the other two

correlations. As a comparison, in Donatelli’s MTIP method

(Donatelli et al., 2015), the additional constraint is a prior
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Figure 6
(a) A model structure reconstructed using the target correlations. (b), (c)
and (d) Model structures reconstructed from 50 000 simulated diffraction
patterns at I0 = 1014, 1013 and 1012 photons per square micrometre per
shot, respectively. The simulated diffraction patterns contain background
and noise. (e) shows the FSCs between the reconstructed models and the
original model. In (a)–(d), the isosurfaces are plotted at 10% of the
maximum density.



knowledge of the sample in real space, such as compact

support, symmetry, or upper or lower density bounds. There-

fore, it requires simultaneous optimization of the 3D diffrac-

tion intensity volume and the corresponding phases. One

advantage of this method is that it prevents errors committed

during 3D reconstruction from being locked or magnified in

phase retrieval (Donatelli et al., 2017). However, it under-

utilizes the full potential of the set of diffraction patterns itself

to reconstruct the 3D diffraction intensity volume indepen-

dently. In Ardenne’s method (von Ardenne et al., 2018), the

additional constraint comes from three-photon correlations,

which involve three different points in a diffraction pattern.

However, as the inversion from three-photon correlations to

3D diffraction intensity volume cannot be analytically

expressed, one has to estimate the likelihood of observing the

experimental three-photon correlations from a tentative 3D

diffraction intensity volume in every iteration, which is

computationally expensive.

In the MTIP method and Ardenne’s method, all basis

vectors in the subspaces of l below a certain lmax are employed.

This is mathematically natural, considering the approach

undertaken to iteratively project or randomly rotate the input

unitary matrices U0l. In our method, we only employ a limited

number of basis vectors with large norms. This significantly

reduces the number of independent variables to be optimized,

while it is still sufficient to preserve the basic shape of the

sample. As a consequence, we can convert the problem of 3D

reconstruction into a process of minimizing an error function,

which has an acceptable number of independent variables.

This allows us to take advantage of well established mini-

mization algorithms, such as the Levenberg–Marquardt algo-

rithm or the trust region reflective algorithm (Branch et al.,

1999), as well as existing packages. With the use of a

progressive optimization strategy, we expect to achieve a

satisfactory convergence robustly. On the other hand, since

the aforementioned algorithms are local optimization algo-

rithms, the sought solution may have small perturbations

around the theoretical particular solutions. As the number of

independent variables to be optimized increases, the impact of

getting trapped at a local minimum becomes severer. This has

restricted us from employing a larger number of basis vectors

in the reconstruction, which is the primary reason limiting the

achievable resolution. In the future, it would be beneficial to

implement some global optimization algorithms, such as the

Monte Carlo simulated annealing, which is also utilized in

Ardenne’s method. However, achieving the desired perfor-

mance with this algorithm requires careful design and

adjustment of parameters, including the energy function,

temperature and step size. Therefore, we excluded uncer-

tainties arising from parameter adjustments during the initial

stage of establishing our reconstruction method.

Currently, the limited SNR in individual diffraction patterns

presents a major challenge for XFEL single-particle imaging

and the correlation-based approach offers a natural solution.

By computing and averaging correlations over all diffraction

patterns, this approach effectively accumulates signals and

improves the overall SNR, making it particularly suitable for

processing experimental data with a poor SNR in each

pattern. In all correlation-based approaches when computing

the double correlations, and in Ardenne’s method when

computing the three-photon correlations, the uncorrelated

noise at different points is automatically averaged out and

therefore no further correction is needed. This is also a reason

for the effectiveness of Ardenne’s method in processing

extremely sparse diffraction patterns. In our method, when

computing the triple and quadruple correlations, since we

square the measured intensity at the same point, the impact of

noise remains. We investigated the impact of various sources

of noise on high-order correlations. When high-order corre-

lations are converged by collecting sufficient diffraction

patterns, the impact of noise can be predicted and subse-

quently eliminated. To achieve this, we only need to know the

second moment of the noise, regardless of whether its prob-

ability distribution is Poisson, Gaussian or even pseudo-Voigt.

