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Spectroscopic data, particularly diffraction data, are essential for materials

characterization due to their comprehensive crystallographic information. The

current crystallographic phase identification, however, is very time consuming.

To address this challenge, we have developed a real-time crystallographic phase

identifier based on a convolutional self-attention neural network (CPICANN).

Trained on 692 190 simulated powder X-ray diffraction (XRD) patterns from 23

073 distinct inorganic crystallographic information files, CPICANN demon-

strates superior phase-identification power. Single-phase identification on

simulated XRD patterns yields 98.5 and 87.5% accuracies with and without

elemental information, respectively, outperforming JADE software (68.2 and

38.7%, respectively). Bi-phase identification on simulated XRD patterns

achieves 84.2 and 51.5% accuracies, respectively. In experimental settings,

CPICANN achieves an 80% identification accuracy, surpassing JADE software

(61%). Integration of CPICANN into XRD refinement software will signifi-

cantly advance the cutting-edge technology in XRD materials characterization.

1. Introduction

Efficient materials characterization is pivotal in advancing

material design. Extensively big data are generated from

various spectroscopic techniques and conventionally necessi-

tate time-consuming expert analysis. This traditional approach

significantly slows the pace of materials development and

poses challenges for the information feedback in materials

fabrication, in situ characterization and controllable auto-

mated systems, such as artificial intelligent (AI) laboratories

(Merchant et al., 2023; Soldatov et al., 2021; Peng & Wang,

2023). In particular, powder diffractometers are widely used to

examine the crystallographic structures of polycrystalline

solids, which generate powder diffraction patterns. With

domain knowledge, analyzing a whole diffraction pattern

determines the crystallographic phases and associated micro-

structures of a tested material. Notably, employing powder

diffraction data as a definitive fingerprint for the identification

of material crystalline structure is a standard practice in the

field. The analysis of a whole diffraction pattern is an exten-

sive search-and-match process across well determined powder

diffraction patterns and examined ones. The first step in

diffraction-pattern analysis is to find the potential crystal

structures and space groups, which provide the peak positions

in analyzed diffraction patterns. This is usually carried out

manually based on domain knowledge and chemical compo-

sitions of diffracted materials. The first step is termed as
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crystalline-phase identification. It is crucial as it enables the

calculation of the static structure factor (Svensson et al., 1980)

based on the diffraction pattern, aiding in the derivation of

atom sites during refinement. With existing crystals in data-

bases, the commonly employed method is the search-and-

match approach to retrieve potential crystallographic infor-

mation. Once the basic crystallographic information is

obtained, techniques such as pattern decomposition and

pattern Rietveld refinements are employed. These methods

facilitate the measurement of atom sites, temperatures, grain

sizes, residual stress and other detailed structural information,

contributing to the comprehensive determination of a crystal

structure.

JADE (Miettinen et al., 2017) is a widely used software that

provides line- and profile-based approaches for the phase

identification. The line-based approach searches and matches

only peak locations, recommending comparison of the first 32

lines of a potential crystal. On the other hand, the profile-

based approach resembles a visual comparison of d–I lines

(lattice plane distance–intensity) to the experimental trace,

assessing similarity between the experimental pattern and

potential crystals. The common practice combines the two

approaches: first, line matching locates the peak locations to

narrow down the search space and then the profile (intensity)

matching analyzes the diffraction patterns more deeply. It is a

considerable challenge to make the search-and-match auto-

matically and intelligently.

