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This paper was motivated by the articles ‘Same or different – that is the ques-

tion’ in CrystEngComm (July 2020) and ‘Change to the definition of a crystal’ in

the IUCr Newsletter (June 2021). Experimental approaches to crystal compar-

isons require rigorously defined classifications in crystallography and beyond.

Since crystal structures are determined in a rigid form, their strongest equiva-

lence in practice is rigid motion, which is a composition of translations and

rotations in 3D space. Conventional representations based on reduced cells and

standardizations theoretically distinguish all periodic crystals. However, all cell-

based representations are inherently discontinuous under almost any atomic

displacement that can arbitrarily scale up a reduced cell. Hence, comparison of

millions of known structures in materials databases requires continuous distance

metrics.

1. Motivations for new definitions in crystallography

Mathematical crystallography – including the classification of

lattices, unit cells, crystal classes etc. – by symmetries has a

long and rich history. But classical mathematical crystal-

lography, grounded largely in group theory, came before the

computer age and needs updating in our era of massive data.

This paper does not reinvent the wheel but extends the

discrete concepts to a new continuous domain in the language

of present-day crystallography for present-day crystal-

lographers.

The entry ‘A crystal’ appeared in the IUCr Online

Dictionary of Crystallography (IUCr, 2021) in 1992 and has

since been modified slightly. We propose updates to fill past

gaps and meet present needs. The latest direct-space definition

(Chapuis, 2024a) by the Commission on Crystallographic

Nomenclature (CCN) says that ‘a solid is a crystal if its atoms,

ions and/or molecules form, on average, a long-range ordered

arrangement. In most crystals, the arrangement is a periodic

array that is governed by the rules of translational symmetry.’

In this paper, a crystal is a periodic crystal, so we postpone

similar developments for non-periodic materials including

quasicrystals and amorphous solids to future work (see

Senechal, 1996). The definition quoted above (Brock, 2021)

for a periodic crystal means that the set of all atoms is

preserved under all lattice translations. Since periodic crystals,

lattices and unit cells are often confused (Nespolo, 2015) or

used interchangeably, we provide rigorous definitions in

Section 2.

The next step is to clarify which periodic crystals should be

considered the same in order to reliably compare crystals.

Below, we quote the paper ‘Same or different – that is the

question’ (Sacchi et al., 2020). It is correct scientific practice ‘to

report measurable quantities with an error’ because all real

measurements are noisy. However, if one claims that ‘ . . . two
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dimensions are considered the same if their values fall within

the accepted error or standard deviation’, quoted from section

2.1 in Sacchi et al. (2020), then an axiomatic approach logically

implies that all dimensions (meaning measurements of unit-

cell parameters in this case) should be the ‘same’. This

continuum paradox (Hyde, 2011) states that many small

changes (indistinguishable from 0) can lead to a big overall

change.

For any fixed small error "> 0, if we call any real number

x 2 R indistinguishable from (considered the same as) all

numbers within an interval ½x � "; xþ "�, then xþ " is the

same as all numbers from ½xþ "; xþ 2"�, which makes x the

same as any number within ½x; xþ 2"�, similarly within

½x � 2"; x� if we replace " with � ". Continuing this logical

argument further, any number y becomes indistinguishable

from x in djx � yj="e steps, which is the smallest integer larger

than or equal to jx � yj=". This argument is formalized in

terms of an equivalence below.

Definition 1 (equivalence relation). A binary relation A � B

between objects of any kind is called an equivalence (Racz-

kowski & Sadowski, 1990) if these axioms hold:

(1) reflexivity: A � A, so any object A is equivalent to itself;

(2) symmetry: for any objects A, B, if A � B then B � A;

(3) transitivity: for any A, B, C, if A� B, B� C then A� C.

Definition 1 is important because any well defined classifi-

cation into disjoint classes requires an equivalence relation.

Indeed, the equivalence class of any object ½A� ¼ fB j B � Ag

is the set of all objects B equivalent to A. The transitivity

axiom implies that if the classes of A, C share a common object

B, these classes coincide, i.e. [A] = [C]. Hence Definition 1

guarantees that all equivalence classes are disjoint. For any

fixed "> 0, the binary relation x � y defined by jx � yj � " on

real numbers fails the transitivity axiom because 0 � " � 2"

but 0 6� 2".

If we enforce the transitivity so that x � z if there is y such

that x� y� z, this transitive extension makes all real numbers

equivalent by putting them into a single equivalence class.

Equality is an example of equivalence because any number

can be written in many different forms: 0.5 = 1/2 = 50% = 1:2.

If the axioms of Definition 1 such as the transitivity are not

satisfied, the resulting classes can overlap and become

dependent on manually chosen parameters, see Zwart et al.

(2008). All relations between lattices and crystals that led to 7

crystal systems, 14 Bravais classes and 230 space-group types

are equivalences satisfying the axioms. A space-group type is a

class of space groups under isomorphism, which is a bijection

respecting the group operation, see Nespolo et al. (2018).

The most important practical motivation to agree on the

main equivalences between crystals is the ongoing crisis of

fake data in crystallography (Gavezzotti, 2022), which has

caught attention of journalists (Chawla, 2024). Indeed, scien-

tists could stop the ‘paper mills’ (Bimler, 2022) that publish

hundreds of articles and thousands of crystal structures, many

of which are under investigation for data integrity (Francis,

2023).

In November 2023, two Nature papers described the recent

‘big data’ attempts at generating crystal structures. The first

paper (Merchant et al., 2023) reported the GNoME database

of 384+ thousand ‘stable’ predicted structures. The chemists

found ‘scant evidence for compounds that fulfill the trifecta of

novelty, credibility and utility’ (Cheetham & Seshadri, 2024).

The autonomous A-lab (Szymanski et al., 2023) claimed to

have synthesized 43 new materials from GNoME. The review

by Leeman et al. (2024) concluded that ‘none of the materials

produced by A-lab were new: the large majority were

misclassified, and a smaller number were correctly identified

but already known’. Section 6 will complement these conclu-

sions by identifying thousands of duplicates in GNoME.

