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Crystallography is a quintessential method for determining the atomic structure

of crystals. The most common implementation of crystallography uses single

crystals that must be of sufficient size, typically tens of micrometres or larger,

depending on the complexity of the crystal structure. The emergence of serial

data-collection methods in crystallography, particularly for time-resolved

experiments, opens up opportunities to develop new routes to structure deter-

mination for nanocrystals and ensembles of crystals. Fluctuation X-ray scat-

tering is a correlation-based approach for single-particle imaging from

ensembles of identical particles, but has yet to be applied to crystal structure

determination. Here, an iterative algorithm is presented that recovers crystal

structure-factor intensities from fluctuation X-ray scattering correlations. The

capabilities of this algorithm are demonstrated by recovering the structure of

three small-molecule crystals and a protein crystal from simulated fluctuation

X-ray scattering correlations. This method could facilitate the recovery of

structure-factor intensities from crystals in serial crystallography experiments

and relax sample requirements for crystallography experiments.

1. Introduction

Understanding the atomic structure of molecules and mate-

rials is critical to many scientific fields, such as pharmacology,

molecular biology, chemistry and materials science (Brink &

Helliwell, 2019). Biomolecules, such as proteins, perform

specific functions within the body. The atomic structure facil-

itates these functions and, hence, knowing the atomic struc-

ture of these biomolecules can inform how they interact. This

forms the basis of structure-based drug design (Reynolds,

2014; Marrone et al., 1997), where potential trial medicines are

chosen based on targeting specific components of biomolecule

structure. Through this process, compounds can be optimized

to improve binding and specificity for the target component

(Anderson, 2003).

X-ray crystallography is the dominant structure-determi-

nation technique for proteins. Of the over 212 000 deposited

structures in the Protein Data Bank (PDB), over 180 000 were

discovered with X-ray crystallography (Chapman & Fromme,

2017; Berman et al., 2000). In this technique, a single crystal is

rotated within an X-ray beam to obtain diffraction patterns of

the crystal in all orientations. The diffraction patterns sample a

slice of the reciprocal-space intensity function, which consists

of a series of Bragg peaks. The intensity of the Bragg peaks is

related to the electron density in the crystal (Warren, 1990),

which can be used to construct a model of the atomic structure

being investigated. To achieve 2–3 Å resolution, protein

crystals need to be of the order of tens of micrometres in size

(Holton & Frankel, 2010).

X-ray crystallography is limited by two interconnected

factors: (i) X-ray damage to the crystals during data collection

and (ii) the requirement for sufficiently large crystals
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(Chapman et al., 2014). X-ray damage to the crystal can cause

the loss of high-resolution Bragg peaks and induce structural

changes in the atomic structure (Owen et al., 2006). Some

amino acids, the basic structural units of proteins, are more

susceptible to X-ray damage than others (Weik et al., 2000;

Burmeister, 2000). This can affect the interpretation of the

structure, particularly active sites in metallo-proteins (Yano et

al., 2005; Carugo & Carugo, 2005). Larger crystals are less

susceptible to X-ray damage and scatter more strongly than

smaller crystals (Holton, 2009). The scattered signal must be

strong enough to overcome the noise of the background

scattering. Increasing the signal-to-noise ratio can be accom-

plished by increasing the size of the crystals, or increasing the

exposure time. However, increasing the exposure time

necessarily increases the X-ray dose and, hence, potential

damage to the crystal. Crystals have been cryogenically cooled

to mitigate radiation damage as early as the 1960s in pre-

synchrotron experiments (Low et al., 1966). Improved X-ray

sources at synchrotrons have made cryo-freezing critical in

determining protein structure (Hendrickson, 2000). The

structures of cryo-cooled crystals can be different from those

at physiological temperatures and are not suitable for all time-

resolved experiments (Botha et al., 2015).

Serial crystallography is a development upon traditional

crystallography, where the structure is determined by merging

the diffraction patterns from many single crystals, rather than

one crystal being rotated in the beam. The first serial crys-

tallography experiments were conducted at ultra-fast ultra-

bright X-ray sources called X-ray free electron lasers

(XFELs). At these facilities, a solution of microcrystals is

continuously streamed into an XFEL beam. When a femto-

second pulse of X-rays hits a single crystal in a random

orientation, the exposure is fast enough to capture the

diffraction of the crystal before it is destroyed in the beam

(Chapman et al., 2014). The diffraction patterns of many

crystals in random orientations are collected individually, one

crystal per exposure. Each crystal is in a different orientation,

so each diffraction pattern measures a different slice through

the reciprocal-space intensity function. By collecting thou-

sands of diffraction shots of crystals in random orientations,

the whole of the reciprocal-space intensity function can be

sampled (Schriber et al., 2022). There are a variety of sample-

delivery methods for serial femtosecond crystallography

experiments. These include liquid or gas injection (Nogly et al.,

2016; Vakili et al., 2020), and fixed target systems such as tape

drives (Beyerlein et al., 2017a) and membrane targets (Roedig

et al., 2017; Fuller et al., 2017).