Recently, using AI and machine learning (ML) in the

research and development of materials has revolutionized

the culture of materials science and engineering (Cao et al.,

2024, 2022; Xiong et al., 2023; Xiong & Zhang, 2022; Taki-

guchi et al., 2024; Vollmar, 2022; Park et al., 2024; Fuller &

Rudden, 2024; Xu et al., 2023; Chen et al., 2021), especially in

the crystallographic phase identification area (Pan et al.,

2023; Lee et al., 2021, 2020; Szymanski et al., 2023, 2021;

Maffettone et al., 2021; Wang et al., 2020). For example, Lee

et al. (2020) employed convolutional neural networks

(CNNs) to train on 600 942 simulated spectroscopies, which

were derived from mixtures of 38 distinct binary and ternary

crystals in Sr–Li–Al–O inorganic compounds (from the

Inorganic Compound Structure Database, ICSD). The CNN

phase-identification model, after being trained on 600 942

simulated spectroscopies, achieved nearly perfect accuracy

across a test dataset of 100 000 simulated instances and 100

experimental patterns of Sr–Li–Al–O compounds. Szymanski

et al. (2021) implemented a CNN model to navigate phase

identification within the crystallographic space of Li–Mn–Ti–

O–F compositions. They compiled 140 distinct stoichiometric

phases from the ICSD and complemented them with 115

calculated solid solutions using Vegard’s law, which together

formed 255 base phases and associated diffraction patterns.

Mixing the 255 patterns with different ratios generated 38

250 patterns. The pre-trained CNN model demonstrated a

classification accuracy of 94% across 4200 simulated X-ray

diffraction (XRD) patterns and 55% accuracy on 20

experimental profiles in identifying single phases. Maffettone

et al. (2021) developed a crystallography companion agent

(XCA) that employed an ensemble of CNN models to

provide a probabilistic prediction of crystalline phases. This

approach adeptly manages the inherent uncertainty in the

phase analysis and other uncertainties in the experiment.

Notably, the XCA classifications were correct on 56 of the 60

patterns in its application to the phase transitions of BaTiO3.

Wang et al. (2020) also developed a CNN model on 58 292

simulated patterns derived from 1012 distinguished metal-

organic framework crystals, achieving a top-five accuracy of

96.7% in a test dataset of 14 572 instances and 56.7% accuracy

for exact identification in 30 experimental XRD patterns.

Space groups, rather than crystal types, can be extracted with

ML-based analysis from X-ray powder diffraction data (Lee et

al., 2023; Tiong et al., 2020; Choudhary et al., 2022), and, in this

circumstance, the ML-based analysis covers a much larger

number of crystal types with a high prediction accuracy. For

instance, Tiong et al. (2020) proposed an advanced multi-

stream dense-net framework and achieved an accuracy of

80.12% in identifying the space group within an imbalanced

dataset comprising 108 658 crystals from 72 space groups.

Salgado et al. (2023) trained a non-pooling CNN model on 171

006 crystallographic information files (CIFs) extracted from

the ICSD; the pre-trained model’s performance had a classi-

fication accuracy of 67% for the crystal systems and 36% for

the space groups of the 2253 inorganic crystals in the Material

Project (Jain et al., 2013) database.

The present work develops a crystallographic phase iden-

tifier for a convolutional self-attention neural network

(CPICANN) to address the practical application and effec-

tiveness challenges of ML-based powder XRD pattern iden-

tifications. The CPICANN can recommend the most potential

crystal structures in powder XRD patterns for subsequent

refinement techniques such as Rietveld refinement (Rietveld,

1967, 1969), Le Bail (2005) and WPEM (Cao, 2024; Qin et al.,

2023). Fig. 1 shows the workflow of CPICANN, which estab-

lishes a basic dataset containing 23 073 basic crystallographic

structures of unary, binary and ternary inorganic crystals,

retrieved from the Crystallography Open Database (COD)

(Gražulis et al., 2009). With the basic dataset, X-ray powder

diffraction patterns of single crystal phases are simulated using

the newly developed simulation code. These single-phase

patterns are mixed to form X-ray powder diffraction patterns

of multiple phases. Subsequently, CPICANN employs convo-

lution and self-attention mechanisms to extract crystal infor-

mation from the entire powder diffraction patterns without

using any elemental information. The pre-trained CPICANN

is highly effective in the precise and efficient identification of

single phases, while also expediting the swift screening of

multi-phase patterns. Proving more effective than conven-

tional line-based approaches, CPICANN is ready for inte-

gration into X-ray diffraction refinement software such as

WPEM, JADE and Fullprof. Furthermore, the scope of

potential applications of CPICANN extends beyond XRD

analysis, encompassing various characterization techniques

that detect information in the Fourier space, such as electron

and neutron diffraction and scattering (Gemmi et al., 2019;