2. Common confusions with cells, lattices and crystals

In our papers (Widdowson et al., 2022; Widdowson & Kurlin,

2022), we introduced a unit cell, lattice and periodic crystal in

a single definition without explaining their logical dependen-

cies. This approach suffices for expert mathematicians, but

since many publications confuse lattices not only with crystals

but also with cells, we clarify the differences here.

We are grateful to Massimo Nespolo for highlighting the

differences between a periodic lattice and a crystal structure

(Nespolo, 2019). Confusing these concepts led to the terms

‘lattice energy’ and ‘lattice defects’, which should be better

called ‘structural energy’ and ‘structural defects’. Since section

2 in Nespolo (2019) defined ‘the lattice of a crystal struc-

ture . . . as a collection of vectors expressed as a linear

combination of n linearly independent vectors’, we start from

the more basic concepts of a basis and a lattice without

requiring a crystal structure whose definition needs the pre-

requisite concept of a lattice.

Definition 2 (basis and ordered basis). (a) A basis of Rn is an

unordered set of n vectors fv1; . . . ; vng in Rn that are ‘linearly

independent’, i.e.
Pn

i¼1 tivi ¼ 0 if, and only if t1 ¼ . . . ¼ tn ¼ 0.

(b) An ordered basis of Rn is a basis whose vectors

v1; . . . ; vn are ordered. Equivalently, any vector v 2 Rn can be

expressed as a linear combination
Pn

i¼1 tivi for unique

t1; . . . ; tn 2 R.

For example, the vectors v1 = (1, 0), v2 = (0, 1) form a basis

of R2 because any vector v ¼ ðx; yÞ 2 R2 is uniquely written as

the linear combination xv1 þ yv2. We can write coordinates of

any vector v 2 R2 in a unique order only if v1, v2 are ordered.

Following our standards of introducing all concepts with an

equivalence, these definitions imply that two bases are

equivalent if they are equal as sets, while two ordered bases

are equivalent if they contain the same vectors in the same

order. A basis is often confused with the unit cell defined by

this basis.

Definition 3 (the unit cell and lattice defined by a basis). Any

unordered basis fv1; . . . ; vng of Rn defines a unit cell: the

parallelepiped Uðv1; . . . ; vnÞ consisting of all linear combina-

tions
Pn

i¼1 tivi with real coefficients t1; . . . ; tn 2 ½0; 1Þ. This
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basis also generates the lattice �ðv1; . . . ; vnÞ consisting of all

linear combinations
Pn

i¼1 civi with integer coefficients

c1; . . . ; cn 2 Z.

Thus a unit cell is a ‘box’, whereas a lattice is a discrete point

set. Fig. 1 (left) shows that the square cells defined by the

orthonormal bases fv1; v2g and fv1; � v2g are both unit squares,

which differ only by the choice of origin and orientation. The

square lattice has infinitely many bases fAv1;Av2g, where A is

a 2 � 2 matrix with integer coefficients and determinant �1.

For the unit cell Uðv1; . . . ; vnÞ, we excluded the values ti = 1

so that all translations of Uðv1; . . . ; vnÞ by vectors

v 2 �ðv1; . . . ; vnÞ tile Rn without overlaps. The notation

Uðv1; . . . ; vnÞ highlights that a unit cell is defined by a basis

alone. For now, we consider unit cells (and lattices) equivalent

(in the strictest possible sense) if they are equal as sets of

points. The map {bases}!{unit cells} is not invertible because

a corner of a unit cell should be chosen for an origin. Fixing

one of 2n corners is equivalent to choosing n signs of ordered

basis vectors �v1; . . . ;�vn. So we cannot uniquely identify an

ordered basis from a unit cell without making one of 2n

choices.

Definition 3 introduced a unit cell and a lattice using only an

unordered basis fv1; . . . ; vng of vectors. Without these vectors,

we cannot define their linear combinations.

However, as soon as we need to unambiguously express a

point (from a motif below) using fractional coordinates in a

basis, this basis ðv1; . . . ; vnÞ should become ordered so that

coordinates of any point are ordered according to the basis.

Definition 4 (motif, periodic point set, periodic crystal). For

any ordered basis v1; . . . ; vn of Rn, let M � Uðv1; . . . ; vnÞ be a

finite set M of points. We call M a motif. A periodic point set

S ¼ M þ�ðv1; . . . ; vnÞ is the set of points pþ v for all p 2 M

and v 2 �. In R3, if each point of M is an atom or ion with a

chemical element and charge, S can be called a periodic

crystal.

In Definition 3, any periodic crystal has a purely geometric

part, which is a periodic set of zero-sized points at all atomic

centers, and the physical part of atomic attributes of these

points, see the history in Palgrave & Tobin (2021). Any lattice

� can be considered a periodic point set whose motif M

consists of a single point p, for example, at the origin of Rn.

More general periodic crystals, even graphite, have motifs with

at least two points and thus are not lattices according to

Definition 3.

Any unit cell can be scaled by a positive integer factor along

each basis vector to an extended cell. This additional ambi-

guity is theoretically resolved by taking a primitive cell that is a

unit cell of a minimal volume. However, Fig. 1 (right) shows

that any extended cell can be made primitive by a tiny

perturbation of a single atom in the initial cell. This discon-

tinuity was reported in 1965, see page 80 in Lawton &

Jacobson (1965), and emerges even in one dimension. For the

integer sequence Z, if we shift m of every m + 1 points by a

small "> 0, we obtain the periodic sequence

f0; 1þ "; . . . ;mþ "g þ ðmþ 1ÞZ whose every point is "-close

to a point of Z (and vice versa), but the period m + 1 can be

arbitrarily large after perturbation.