This idea of noise elimination is the key to making our

reconstruction method potentially applicable to practical

experimental data. Even if the experimental data contain

fluctuations and disturbances from other sources, we can still

eliminate their effects using an approach similar to equations

(22) and (23), as long as we can model them and estimate their

second moment. On the other hand, as it has been pointed out,
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Figure 7
(a) A simulated diffraction pattern with two large corners in the second
and fourth quadrants removed. (b) Double correlations at (k1, k2) =
(0.15 nm�1, 0.25 nm�1) computed from 10 000 full diffraction patterns
and 10 000 partial diffraction patterns. (c) The model reconstructed from
partial patterns. The isosurface is plotted at 10% of the maximum density.
(d) FSCs of the model in (c), reconstructed from partial patterns, and the
model in Fig. 3( f ), reconstructed from full patterns, with respect to the
original model.



in the presence of noise, high-order correlations are difficult to

measure (Kirian, 2012) or need many patterns to converge

(Singer, 2019). In our simulation, the fluctuation errors of

high-order correlations become acceptable with only 500

patterns when the incident laser flux is 1013 photons per square

micrometre per shot. Even with a laser flux of 1012, which is

readily achievable in many XFEL facilities, 50 000 patterns are

sufficient. Furthermore, with the advent of megahertz single-

particle imaging in recent years (Sobolev et al., 2020), it may

no longer be difficult to collect a large number of

diffraction patterns to obtain perfect convergence on high-

order correlations.

In this work, we assume that we can model the experimental

noise with sufficient accuracy. However, in actual experiments,

this may not be the case, as the noise may have unexpected

sources and its behavior may be too complex to predict. For

example, the detector response may change with time and

working conditions. In cases where the detector comprises

multiple modules, there may be high correlations among the

detector noise in these modules. Additionally, charge sharing

and noise correlation between adjacent pixels also have an

impact. When the diffraction signals from the sample are

weak, all these factors can significantly increase the

complexity of image processing. This remains a substantial

challenge for all 3D reconstruction methods and should be

carefully investigated case by case when processing actual

experimental data. Specifically, for our method using high-

order correlations, it may be beneficial to introduce some

model-agnostic denoising strategies. For instance, as shown in

Fig. 4, the most significant impact of noise on high-order

correlations is the addition of a relatively  -invariant constant

intensity. Therefore, when expanding correlations into

Fourier–Legendre series using equation (4), the noise impact

is mainly isolated in the zeroth l subspace, which accounts for

the radially averaged intensity in the 3D diffraction volume.

Since this radially averaged intensity can be roughly estimated

using the double correlations that are less influenced by noise,

it may be possible to iteratively retrieve the denoised zeroth l

subspace. Such a model-agnostic denoising strategy may

provide an alternative approach to addressing issues related to

unknown noise models. Overall, the assumptions about noise

and the noise-correction procedures in this work represent

just the initial steps in what is necessary. Dealing with actual

noisy experimental data depends on specific experimental

conditions and still requires further effort.

The correlation-based approach does not require every

diffraction pattern to be complete. In some reports,

the computation of double correlations is written

as C k1; k2;  ð Þ ¼ hð1=2�Þ
R 2�

0 I k1; �ð ÞI k2; �þ  ð Þd�i, where

I(k, �) is the diffraction intensity in a pattern and the angle

brackets denote an average over all patterns. However, in

reality, it is unnecessary for � to cover the full range from 0 to

2�. Even if some parts in each diffraction pattern are missing,

we can still measure the spatial correlations and the complete

information by collecting many patterns. Such discussions and

measurements have been reported before, such as by Clark et

al. (1983) and Zaluzhnyy et al. (2017). In the field of XFEL

single-particle imaging, the feasibility of processing

incomplete partial diffraction patterns is a remarkable

feature for the correlation-based approach, whereas for

many orientation-based approaches, the missing parts in

each pattern should not be large. In practical experiments,

missing parts in measured diffraction patterns are often

encountered due to various reasons, such as detector gaps

between multiple sensor pieces, abnormal pixels or even

small dead regions in the detector. On the other hand,

accepting incomplete partial diffraction patterns makes it

more flexible to arrange instruments in the narrow space

between the sample and the detector. In Section 3.3, we

demonstrated an extreme case where the majority of the

second and fourth quadrants in all diffraction patterns are

missing, although practically, the missing parts would be

much smaller. Additionally, they are allowed to vary in

different diffraction patterns.