Bacon, 1975).
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2. Methods

2.1. XRD pattern simulation

A basic crystallographic dataset is built up by selecting

23 073 distinctive CIFs of unary, binary and ternary inorganic

crystals from the COD (Gražulis et al., 2009). The diffraction

vectors were determined using the Bragg equation n� = 2d

sin (�) to calculate 2�, where n = 1, 2, . . . is an integer, � is the

wavelength of the X-ray beam, d is the crystalline plane

spacing and � = 2�/2, with 2� denoting the angle between the

incident and diffracted beams. Considering the wide applica-

tion of Cu anodes, both Cu K�1 = 1.54056 Å and Cu K�2 =

1.54433 Å are taken as the wavelengths of the X-ray beam,

which makes simulation more practical. In all simulated

powder X-ray patterns, 2� ranges from 10 to 80� with a 0.015�

step, and the simulated intensity IWPEM is expressed by

IWPEM ¼ S
P

k

F�k Fk;kLkPkOkDkð Þ þ IBG: ð1Þ

Here, S denotes the scale factor, Fk is the structure factor, F�k is

the complex conjugate of Fk, ;k is the profile function, Lk is

the Lorentz–polarization factor, Pk represents multiplicity, Ok

is the preferred orientation factor, Dk is the Debye factor and

IBG is the background intensity. A detailed description of all

the terms involved in equation (1) is given in Supplementary

Note 1 of the supporting information.

Utilizing the WPEM simulation module, we implement six

distinct data-augmentation approaches to enhance the diver-

sity of simulated patterns. (1) Peak broadening is effectively

modeled by adjusting the grain size from 2 to 50 nm. Instru-

mental broadening manifests in experimental patterns due to

convolution with the crystal peak. Typically, during refine-

ment, observed peaks are separated into Voigt and instru-

mental components. However, quantifying the instrumental

component proves challenging as it varies with the diffraction

angle. Therefore, in our simulations, we opt for a smaller grain

size than realistic to accurately replicate the degree of

experimental broadening (Maniammal et al., 2017). (2) An

orientation effect arises from the uneven distribution of small

grains in the incident beam, leading to an uneven distribution

of reciprocal sites across the reciprocal spheres of the powder

specimen. To simulate the impact of random orientation, we

adopt the approach used by Szymanski et al. (2021), adjusting

the peak intensity within a 40% range. (3) A thermal vibration

effect is simulated by allowing atoms to shift from their

average positions within a range of 0.05–0.5 Å. (4) Internal

stress is simulated by randomly adjusting the lattice constant

by up to 20% for the structure factor. (5) Instrument zero shift

is simulated by randomly translating 2� within � 3–3�. (6)

Specimen contamination is simulated by randomly blending

the diffraction signal of another crystal within a mixture ratio

of 5–30%. To assemble a comprehensive simulated pattern, all

of the above six data-augmentation techniques are applied

across 30 iterations within the designated parameters,

resulting in 30 diffraction patterns for each individual crystal.

Thus, a total of 692 190 simulated single-phase powder XRD

patterns were generated.

Various levels of background and noise were introduced

into a total of 692 190 simulated patterns to assess their effects.

Dataset 1 was devoid of background but included Gaussian

noise with a standard deviation (�) of 0.25. Dataset 2 featured

a 3% background ratio along with Gaussian noise (� = 0.25).