A crystallographic information file (CIF) contains an

ordered basis of vectors in v1; v2; v3 2 R
3 and coordinates of

each point p 2 M on this basis with the atomic type p. The

ordered vectors v1; v2; v3 can be uniquely determined from

their lengths jv1j; jv2j; jv3j and angles ffðv2; v3Þ, ffðv3; v1Þ,

ffðv1; v2Þ. The angles should be ordered according to their

opposite vectors. A unit cell without ordered sides (ordered

basis vectors) can give rise to different periodic point sets as in

Fig. 2.

Ordering basis vectors by their lengths creates another

discontinuity if the vectors have equal lengths because small

perturbations can change their order. Fig. 3 summarizes why

an ordered basis of R3 is more convenient for defining a

periodic crystal than a unit cell. When the basis v1; . . . ; vn is

fixed, we use the shorter notations U;� without repeating this

fixed basis.

3. Rigorous definitions of periodic and crystal

structures

In the past, many different equivalence relations between

latices and crystals were studied. One of the simplest is by

chemical composition or by equality of another property such

as density. However, crystals with the same composition (say,

diamond and graphite of pure carbon) or with the same
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Figure 1
Left: an infinite number of cells generates the same square lattice. Right:
almost any perturbation breaks the symmetry and discontinuously scales
a primitive cell.

Figure 2
For any a > b > 0, let the lattices �;�0 � R2 have the unit cells U;U0 of
the rectangular forms a � b, b � a, respectively. Any collection of m � 2
points with fractional coordinates x 6¼ y in [0, 1] defines different motifs
M � U and M0 � U0. Then the periodic point sets S ¼ �þM,
S0 ¼ �0 þM0 can be arbitrarily different, though their CIFs differ only by
swapping the lengths a, b of the basis vectors.



density can have many different properties, so these equiv-

alences may not suffice.

Hence we are looking for a stronger equivalence that would

guarantee the same physical and chemical properties

according to the structure–property hypothesis which states

that the structure of a material structure should determine all

of its properties (Newnham, 2012).

The IUCr online dictionary (Chapuis, 2024c) contains the

following entry: ‘crystals are said to be isostructural if they

have the same structure but not necessarily the same cell

dimensions nor the same chemical composition, and with a

‘comparable’ variability in the atomic coordinates to that of

the cell dimensions and chemical composition. For instance,

calcite CaCO3, sodium nitrate NaNO3 and iron borate FeBO3

are isostructural’. This phrase contains a cycle of ‘structural’

concepts (‘crystals are isostructural if they have the same

structure’), which should be resolved by defining a structure.

If the keyword ‘necessarily’ was omitted above, the reflex-

ivity axiom would fail. Any attempt to define a ‘comparable’

variability with a threshold "> 0 for deviations of cell sizes

fails the transitivity axiom. Indeed, by sufficiently applying

many tiny deformations, we can convert any given unit cell

(with an empty motif, as in Definition 3) into any other cell, so

the classification under this ‘deviation’ equivalence becomes

trivial.

The IUCr online dictionary defines the longer term crystal

structure as ‘a crystal pattern consisting of atoms’. Both

Chapuis (2024b) and section 8.1.4 in Hahn (2005) defined a

crystal pattern in different words but essentially as a periodic

point set in Definition 4, not considered under rigid equiva-

lence. The word pattern as in the area of pattern recognition

often refers not to a single object but to a class of objects

under an equivalence as we propose in the new Definition 6

below.

Why do we need an equivalence that distinguishes between

all chemical compositions and also close polymorphs that have

the same composition but different properties? Such an

equivalence is important because in the past many HIV

patients suffered by unknowingly taking a more stable but less

soluble polymorph of ritonavir that was accidentally manu-

factured instead (Morissette et al., 2003).

On the other hand, the pointwise coincidence of cells,

lattices and periodic sets from Section 2 is too strict. Indeed,

shifting the whole motif M by a small vector within a fixed unit

cell changes all fractional coordinates of atoms in a CIF, but

not the actual solid material. We consider all equivalences and

comparisons only for ideal periodic crystals and under the

same ambient conditions such as room temperature and

pressure.

Since crystal structures are determined in a rigid form, their

strongest and practically important equivalence is rigid

motion.

Definition 5 (rigid motion, isometry). A rigid motion of Rn is a

composition of translations and rotations. An isometry of Rn is

any transformation that preserves all inter-point distances.

For an ordered basis v1; . . . ; vn of Rn, an orientation can be

defined as the sign of the n � n determinant with the columns

v1; . . . ; vn. Any orientation-preserving isometry of Rn is a

rigid motion. Any orientation-reversing isometry of Rn is a

composition of one (any) mirror reflection and a rigid motion.

Hence, isometry is a slightly weaker equivalence than rigid

motion because mirror images are equivalent under isometry

but not always under rigid motion. Since mirror images can be

distinguished by a (suitably chosen) sign of orientation, it

almost suffices to distinguish crystals only under isometry.

Definition 5 distinguishes between isometry, which makes

sense for any metric space with no Euclidean structure,

and more restrictive rigid motion (orientation-preserving

isometry).

The word motion is justified by the fact that any rigid

motion f, which excludes mirror reflections by definition, can

be realized through a continuous (motion) family of isome-

tries ft : Rn ! Rn, where t 2 ½0; 1�, f1 = f and f0 : p7!p is the

identity map. Isometry was called a symmetry operation in

section 8.1.3 of Hahn (2005). Since symmetry has a wider

meaning in science, we use the more specific concepts of rigid

motion and isometry. The comprehensive books by Engel et al.

(2004) and Zhilinskii (2016) studied lattices through group

actions. In this language, any periodic structure from Defini-

tion 6 is a class in the quotient of all periodic point sets under

the action of the special Euclidean group SEðRnÞ of all rigid

motions in Rn.

Definition 6 (periodic and crystal structures). A periodic

structure is an equivalence class of periodic point sets S � Rn

under rigid motion. A crystal structure is an equivalence class

of periodic crystals with atomic attributes under rigid motion

in R3.