Due to the complexity of XFEL image processing, it may be

desirable to apply multiple data-analysis approaches to the

same experimental dataset, either independently for compar-

ison or sequentially at different processing stages. Our method

provides a robust way to produce an ab initio 3D intensity

reconstruction, which may serve as an unbiased initial model

for subsequent iterative refinements to achieve high-resolu-

tion structure reconstruction. The combination of a coarse ab

initio reconstruction followed by an iterative probabilistic

reconstruction has been commonly utilized in the field of cryo-

electron microscopy (Lan et al., 2022; Bendory, Khoo et al.,

2023), but is still rare in the processing of XFEL single-particle

imaging experimental data. In Section S5, we present preli-

minary attempts to connect our method with orientation-

based approaches by estimating the orientation of every

diffraction pattern based on the correlation-reconstructed

model. We expect that such a connection can become a

beneficial option when analyzing various complex XFEL

experimental data.

The correlation-based approach, as noted in its first

proposal (Kam, 1977), can process fluctuation X-ray scattering

experimental data, which involves the effects of overlapping

diffraction patterns from multiple particles and interparticle

interference. It has been proved that the computation of

double correlations is not affected by these effects (Pedrini et

al., 2013). However, when computing high-order correlations,

corrections are necessary. As the corresponding theory and

equations are rather complex, we plan to discuss this sepa-

rately in future works.

In summary, we have developed a method for recon-

structing the 3D density map of a sample from XFEL single-

particle diffraction patterns. The sample can have an irregular

unsymmetric shape. No prior knowledge of the sample is

needed. This ab initio 3D reconstruction method works by

computing and analyzing different orders of spatial correla-

tions of diffraction intensities. It could relax the requirements

for the quality of experimental diffraction patterns, since

correlations are calculated over a whole set of diffraction

patterns, and thus individual patterns are allowed to have a

poor SNR or missing parts. Currently, we are exploring the
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possibility of extending this method to process experimental

data of fluctuation X-ray scattering.

APPENDIX A
Model of background and noise

A1. Compton scattering background

The X-ray scattering at the sample includes coherent scat-

tering and Compton scattering. The former is the signal, while

the latter is an intrinsic background. Compton scattering

cannot be measured separately. However, if the approximate

numbers of carbon, nitrogen and oxygen atoms can be

determined by other techniques, we can estimate the intensity

and distribution of Compton scattering. This estimation does

not rely on prior knowledge of the sample’s 3D structure.

When the X-ray laser is linearly polarized, the differential

Compton scattering cross section from an electron is (Matt et

al., 1996)

d	

d�

	 

electron

¼ r2
e

E0

E

	 
2
ðE0=EÞ þ ðE=E0Þ � 2sin2�cos2�

2
;

ðA1Þ

where re is the classical electron radius, � is the scattering

angle, � is the azimuth angle with respect to the polarization

and E0/E accounts for the X-ray photon energy loss in

Compton scattering:

E0

E
¼

1

1þ ðE=mec2Þ 1� cos �ð Þ
; ðA2Þ

where E is the incident photon energy, me is the electron mass

and c is the speed of light.

The differential cross section from an atom is

d	

d�

	 

atom

¼ S E;�;Zð Þ
d	

d�

	 

electron

; ðA3Þ

where S is the Compton scattering factor (Hubbell et al., 1975)

and Z is the atomic number.

With prior knowledge of the numbers of carbon, nitrogen

and oxygen atoms, the differential cross section from a

biological sample is estimated as

d	

d�

	 

sample

’ Ncarbon

d	

d�

	 

carbon

þ Nnitrogen

d	

d�

	 

nitrogen

þ Noxygen

d	

d�

	 

oxygen

: ðA4Þ

In equation (A1), the term 2sin2�cos2� is reduced to sin2� if

the X-ray laser is unpolarized. If the X-ray laser is linearly

polarized but � is small enough or the X-ray laser is unpo-

larized, the distribution of Compton scattering is isotropic,

denoted as ICompt = ICompt(k).

As we calculated under the simulated experimental condi-

tions in Section 3.2, the intensity of Compton scattering is

weaker by seven orders of magnitude than that of coherent

scattering in a pattern.