Datasets 3 and 4 consisted of Gaussian noise with standard

deviations of � = 1 and � = 3, respectively, without any

background. Table S2 in Supplementary Note 2 of the

supporting information shows that CPICANN’s accuracy in

single-phase identification without elemental information was

86.98% for the 3% background mixture, 86.35% for the noise

mixture of � = 1 and 84.30% for the noise mixture of � = 3.

Evidently, high levels of background or noise adversely affect

CPICANN’s performance. All datasets and corresponding

pre-trained models are publicly accessible. Specific
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Figure 1
The workflow of CPICANN, where crystal structure is visualized by VESTA (Momma & Izumi, 2008).
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background-stripping algorithms and smoothing techniques

could alleviate these challenges during real-world analysis.

Nevertheless, while striving for high-throughput autonomous

characterization, some degree of accuracy may need to be

compromised. However, subsequent discussions in this work

will focus on dataset 1, which presents minimal noise inter-

ference, to concentrate on the phase-identification challenge.

Figs. 2(a)–2(c) demonstrate the sequential integration of the

six augmentation types. Fig. 2(a) displays a simulated X-ray

powder diffraction pattern of an ideal PbSO4 crystal, covering

the 2� range of 10–80� and encompassing a total of 108

diffraction peaks. Notably, with an average grain size set at

3 nm, many peaks overlap due to the peak-broadening effect,

as seen in Fig. 2(b). Fig. 2(c) introduces factors such as the

orientation factor, lattice alteration and a 1.2� zero shift,

leading to deviations in peak intensities and positions from

theoretical expectations. Fig. 2(d) depicts the pattern with

added background, revealing a subtle rise in the low-angle

pattern.

In addition to the single-phase patterns, binary-phase XRD

patterns were generated by leveraging the 692 190 simulated

single-phase patterns. This was achieved by blending two

patterns with the formula py1 + (1 � p)y2, where y1 and y2

represent selected single-phase patterns and p denotes the

mixing ratio, ranging from 0.2 to 0.8. This blending approach

assumes that no reaction occurs between the phases. A pre-

process on powder XRD patterns is carried out by selecting

4500 points from each XRD pattern within the 2� range

from 10 to 80� with a step size of 0.015� so that the

corresponding intensities are expressed as a 4500 � 1-

dimensional vector, which is hence standardized. The

intensity for each specific diffraction angle is assigned based

on the experimental patterns provided. In this study, we

identify the nearest diffraction angle on the experimental

pattern and allocate the corresponding intensity to the 4500-

dimensional input vector. In cases where two angles are

equally close to the matched angle, we select the one with

the higher intensity.

2.2. Convolutional self-attention neuron network

A series of ablation experiments were conducted to deter-

mine the architecture of the CPICANN framework. The input

vector is processed through a dedicated convolutional block

designed to mitigate the potential impact of subtle back-

ground and noise (He et al., 2016). Our findings indicate that

the convolutional block enhances robustness, particularly in

scenarios characterized by subtle noise. Additionally, the

inclusion of a self-attention mechanism enables the incor-

poration of both local and global contextual information from

XRD patterns, significantly improving the performance of

CPICANN over conventional CNN models that lack self-

attention blocks. Without the self-attention module, the CNN

module has a prediction accuracy of 79.86% on the validation
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Figure 2
(a)–(d) Simulated X-ray powder diffraction patterns of PbSO4 crystal under a Cu anode. (a) An ideal crystal; (b) an average grain size of 3 nm; (c) an
orientation factor of 0.3, a thermal-vibration derivation of 0.2 and a zero shift of 1.2�; and (d) with background intensity.



set, which is lower than the accuracy of 87.50% of CPICANN

on the validation set (see Supplementary Note 4 for details).

Based on the prediction accuracy on the validation set, the

self-attention module is optimized within the following ranges:

self-attention layers of 4, 6 or 8; embedding dimensions of 128,

256 or 384; and head numbers of 4, 6 or 8. The results are listed

in Table S5 with the notations of ED for embedding dimen-

sions, HN for head number and SL for the number of self-

attention layers. The ablation study yields the optimal

configuration of CPICANN: ED = 128, HN = 8 and SL = 6. For

comprehensive details of the ablation experiments, please

refer to Supplementary Note 4.