Section 2 in Nespolo et al. (2018) defined a crystal structure

as ‘an idealized periodic pattern of atoms in 3D space using

the corresponding coordinates with respect to the chosen

coordinate system’. This pattern coincides with a crystal

pattern (Chapuis, 2024b) in section 8.1.4 of Hahn (2005) and is

a single representative of a periodic structure, introduced as a

class of all rigidly equivalent crystals in Definition 6.

Any explicit use of coordinates for a crystal representation,

like in a CIF, requires choosing an ordered basis and a motif of

points with fractional coordinates in this basis. Definition 4

called such objects periodic point sets and periodic crystals.

Shifting a motif by a fixed vector changes the description in a
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Figure 3
Due to the ambiguity of Fig. 2, a unit cell U with a motif M � U can
define a periodic point set only after choosing an ordered basis for U. A
periodic point set is a union of lattices �þ p shifted by all p 2 M. A
periodic crystal is a periodic set of atoms (points with chemical elements
or other attributes).



CIF but not the real structure which is considered to be a class

of equivalent representations

Then a periodic crystal in the sense of the classical cell-

based Definition 4 becomes one of infinitely many coordinate-

based representations of a crystal structure in the sense of the

new Definition 6. Hence crystals are defined as the same if all

their atoms can be matched by rigid motion. If there is no ideal

match, any slightly different structures can be called close

rather than ‘the same’ because any tolerance makes the clas-

sification trivial.

Ignoring atomic attributes maps any periodic crystal to a

periodic set of points (atomic centers). Though this projection

might seem to lose all chemistry, Richard Feynman gave us a

visual hint in his first lecture on atomic theory (Fig. 4) to

compare crystals only by atomic centers without chemical

elements.

Despite the apparent simplicity, Definition 6 brings up a

hard problem of efficiently distinguishing periodic structures,

which will be stated in Section 6 when defining a few more

concepts. A recent and almost complete solution to this

problem has made Definition 6 practically important, espe-

cially for detecting thousands of previously unknown near-

duplicates in major databases. Sections 4 and 5 will discuss

how to distinguish crystal structures and continuously quantify

their differences.

4. Descriptors versus invariants under a given equiva-

lence

Distinguishing objects under any equivalence relation from

Definition 1 necessarily requires the concept of an invariant.

Such a numerical property is often called a feature or

descriptor without specifying an equivalence. In the sequel, for

simplicity, we use isometry as our main equivalence, denoted

by S ’ Q. Extensions to rigid motion will need a sign of

orientation.

Definition 7 (invariant, complete invariant). A function I on

periodic point sets is called an isometry invariant if any

isometric sets S ’ Q have I(S) = I(Q) or, equivalently if

IðSÞ 6¼ IðQÞ then S 6’ Q. An invariant I is called complete

(injective or separating) if the converse also holds: if S 6’ Q

then IðSÞ 6¼ IðQÞ.

Though it is very tempting to reduce a periodic point set to a

finite subset such as an extended motif, this reduction can lead

only to many non-isometric subsets as in Fig. 5. Hence, there is

no simple way to reduce a periodic point set to a single finite

subset. Taking finite clouds around every atom in a motif can

lead to a complete invariant of periodic point sets under

isometry (Anosova & Kurlin, 2021), but the continuity under

perturbations needs careful justifications (Anosova & Kurlin,

2022).

A simple isometry invariant of a periodic point set S is the

number m of points within a primitive unit cell U of S. This

invariant is weak and cannot distinguish any lattices. A

complete (injective or separating) invariant I is the strongest

possible in the sense that I distinguishes all non-isometric sets.

The side-side-side (SSS) theorem from school geometry can

be rephrased in terms of invariants by stating that a complete

invariant of three unordered points under isometry of Rn

consists of three inter-point distances up to permutations. If all

m given points are ordered, the m�m matrix of their pairwise

distances is complete under isometry by Schoenberg (1935).

The case of unordered points is more practical for mole-

cules whose many atoms can be indistinguishable as in the

benzene ring. The naive extension of distance matrices to m

unordered points requires m! permutations, which is imprac-

tical even for small m. Hence the important requirement for

invariants is their computability, e.g. in polynomial time of the

input size.

The invariance condition is the minimal requirement for a

descriptor to be practically useful. A non-invariant such as the

list of fractional coordinates of all motif points p 2 M cannot

distinguish between any periodic structures even under

translation because all points of a motif M can be slightly
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Figure 4
Feynman’s first lecture in Feynman et al. (1971) has a table (redrawn here
in a simpler form) of seven cubic crystals that all differ by their periodic
structures (purely geometrically) as in Definition 3 after we ignore all
chemical elements.

Figure 5
Any periodic set has many non-isometric subsets within boxes or balls of the same cut-off radius. If an original basis is forgotten, it can be hard to
reconstruct the initial periodic structure from its arbitrary finite subset.



moved along the same vector within a fixed unit cell without

changing the underlying periodic structure in the sense of

Definition 6.

The related concept of an equivariant means a function E(S)

such that any rigid motion f affects E(S) in a way controlled by

f so that E½f ðSÞ� ¼ Tf ½EðSÞ�, where Tf depends only on f but

not on S. The invariance means that Tf is the identity.

For example, the center of mass of a finite molecule M is

equivariant (rigidly moves together with M). But the center of

mass of a motif M is not equivariant for a periodic point set S

because a translation can push one point p 2 M through a side

face of a unit cell U, so the new periodic translate of p in the

cell U non-equivariantly changes M and its center of mass.

Any linear combination of given point coordinates is

equivariant under linear transformations, while invariants are

much more restrictive and hence valuable. Equivariants are

often used for representing inter-atomic forces by vectors that

should be rigidly moved with the whole structure. Any

collection of forces (one vector at every atom) can be inter-

preted as an ordered pair (initial structures, final structure

moved by these forces).

Hence, complete invariants suffice to describe not only

static structures but also any dynamics in the space of struc-

tures. Mathematical crystallography has developed many

approaches to unambiguously identify a periodic structure

under rigid motion, for example using a theoretically unique

reduced cell (Niggli, 1928). Then any periodic structure can

have standard settings in the reduced cell (Parthé et al., 2013).