A2. Instrument background

In XFEL single-particle imaging experiments, the measured

patterns may contain scattering backgrounds originating from

various sources other than the sample, such as the instruments,

the environment or the solution used to preserve the sample.

We refer to these backgrounds collectively as instrument

background. Depending on the experimental conditions, the

intensity and distribution of the instrument background may

vary. Here we assume an isotropic distribution of instrument

background, which can be separately measured in an experi-

ment without samples.

In the data synthesis for this work, we assume a 2D Gaus-

sian model for the instrument background:

Iinst¼ IinstðkÞ¼ Iinstðkx; kyÞ¼
Itotal

1

	inst 2�ð Þ1=2
exp �

k2
x þ k2

y

2	2
inst

	 

;

ðA5Þ

where Itotal represents the total coherent scattering intensity in

a pattern and 
 controls the overall background-to-signal

ratio. We set 
 ¼ 5% and 	inst = 0.04 nm�1.

A3. Photon shot noise

The intensities of coherent scattering I, Compton scattering

ICompt and instrument background Iinst together form the

overall source intensity Is to be measured:

Is kð Þ ¼ I kð Þ þ ICompt kð Þ þ Iinst kð Þ: ðA6Þ

In the measurement of Is, photon shot noise is intrinsically

included and the corresponding intensity can be expressed as

I�s kð Þ ¼ Is kð Þ þ�s kð Þ; ðA7Þ

where �s(k) is the photon shot noise. The term I�s(k) follows

a Poisson distribution with a mean of Is(k). The expectation of

�s(k) is zero:

�s kð Þ ! 0: ðA8Þ

The expectation of the square of �s(k) is equal to the mean of

Is(k):

�2
s kð Þ ! Is kð Þ: ðA9Þ

A4. Detector noise

The measurement of I�s is also affected by detector noise,

including Fano noise, dark current noise, readout noise, photo

response non-uniformity, dark signal non-uniformity, etc. For

an ideal photon-counting detector, the detector noise is zero

and can be neglected. Unfortunately, up to now, photon-

counting detectors still cannot be used in XFEL imaging

experiments due to the inability to handle large instantaneous

fluxes. In the case of a conventional photon-integrating

detector, the aforementioned detector noise must be taken

into account.

In the data synthesis for this work, we assume the use of a

pnCCD detector (Strüder, 2000). Its sensor material is silicon.

Its system noise, ne, which combines dark current noise,
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readout noise and other electronic noise, is 	4 e� (RMS). We

make the approximation that both the Fano noise and the

system noise follow Gaussian distributions. The intensity, Id,

measured by the detector can be expressed as

Id kð Þ ¼ I�s kð Þ þ�d kð Þ; ðA10Þ

where �d is the detector noise. The term Id(k) follows a

Gaussian distribution with a mean of I�s(k). The standard

deviation is

	d kð Þ ¼ �I�s kð Þ þ �
� �1=2

: ðA11Þ

The constants � and � are determined by the detector’s sensor

material and electronic noise level, as well as the X-ray photon

energy. They are defined as

� ¼
F�

E
ðA12Þ

and

� ¼
ne�

E

� �2

; ðA13Þ

where F is the Fano factor and � is the average energy required

to generate an electron–hole pair in the detector sensor. Their

values depend on the sensor material. For silicon, we take F as

0.115 (Lowe, 1997) and � as 3.65 eV (Scholze et al., 1998). With

X-ray photon energy E set at 1239.8 eV, we have � =

3.396 � 10�4 and � = 1.392 � 10�4. Since F and � are invariant

physical constants, and ne describes the detector system’s

electronic noise level, which should be carefully inspected, we

assume the precise knowledge of these parameters, along with

the derived � and �. Additionally, � and � can also be esti-

mated or verified in experimental diffraction patterns, as

discussed in Section S6.

The expectation of �d is zero:

�d kð Þ ! 0: ðA14Þ

The expectation of the square of �d is equal to 	2
d:

�2
d kð Þ ! �I�s kð Þ þ �: ðA15Þ

APPENDIX B
Averaging the optimized 3D diffraction intensity
volumes of different orientations

When reconstructing the 3D diffraction intensity volume from

correlations, we run 20 independent optimization trials, each

starting with varying random initial values of the parameters.

The optimized volumes have arbitrary and uncontrolled

orientations. Before averaging them, it is essential to carefully

align their orientations.