The finalized architecture of CPICANN comprises a

convolution block, six self-attention blocks and multilayer

perceptron (MLP) layers, as depicted in Fig. 3. The convolu-

tion block consists of nine convolutional layers that generate

128 channels of 141-dimensional vectors from the 4500 � 1-

dimensional XRD pattern input. These vectors are treated as a

sequence of 141 tokens, with each token having the embed-

ding vector of 128 elements provided by the 128 channels. By

introducing a classification token (cls_token) as the start

token, the 142 � 128 matrix with its positional embeddings

(Vaswani et al., 2017) is input to six eight-head self-attention

blocks (Dosovitskiy et al., 2020). The 128-dimensional

embeddings are uniformly split into the eight heads, with each

head handling 16-dimensional embeddings. The outputs of

each head are then concatenated, resulting in a feature

sequence with the same dimension of 142 � 128. This

sequence is sent to two MLP layers, which linearly map the

sequence to 142 � 1024 and then back to 142 � 128. Finally,

the embeddings of the cls_token (1� 128) are fed through

three MLP layers to obtain the category probability output. In

summary, CPICANN houses a total of 14 385 505 trainable

parameters.

For single-phase identification, the 692 190 simulated XRD

patterns are randomly separated into two sets, 553 752 for

training and 138 438 for testing. After training, the parameters

in the convolutional block of CPICANN are fixed, and the

14 146 337 trainable parameters are retrained on 1.6 billion

patterns for bi-phase identification, where the testing patterns

are 400 million. The focal cross entropy (Lin et al., 2020) and

cross entropy loss functions (Galstyan & Cohen, 2007) (see
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Figure 3
The architecture of CPICANN. In each of the one-dimensional convolution layers, n� 1 conv., m and /2 denote the kernel size n, the channel number m
and a stride of 2, respectively. In the max-pooling layers, /2 also indicates a stride of 2. Residual connection is indicated by solid lines. The convoluted
information is fed into six eight-head self-attention blocks, which scores the input XRD pattern against the 23 073 single-phase patterns.
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Supplementary Note 3) are adopted for single-phase and bi-

phase identifications, respectively, providing probabilistic

rather than determinate predictions over possible crystals.

This allows CPICANN to recommend top-scoring phases for

user consideration and use with a parameter-free element

filter.

CPICANN incorporates elemental information by using an

element filter like that used in JADE. During the inference

process with elemental information, the filter is applied on the

model output and categorizes all elements in the periodic

table into three groups: A ‘included elements’, B ‘possible

elements’ and C ‘excluded elements’, viz. all elements are

A [ B [ C. In the XRD pattern identification, the included

elements must appear simultaneously with variation in their

individual concentrations, the possible elements can possibly

appear individually and the excluded elements cannot appear

at all. For example, if Fe is the included element and S and O

are possible elements, the XRD patterns for crystals Fe, FeS,

Fe2O3, Fe3O4, Fe2(SO4)3, etc. form a set S, much smaller than

the whole set, and an analyzed XRD pattern will be matched

with those in set S. But, the XRD pattern for crystal FeCl2, for

example, does not belong to the set S because Cl is one of the

excluded elements.