In theory, this conventional representation is complete under

rigid motion.

Fig. 1 (right) shows that almost any noise can arbitrarily

scale up any reduced cell. Theorem 15 in Widdowson et al.

(2022) states that this discontinuity under tiny perturbations

holds even for lattices, which have motifs consisting of only

one point.

The discontinuity of cell-based representations allows

anyone to disguise a near-duplicate as a new material by

making any extended cell primitive due to a slight displace-

ment of atoms and by replacing some atoms with similar ones.

To stop potential duplicates, we need continuous invariants

that can quantify any (near-)duplicates in terms of a distance

metric. The more practically important requirements of

continuity and reconstructability in Fig. 6 will be formalized in

Section 5.

5. Similarities versus distance metrics and continuity

Section 4 justified the importance of invariants for distin-

guishing periodic structures. This section formalizes the

concept of continuity with respect to a distance metric. We

start from the simplest non-trivial case of 2D lattices.

De Lagrange (1773) classified all lattices � � R2 under

isometry by using the quadratic form Qðx; yÞ ¼

q11x2 þ 2q12xyþ q22y2, whose coefficients are expressed via a

basis v1, v2 of a lattice � by the formulae q11 ¼ v1 � v1,

q22 ¼ v2 � v2 and q12 ¼ v1 � v2. The extra conditions

0<q11 � q22 and � q11 � 2q12 � 0 guarantee the uniqueness

of the form Q. The corresponding basis of � is called reduced

and is unique under the isometry of R2 but not under rigid

motion because the bases v1 = (1, 0), v�2 ¼ ½� ða=2Þ;�b� for

0< a< 1< b have the same reduced form

Qðx; yÞ ¼ x2 � axyþ b2y2 and generate lattices that are

mirror images and not related by the rigid motion of R2.

In a more geometric approach, Selling (1874) and later

Delone et al. (1934) added to any basis v1, v2 of R2, the extra

vector v0 ¼ � v1 � v2 and the restriction that all pairwise

angles between these vectors are non-acute, which means 90�

or more. More recently, Conway & Sloane (1992) called such a

collection v0; v1; v2 an obtuse superbase. This name is justified

by the fact that any vector v 2 R2 can be written as

v ¼ a1v1 þ a2v2 for unique a1; a2 2 R in a basis v1, v2 and also

as v ¼ b0v0 þ b1v1 þ b2v2 for unique b0 ¼ � ða1 þ a2Þ=3,

b1 ¼ ð2a1 � a2Þ=3 and b2 ¼ ð2a2 � a1Þ=3 so that

b0 þ b1 þ b2 ¼ 0.

While any lattice in R2 has infinite non-isometric bases [see

Fig. 1 (left)], its obtuse superbase is unique up to isometry.

Indeed, any non-rectangular lattice � � R2 has only two

opposite superbases �fv0; v1; v2g, which are related by the

twofold rotation around 0 2 R2, and whose all six vectors are

orthogonal to the boundary of the hexagonal Voronoi domain

Vð�Þ ¼ fp 2 R2 : jpj � jvj for v 2 � � f0gg in Fig. 7 (left)

(see Voronoi, 1908). All obtuse superbases of a rectangular

lattice are related by reflections and are not unique under rigid

motion. Fig. 7 (right) shows two obtuse superbases (mirror

images) for v1 = (a, 0), v2 = (0, b) and v0 = (� a, � b).

Definition 8 (root invariant RIð�Þ of a lattice� � R2). Let a

lattice � � R2 have an obtuse superbase v0, v1, v2, so that v1,

v2 generate �, v0 þ v1 þ v2 ¼ 0 and vi � vj � 0 for all distinct

i; j 2 f0; 1; 2g. Write the root products rij ¼ ð� vi � vjÞ
1=2 in

increasing order 0 � r12 � r01 � r02, which might re-order the
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Figure 6
Non-invariants versus progressively harder requirements for isometry
invariants, which will be all formalized in Section 5. For periodic crystals,
invariants should be computable in the polynomial time for the size of the
motif in order to be useful in practice.

Figure 7
Any lattice � � R2 has an obtuse superbase of basis vectors v1; v2 with
v0 ¼ � v1 � v2 and vi � vj � 0 for distinct i; j 2 f0; 1; 2g, which is unique
under isometry, but not under rigid motion (for the rectangular lattice on
the right).



vectors v0; v1; v2 without changing �. The root invariant is the

ordered triple RIð�Þ ¼ ðr12; r01; r02Þ, where only r12 can be 0.

Theorem 4.2 in Kurlin (2022b) proved that RIð�Þ is a

complete invariant of all lattices � � R2 under isometry, also

under rigid motion after enriching RIð�Þ with a sign of

orientation. The key advantage of RIð�Þ in comparison with a

reduced basis is the continuity under perturbations. In Kurlin

(2022b), figure 4 explains the discontinuity of reduced bases,

while theorems 7.5 and 7.7 prove the bi-continuity of the root

invariant RIð�Þ.

Fig. 8 visualizes the continuous space of all 2D lattices under

isometry composed (for simplicity) with uniform scaling,

which maps each root product to �rij ¼ rij=ðr12 þ r01 þ r02Þ.

Since �r12 þ �r01 þ �r02 ¼ 1, we can use only two independent

coordinates x ¼ �r02 � �r01 and y ¼ 3�r12 which define the

quotient triangle QT ¼ fxþ y � 1; x 2 ½0; 1Þ; y 2 ½0; 1�g. Any

rectangular lattice �ða; bÞ with an obtuse superbase v1 = (a, 0),

v2 = (0, b), v0 = (� a, � b) for a � b has RIða; bÞ ¼ ð0; a; bÞ and

ðx; yÞ ¼ ½ðb � aÞ=ðbþ aÞ; 0�. All square lattices with a = b are

represented by the origin (x, y) = (0, 0). The point (1, 0) is

excluded as a limit case of lattices with infinitely thin and long

cells.