We use Ii to denote the ith volume and Iaver to denote the

averaged volume:

Iaver ¼
1

Ntrial

XNtrial

i¼1

RiIi; ðB1Þ

where Ntrial is 20 and R is a 3D rotation operator. The

deviation between Iaver and Ii is defined as the square of

Euclidean distance:

�i ¼ kIaver �RiIik
2
2: ðB2Þ

The rotation angles for all Ri are selected to minimize the

total deviation �:

� ¼
PNtrial

i¼1

�i: ðB3Þ

In practice, minimizing the total deviation � is difficult when

trying to align or find the optimum rotation angles for all the

volumes simultaneously. For this reason, the minimization of

� is approximated using an iterative method. In the first

iteration, we set I 1ð Þ
aver as I1 and use it to align each volume by

minimizing the corresponding �i in equation (B2). Then, it is

updated to I 2ð Þ
aver via equation (B1) for the second iteration.

This iterative process is repeated until � converges. Typically,

we need to iterate five times.

The square of Euclidean distance between two volumes,

denoted as A and B, is defined as

kA� Bk2
2 ¼

Z2�
0

Z�
0

Zkmax

0

½Aðk; �; �Þ � Bðk; �; �Þ�½Aðk; �; �Þ

� Bðk; �; �Þ��k2 sin �dkd�d�: ðB4Þ

In this work, the 3D diffraction intensity volume is given in the

form of SH coefficients. The square of Euclidean distance can

be equivalently calculated as

kA� Bk2
2 ¼

Pkmax

k¼0

Plmax

l¼0

Pl

m¼�l

½kAl;mðkÞ � kBl;mðkÞ�

� ½kAl;mðkÞ � kBl;mðkÞ�
�: ðB5Þ

The rotation of the SH coefficients of a 3D volume is given by

Il;m0 kð Þ ¼
Pl

m¼�l

Dl;m0;m �; �; 
ð ÞIl;m kð Þ; ðB6Þ

where Il,m(k) and Il,m0(k) are the SH coefficients of the 3D

volumes before and after rotation, respectively, (�, �, 
) are

Euler angles of the rotation, and Dl,m0,m is the element in the

corresponding Wigner-D matrix. For a 3D volume, rotating its

SH coefficients is more efficient than rotating its sampling

points in spherical or Cartesian coordinates, as the inter-

polation of sampling points is not needed.

In equation (B2), when Iaver and Ii are given, �i is a non-

linear function of the Euler angles (�, �, 
) for rotation. To

minimize �i, we employ the trust region reflective algorithm.

To find the global minimum, we run abundant trials with

randomly chosen initial values of (�, �, 
).

APPENDIX C
Phase retrieval

We use the hybrid input–output approach (Fienup, 1982),

which iterates a total of 500 times. The � factor is set as 0.8.

The initial support is the entire volume, but then it is updated
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every 20 iterations using the shrink-wrap method (Marchesini

et al., 2003). In the shrink-wrap process, the reconstructed

density model is convolved with a Gaussian kernel of width 	,

and the isosurface at � of the maximum density becomes the

updated compact support. In this work, we set � to 5%. The 	
value in the first shrink wrap is 3 voxels and is reduced by 0.01

with each subsequent shrink wrapping. In order to reduce the

initial value dependency inherent in phase retrieval, we

employ a strategy of running 100 independent trials with

varying random initial phases and subsequently averaging the

reconstructed density models. This strategy allows us to obtain

a more robust density reconstruction.

In the 100 independent trials, the reconstructed density

models have ambiguities of conjugate flip and translational

shift. Alignment is essential before averaging them. Our

alignment method is described as follows. To align two models,

denoted as �A and �B, we flip �B to �B0 and then compute the

convolutions of �A*�B0 as well as �A*�B. By comparing the

maximum values in these two convolutions, we can determine

whether �A and �B have a flip relationship or not. The trans-

lational shift from �A to �B (or �B0) corresponds to the

displacement from the coordinate center to the location of the

maximum in that convolution. To align the 100 reconstructed

density models, we use an iterative method. In the first itera-

tion, we set the first model as the reference to align the other

99 models. In the second iteration, the reference model is

updated by averaging the 100 aligned models. Typically, this

iteration process is repeated five times.
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