3. Results and discussion

3.1. Single-phase identification

The performance of CPICANN is benchmarked against the

line-based search and match (LBSM) algorithm from JADE

(JADE Pro 8.9) in scenarios both with and without elemental

information. Primarily, the fundamental assessment of

CPICANN focuses on the scenario devoid of elemental

information. The Task-Macro module in JADE (Miettinen et

al., 2017), which is the widely used code for element-free

scenarios, is used here for comparison. Fig. 4(b) shows the

performances of CPICANN and the Task-Macro module in

JADE on the single-phase identification across the seven

crystal systems. Fig. 4(a) illustrates the data percentages for

these crystal systems in both the training and testing datasets,

which maintain identical proportions derived from the utilized

CIFs. The orthorhombic crystal system has the largest number

in the training and testing datasets, and both CPICANN and

Task-Macro exhibit their own greatest identification accuracy

for this crystal system: 92.4% for CPICANN and 49.4% for

Task-Macro. As expected, CPICANN significantly outper-

forms the Task-Macro module, nearly doubling its identifica-

tion accuracy. It is surprising to see that CPICANN also
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Figure 4
(a) The data distribution in the seven crystal systems for both the training and testing datasets. (b) The performances of CPICANN and Task-Macro in
JADE on the single-phase identification in each of the seven crystal systems. (c) The performance accuracy versus random sample amounts of CPICANN
and JADE on the single-phase identification with elemental information, where the accuracy is averaged over the seven crystal systems. (d) The
performances of CPICANN and JADE on the single-phase identification over 1000 random XRD patterns in each of the seven crystal systems.
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exhibits excellent performance in the trigonal crystal system,

although it has the smallest data in both training and testing

sets, with an accuracy of 91.8%. In contrast, the Task-Macro

module performs extremely poorly in the trigonal crystal

system, with only a 3% identification accuracy. The most

outstanding performances of CPICANN are in the triclinic

and monoclinic crystal systems, with identification accuracies

of 94.7 and 94.4%, respectively. In comparison, Task-Macro

reaches only 34.5 and 45.7% in these systems. It appears that

CPICANN performs better in crystal systems with less

symmetry, as illustrated in Fig. 4(b). This trend suggests that

lower symmetric space groups have more features and are

therefore easily captured by CPICANN. Overall, the average

identification accuracy is 87.5% for CPICANN across all 138

438 testing simulated patterns, significantly surpassing the

38.7% achieved by Task-Macro in JADE on the same testing

XRD patterns.

In practice, the elemental information is usually required

when using JADE for LBSM identification. Therefore, the

effectiveness of CPICANN was further assessed under

conditions where the elemental information is available. Since

manual operation should be carried out on individual XRD

patterns in JADE for LBSM identification with elemental

information, ten small datasets, each comprising 100 XRD

patterns, were selected without replacement from the testing

dataset for this evaluation. These selections maintain the same

ratios of the seven crystal systems shown in Fig. 4(a). Fig. 4(c)

shows the identification accuracy, averaged over the seven

crystal systems, versus the sample amount for both CPICANN

and JADE. As expected, providing elemental information

enhances the identification accuracy for both methods.

Although there are still some fluctuations in the accuracy as

the sample number increases, these fluctuations are extremely

small when the sample number exceeds 600, indicating

statistical reliability. The CPICANN and LBSM results on

1000 samples are detailed in Fig. 4(d). With the inclusion of

elemental information, CPICANN achieves exceptional

performance, especially in the triclinic and monoclinic crystal

systems, reaching 100% identification accuracy. Even in the

cubic crystal system, the provision of elemental information

increases the identification accuracy from 74.4% to 99%.

Similarly, the performance of the LBSM identification of

JADE improves significantly with the addition of elemental

information, most notably in the trigonal crystal system, where

the identification accuracy increases from 3% to 53.8%.

Overall, across the seven crystal systems, CPICANN performs

outstandingly with an accuracy of 98.5%, and JADE also

achieves a notable performance, reaching an average accuracy

of 68.2%. CPICANN significantly outperformed JADE in the

single-phase identification across both scenarios, whether

elemental information was provided or not.

3.2. Bi-phase identification

With the cross entropy loss function, the trained CPICANN

model recommends the top probabilities of two–ten phases,

which include the correct two phases in an examined bi-phase

XRD pattern, with and without elemental information. Based

on 20 000 testing bi-phase simulated XRD patterns, Fig. 5

shows the probability of the right two phases in the recom-

mended phases as a function of the number of recommended

phases, with and without elemental information. If only two

phases are recommended, CPICANN achieves an identifica-

tion accuracy of 51.1% without any elemental information and

84.2% with it. When three phases are recommended, the

probabilities of finding the right two phases among the three

recommendations are 94.4% with and 65.7% without

elemental information. As expected, the probability of

correctly identifying the correct two phases increases with the

number of phases recommended, as depicted in Fig. 5.