In summary, all classes of 2D lattices under isometry and

uniform scaling are in a 1–1 bi-continuous correspondence

with all points in the quotient triangle QT. The Bravais classes

of square and hexagonal lattices are the points (0, 0) and (0, 1),

respectively. The Bravais class of centered rectangular lattices

consists of two boundary edges (without endpoints): the

hypotenuse x + y = 1 and vertical side x = 0, y 2 ð0; 1Þ.

Any continuous path in QT is realized as a continuous

deformation of lattices. For example, the unit square lattice �0

with the obtuse superbase (3, 0), (0, 3), (� 3, � 3) and

RIð�0Þ ¼ ð0; 3; 3Þ can be continuously deformed into the

hexagonal lattice �1 with the obtuse superbase ð2
ffiffiffi
2
p
; 0Þ,

ð�
ffiffiffi
2
p
;�

ffiffiffi
6
p
Þ and RIð�1Þ ¼ ð2; 2; 2Þ along the vertical side x =

0, y 2 ð0; 1Þ through the lattices �y with

RIð�yÞ ¼ ð2y; 3 � y; 3 � yÞ and the bases v1 ¼ ðl; 0Þ and

v2 ¼ � 4y2=l; ðl2 � 16y4=l2Þ1=2
� �

, where l ¼ ð5y2 � 6yþ 9Þ1=2

and y continuously moves from 0 to 1.

Fig. 8 contrasts the discrete tree of five Bravais classes of 2D

lattices with the continuous map on the quotient triangle QT.

Although every orthorhombic crystal from the CSD is

represented by three rectangular lattices (on three pairs of

reduced basis vectors), about 45% of all resulting lattices are

oblique and continuously fill the interior of QT apart from the

sparse corner close to (1, 0), where lattices have very thin and

long primitive unit cells. All non-generic lattices occupy lower-

dimensional subspaces in the continuous space of lattices.

One can define many continuous distances between points

in the quotient triangle QT in Fig. 8, hence between classes of

2D lattices under isometry and uniform scaling. Section 5 in

Kurlin (2022b) gave closed-form expressions for metrics

between root invariants and section 6 quantified deviations

from symmetry by continuous chiral distances (see Bright et

al., 2023a).

Any lattice in R3 has an obtuse superbase, which is unique

under isometry only for generic lattices whose Voronoi

domain is a truncated octahedron. Lemmas 4.1–4.5 in Kurlin

(2022a) explicitly described all non-isometric obtuse

superbases for the five Voronoi types of 3D lattices. These

results led to a complete root invariant of lattices under

isometry in R3 in Kurlin (2022a). The root invariant of a 3D

lattice requires complicated continuous distances satisfying

the metric axioms in Definition 9 below and will appear in a

forthcoming work.

The even more general case of periodic point sets needs a

metric satisfying the axioms below. This metric is a distance

between two objects, not a numerical property of a single

object.

Definition 9 (distance metric). For any objects under an

equivalence relation A � B from Definition 1, a distance

metric dðA;BÞ is a function satisfying these axioms:

(1) coincidence: dðA;BÞ ¼ 0 if and only if A � B;

(2) symmetry: dðA;BÞ ¼ dðB;AÞ for any objects A, B;

(3)4 inequality: dðA;BÞ þ dðB;CÞ � dðA;CÞ foranyA,B,C.

The positivity property dðA;BÞ � 0 follows the axioms

above. A metric is needed to formalize the continuity of

invariants in Problem 10 below. Though classical crystal-

lography theoretically achieved the completeness of cell-based

invariants, Problem 10 asks for more practically important

invariants that have no discontinuities at boundaries of 230 (or

any other number of) classes in the fully connected crystal

universe.

Problem 10 (isometry classification of periodic structures).

Find a function I on all periodic point sets S � Rn satisfying

the following practically important conditions:
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Figure 8
For each crystal in the CSD with a given basis v1; v2; v3, we took three
lattices generated by the bases ðv1; v2Þ, ðv2; v3Þ and ðv3; v1Þ. The resulting
2.6 million+ 2D lattices populate a triangle continuously expanding the
tree of Bravais classes. The color indicates a logarithmically scaled
number of lattices whose invariants are close to (x, y), see the earlier
version in figure 9 of Bright et al. (2023b).



(a) invariance: if S ’ Q are isometric, then IðSÞ ¼ IðQÞ;

(b) completeness: if IðSÞ ¼ IðQÞ, then S ’ Q are isometric;

(c) continuity: there is a metric d satisfying the axioms of

Definition 9 under isometry and the " � � continuity below:

for any "> 0 and a periodic point set S, there exist C and �> 0

such that if Q is obtained by perturbing any point of S up to �

in Euclidean distance, then d½IðSÞ; IðQÞ� � C";

(d) reconstructability: any periodic point set S � Rn can be

reconstructed (uniquely up to isometry) from its invariant

I(S);

(e) computability: the invariant I, metric d and reconstruc-

tion of S � Rn can be obtained in polynomial time of the motif

size from a suitably reduced basis of S and motif points in this

basis.

Due to the coincidence axiom of a metric in Definition 9,

the equality I(S) = I(Q) in the completeness condition (b) of

Problem 10 is best checked as d½IðSÞ; IðQÞ� ¼ 0. If comput-

ability condition (e) of Problem 10 is missed, one impractical

invariant I(S) satisfying all other conditions can be defined as

the isometry class of all (infinitely many) periodic point sets

isometric to S. We assume that a periodic point set S is given

with a reduced basis such as the Niggli basis in R3 or the

Minkowski basis in a higher dimension n since lattice reduc-

tions can be slow for n> 3 (see Nguyen & Stehlé, 2009).