Furthermore, it might be sufficient for CPICANN to recom-

mend four phases when elemental information is provided, as

the probability already reaches 97.5%. Conversely, without

elemental information, more recommended phases are

required to achieve a high probability of success. Obviously,

recommending more phases requires greater downstream

refinement, indicating the significant role of elemental infor-

mation in the phase identification for powder XRD patterns.

3.3. Experimental practice

The phase-identification capability of CPICANN, when

equipped with elemental information, was further assessed

with 100 single-phase experimental powder XRD patterns,

comprising ten from our own laboratory and 90 from the

RRUFF database (Lafuente et al., 2015). This test on experi-

mental data is crucial to evaluating the applicability and

effectiveness of CPICANN in real-world experiments.

Detailed information about these 100 single-phase experi-

mental powder XRD patterns can be found in Tables S6 and

S7, and is accessible via the XRED platform (https://www.

github.com/WPEM/XRED). Fig. 6 illustrates the performance

of CPICANN on these 100 experimental XRD patterns across

the seven crystal systems, with a comparative analysis of the

performance of JADE. When only one phase is recommended

by CPICANN and JADE, their performance is assessed by

identification accuracy. CPICANN shows exceptional perfor-
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Figure 5
The probability of the right two phases in the recommended phases as a
function of the number of recommended phases with and without
elemental information.
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mance in the trigonal crystal system, achieving 100% identi-

fication accuracy, whereas JADE achieves only 50% identifi-

cation accuracy in the same crystal system. Averaged across

the seven crystal systems of the 100 XRD patterns, the iden-

tification accuracies are 61% for JADE and 80% for

CPICANN, clearly exhibiting the merit of CPICANN. If more

phases are recommended, the performance is measured by the

probability of correctly identifying the phase within the

recommended set. As depicted in Fig. 5, an increase in the

number of recommended phases leads to a higher probability

of correct identification. However, selecting the correct phase

from a larger set of recommendations becomes more chal-

lenging. As a showcase, Fig. 6 shows the identification prob-

abilities when three phases are recommended. In this

circumstance, CPICANN significantly outperforms JADE,

particularly in the cubic, tetragonal and triclinic crystal

systems, where the identification probability reaches 100%.

4. Concluding remarks

The present work develops a novel network, CPICANN, for

crystal phase identification on whole X-ray powder diffraction

patterns, utilizing a convolutional self-attention mechanism.

CPICANN can automate and integrate the XRD patterns into

a unified attention-matching strategy. The performance and

effectiveness of CPICANN are extremely powerful, as shown

here by the single-phase and bi-phase identifications with and

without elemental information on simulated XRD patterns,

and the single-phase identification on experimental XRD

patterns. Elemental information is initially provided manually

in the conventional identification approach. In contrast,

CPICANN employs elemental information afterwards,

applying it only to those highly potential crystal phases

selected based on their attention probability scores from the

examined whole XRD pattern. This merit of CPICANN

minimizes potential errors in the elemental information

provided.

The success of CPICANN in phase identification represents

a significant advancement in materials informatics, providing a

more efficient and accurate method for automatic phase

identification and rapid screening in complex material crystal

structures. In future work, we will integrate CPICANN with

the XRD refinement software WPEM to develop an AI-

driven XRD analyzer.

5. Code availability

The model described in the present work was implemented in

Python. Source codes are available at https://www.github.com/

WPEM/CPICANN.

6. Related literature

The following references are only cited in the supporting

information for this article: Armstrong (1967), Caglioti et al.

(1958), Gerward (1993) and Nguyen et al. (2014).
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