The " � � continuity condition (c) of Problem 10 is a clas-

sical but weak version of continuity. The stronger Lipschitz

continuity states that C and � are independent of S and ", so if

Q is "-close to S, then d½IðSÞ; IðQÞ� � C", where a constant �

was absorbed by C".

For 2D lattices �, theorem 7.5 in Kurlin (2022b) proved the

intermediate Hölder continuity, stating that if the coordinates

of the basis vectors of � are perturbed up to ", the root

invariant RIð�Þ changes up to
ffiffiffiffiffiffi
6l"
p

in the Euclidean metric,

where l is the maximum length of given basis vectors of �.

The stronger Lipschitz continuity (without the factor
ffiffi
l
p

)

seems unrealistic for lattices because the rectangular lattices

with the "-close bases ðl; 0Þ; ð0; "Þ and ðl; 0Þ; ð0; 2"Þ can

substantially differ even by unit-cell areas l" and 2l" whose

difference l" can be arbitrarily large if l has no upper bound.

Fig. 9 visualizes the advantages of invariants that satisfy all

the conditions of Problem 10. In the past, incomplete,

discontinuous or non-invariant descriptors mapped periodic

crystals to latent spaces (image spaces of descriptor functions).

The non-invariance (existence of false negatives) means

that the same crystal structure maps to different points, which

makes the problem of distinguishing structures even harder.

The incompleteness (existence of false positives) means that

non-isometric structures map to the same point, which leaves

no chance to reconstruct a correct crystal. The discontinuity

under tiny atomic displacements means that near-duplicates

can appear very distant in the latent space.

All the conditions of Problem 10 guarantee that a required

invariant I is a bijective and continuous map from the space of

crystal structures to the space of invariant values. The inverse

map I� 1 reconstructs any periodic point set S from I(S).

6. Conclusions: the practical importance of definitions

This section summarizes the progress in developing invariants

that satisfy the conditions of Problem 10. The root invariant

from Definition 8 satisfies all conditions of Problem 10 for all

2D lattices even with the stronger Hölder continuity (instead

of the weaker " � � continuity) under rigid motion, which is

stronger than isometry. For 3D lattices, Kurlin (2022a) defined

a complete isometry invariant whose continuity under

perturbations is being finalized.

Past approaches defined metrics between lattices that

allowed only slow or approximate computations. Some of

these theoretical metrics were proved to be continuous for

isometry classes of lattices in any dimension (Mosca & Kurlin,

2020).

In Widdowson & Kurlin (2022), for arbitrary periodic point

sets S in Rn, definition 3.3 defined the Pointwise Distance

Distribution PDDðS; kÞ, where k is the number of neighbors

taken into account for any point in a motif. Theorem 4.3

proved the Lipschitz continuity, stating that perturbing any

atom up to " changes PDDðS; kÞ only up to 2" in a suitable

metric. Theorem 4.4 proved that PDDðS; kÞ is generically

complete in the sense that almost any periodic structure

S � Rn (outside singular subspaces of measure 0) can be

reconstructed from a lattice of S and PDDðS; kÞ with an

explicit upper bound on k depending on a given unit cell and

motif of S. Hence PDD can be considered a DNA-style code

that uniquely identifies almost any real periodic crystal. PDD

is stronger for periodic crystals than DNA, which allows

identical twins (about 0.3% among humans) with indis-

tinguishable DNA (see Osterman et al., 2022).

In practice, PDDðS; 100Þ distinguished all (more than 660

000) different periodic crystals in the Cambridge Structural

Database (CSD) through more than 200 billion pairwise

comparisons, which were completed within two days on a

modest desktop. Section 6 in Widdowson & Kurlin (2022) lists

several pairs that turned out to be near-duplicate CIFs, where

all numbers (unit-cell parameters and fractional coordinates)

were identical almost to the last decimal place, but one atom

was replaced with a different one, e.g. Cd with Mn in the pair

JEPLIA versus HIFCAB. The integrity office of the

Cambridge Crystallographic Data Centre and all other crys-

tallographers who looked at these previously unknown near-

duplicates agreed that such an atomic replacement should
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Figure 9
To explain the structure–property relations, a crystal structure S with
infinitely many representations under isometry should be bijectively
mapped by a complete and continuous invariant I to the space of invar-
iants so that any image I(S) can be efficiently inverted back to a repre-
sentative crystal S � R3.



more substantially perturb the geometry of atomic centers, so

five journals are investigating the data integrity of the

underlying publications.

A forthcoming paper will extend PDD invariants to

distinguish all known pairs of homometric crystals that (by

definition) have the same (infinite) list of all interatomic

distances. We conjecture that the extended invariants are

theoretically complete for all periodic point sets under

isometry in any Euclidean Rn.

The comparisons above use only geometry of atomic

centers without chemical elements. After excluding the

unrealistic duplicates found in the CSD, the PDD invariants

mapped all non-isometric crystal structures to non-isometric

periodic structures, where each atom is replaced with a zero-

sized point.

Since this map is injective, the more important conclusion is

the crystal isometry principle (CRISP) which states that any

real periodic structure has a unique location in a common

Crystal Isometry Space of all periodic structures (isometry

classes of periodic point sets) independent of symmetry, see

Fig. 10.

Hence, in principle, all atomic types in a real periodic crystal

can be reconstructed from a sufficiently precise geometry of

their atomic centers. The Eureka moment for this insight

happened in May 2021 when the second author was reading

Richard Feynman’s first lecture ‘Atoms and motion’ (see Fig.

4) with the table of seven cubic crystals whose chemistry can

be reconstructed from the only geometric parameter d

(smallest inter-atomic distance) known to two decimal places.

The crystal isometry principle does not claim that any

periodic point set gives rise to a real periodic crystal because

inter-atomic distances cannot be arbitrary. However, any

newly discovered periodic crystal will appear in the same

continuous universe, where all known crystals are already

visible. Fig. 8 showed a map of 2D lattices under isometry and

uniform scaling. Continuous maps of the CSD and other

databases in invariant coordinates were presented at the IUCr

congress (see Kurlin, 2023) and will be discussed in future

work.

While the realizability of root invariants by lattices in two

and three dimensions has been established in Kurlin (2022b,a),

we keep working on the harder problem of realizability of

PDD invariants. The implemented application of PDD is the

ultra-fast detection of (near-)duplicates in structural data-

bases. The final sections in Widdowson et al. (2022) and

Widdowson & Kurlin (2022) reported over a dozen such pairs

in the CSD. Another forthcoming work will report less

obvious (near-)duplicates in the CSD and many more dupli-

cates in the Crystallography Open Database (COD), Inor-

ganic Crystal Structure Database (ICSD), Materials Project

and others.

The most important practical impact of CRISP is the

scientific barrier for ‘paper mills’ and ‘duplicate generators’

that can output thousands and even millions of ‘predicted’ and

sometimes ‘synthesized’ materials by disguising known struc-

tures as new by tiny perturbations of cell parameters and

atomic coordinates (structure factors or other experimental

data if needed) to scale up a primitive cell, and finally by

changing some non-standard chemical elements to their

suitable neighbors in the periodic table. Google’s example

below shows that even big numbers cannot mask (near-)

duplicates that we can filter out by numbers in given CIFs even

before computing invariants.

The paper finishes by describing embarrassing coincidences

in Google’s GNoME database of 384 398 ‘stable’ structures in

Google (2023) predicted by expensive DFT optimization

(Mardirossian & Head-Gordon, 2017). The following crystal

bug test can substantially reduce further invariant computa-

tions for such a large database. Ordering all CIFs by the unit-

cell volume detected many thousands of pairs of CIFs in

GNoME that have identical volumes to all (eight) decimal

places (digits).

Other colleagues found some duplicates after ordering all

CIFs by file sizes in bytes, but filtering by the unit-cell volume

is more justified. Further filtering by six parameters (three

lengths and three angles) of a unit cell found 30 000+ CIFs

with identical unit cells, again with all given digits.

Table 1 summarizes more hard-to-explain coincidences. The

CIFs with GNoME IDs 4135ff7bc7, 6370e8cf86, c6afea2d8e

and e1ea534c2c are identical texts (symbol-by-symbol). The

supporting information contains an Excel table listing more
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Figure 10
The crystal isometry principle states that all atomic types in real periodic
crystals can be reconstructed from the geometry of atomic centers given
with enough precision, first stated in section 6 of Widdowson et al. (2022)
and inspired by Feynman’s visual hint in Fig. 4, see Figure 1-7 in Feynman
et al. (1971).

Table 1
Coincidences across all CIFs in the GNoME database of 384 398 publicly
available CIFs (Google, 2023).

The first column shows the sizes of the found groups whose CIFs are (near-)
duplicates. Columns 2–5 count fully identical (symbol-by-symbol) CIFs, the
CIFs where all numbers (unit-cell parameters and fractional coordinates)

coincide with all digits (at least six), then CIFs where all numbers coincide up
to four and two digits, respectively. The last row counts the total number of the
involved CIFs. The largest groups are listed in Table 2

Group size:
No. of CIFs

CIFs are identical
texts

All numbers
coincide

Rounding to
four digits

Rounding to
two digits

10 0 0 0 1
9 0 1 1 0
7 0 1 1 2
6 0 2 2 4
5 0 2 3 18

4 1 8 12 92
3 43 72 96 670
2 1089 1481 1932 7856
Total 2311 3248 4243 18228

http://doi.org/10.1107/S2052252524004056


than a thousand pairs of identical CIFs. If chemical elements

are ignored, GNoME has 1481 pairs of CIFs with all equal

numbers (unit-cell parameters and fractional coordinates). If

we round all numbers to four and two decimal places for the

precision of 10� 4 Å and 10� 2 Å, respectively, the last two

columns in Table 1 show many more groups of CIFs that

become numerically identical to each other. Table 2 shows

chemical compositions for the three largest groups of CIFs.

The first part of Table 2 shows that GNoME contains a

group of nine CIFs, where all numbers are equal (with all

decimal places) but chemical compositions differ by one or

two atoms. For example, Dy, Y, Ho and Tb are often swapped.

If all numbers are rounded to two digits, one more CIF

(a18d30a9fc) joins the group of duplicates, where Ru is

replaced with Re. So comparisons by unit-cell parameters and

fractional coordinates can help to filter out obvious (near-)

duplicates even in big data.

This paper clarifies the concept of a periodic crystal in terms

of an ordered basis whose re-ordering creates ambiguity or

discontinuity in Fig. 2. Definitions 2, 3 and 4 are visually

summarized in Fig. 3. Rigid motion (or slightly weaker

isometry) is motivated as the strongest equivalence between

crystals whose structures are determined in a rigid form. The

practical importance of distinguishing near-duplicates in major

structural databases requires us to define a periodic (crystal)

structure as an equivalence class under rigid motion. Any

deviations from an ideal rigid matching should be continu-

ously quantified in terms of a distance metric satisfying all

axioms and at least the classical " � � form of continuity.

As a visual summary, Fig. 6 highlights the importance of

invariants versus non-invariant descriptors. Fig. 5 explains that

similarities based on single (hence non-invariant) finite

subsets are hard to justify for periodic structures. In the past,

crystallography developed conventional representations

based on reduced that can be considered complete isometry

invariants in theory.

Now computational resources are used for generating

millions of structures, many of which turn out to be near-

duplicates. Hence Problem 10 has become the important

scientific barrier for paper ‘milling’ by validating any newly

discovered crystals versus all known ones. Future work will

extend PDD to a full solution of Problem 10. The crystal

isometry principle and underlying invariants were used for

property predictions in the literature (Ropers et al., 2022;

Balasingham et al. 2024a,b) and were presented at the IUCr

congresses in 2021 and 2023, the European Crystallographic

Meeting 2022, the BCA annual meetings 2022–2024, and

MACSMIN 2021–2023 (Mathematics and Computer Science

for Materials Innovation).
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