There are several advantages of serial femtosecond crys-

tallography over traditional X-ray crystallography with a

single crystal. XFELs are of the order of billions of times

brighter than typical synchrotron sources (Boutet et al., 2018)

and can measure smaller crystals than can be achieved at

synchrotron sources (Spence, 2017). Smaller crystals also

facilitate chemical mixing experiments (Stagno et al., 2017),

where diffusion of a ligand into a crystal before injection can

induce conformational change in the investigated structure.

Radiation damage effects are mitigated by capturing the

diffraction before destruction, which facilitates room-

temperature experiments (Chapman et al., 2014). Room-

temperature crystallography allows for time-resolved studies

of protein and enzymatic function (Kern et al., 2012),

providing greater insight into structural properties of biomo-

lecules. The development of serial femtosecond crystal-

lography has led to serial crystallographic methods being

applied at synchrotron sources (Botha et al., 2015). Although

radiation damage cannot be outrun as it is in XFEL experi-

ments, measuring an ensemble of crystals can reduce the

radiation dose on a per crystal basis (Weinert et al., 2017).

A potential problem with crystallography methods comes

with multi-crystal diffraction shots. Crystal diffraction patterns

need to be indexed, which is a process that determines the

location of each Bragg peak from a crystal in 3D reciprocal

space. If more than one crystal is diffracting in the beam,

diffraction patterns could be misindexed and reduce the

quality of the recovered structure (Nam, 2022). This can occur

in both serial and traditional crystallography experiments.

Frequently, crystals grow in clusters or have some degree of

mosaicity. Indexing algorithms such as XGANDALF

(Gevorkov et al., 2019) and FELIX (Beyerlein et al., 2017b)

can index multi-crystal diffraction patterns. However, experi-

mental demonstrations of these algorithms typically handle

ten or less crystals per diffraction shot (Nam, 2022; Beyerlein

et al., 2017b).

Powder diffraction is another method of structure deter-

mination that measures ensembles of crystals. In a powder

diffraction experiment, a powder of microcrystals is exposed

to an X-ray source. The diffraction from each crystallite is

measured simultaneously, which causes diffraction in the form

of isotropic Debye–Scherrer rings (Warren, 1990). The inte-

grated intensity around each ring as a function of scattering

angle is calculated. Rietveld refinement (Rietveld, 1969) is

then used to determine the crystal structure within the

powder. Powder diffraction is typically used for small unit-cell

crystals, such as organic chemical crystals or minerals. Peak

overlap in the integrated intensity can occur if the unit cell is

too large (Keen, 2020). Biomolecules, such as proteins, have

large unit cells compared with small chemical crystals. As such,

there have only been 19 protein structures solved via powder

diffraction (Spiliopoulou et al., 2020).

Between crystallography and powder diffraction methods,

the number of crystals within the beam is critical in opposing

ways. Modern serial crystallography experiments are hindered

if there are too many crystals diffracting at once, while still

requiring the diffraction from many crystals individually in

many orientations. Conversely, in powder diffraction methods

there is a minimum number of crystals required to form

isotropic diffraction rings. Incomplete or ‘spotty’ rings can

cause miscalculation of the integrated intensity, which can lead

to poor structure recovery (Evans & Evans, 2004).

Fluctuation X-ray scattering (FXS) is a diffraction analysis

technique that could potentially overcome the issue of

measuring too few or too many crystals. FXS was originally

devised to recover the structures of single particles in solution

(Kam, 1977) and is often used in conjunction with ensemble
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measurements. This is achieved by calculating the angular

intensity correlation functions of ensembles of particles,

averaged over many patterns (Zaluzhnyy et al., 2019). FXS has

been used to study the structures of a variety of materials, such

as local structures within carbon amorphous materials (Martin

et al., 2020a), self-assembled lipid phases (Martin et al., 2020b),

gas-injected single particles (Starodub et al., 2012) and viruses

(Seibert et al., 2011). FXS provides many advantages to other

scattering techniques, as it allows for many particles to be

observed within a single exposure, relaxing constraints on the

number of particles in the beam.

In this work, we developed an iterative algorithm that

extracts the Bragg peak intensity from FXS correlation func-

tions, based on an approach developed by Donatelli et al. for

single particles (Donatelli et al., 2015, 2017). Our algorithm

relies on the known location of Bragg peaks in reciprocal

space, which can be determined from known unit-cell para-

meters. We calculated correlation functions from the Bragg

intensities of previously known small-molecule crystal struc-

tures. The correlation functions were used as input to the

iterative algorithm, which recovered the Bragg peak inten-

sities. We then used established methods of structure refine-

ment on the recovered intensities to compare with the original

known structures. Our algorithm could potentially be used to

obtain crystal structures from powder-like samples that do not

meet the requirements for standard crystallography, due to

insufficiently sized crystals or the number of crystals in the

beam. This is a step towards crystallographic structure deter-

mination from multi-crystal patterns that avoids multi-crystal

indexing.

2. Theory and methods

2.1. Fluctuation X-ray scattering

FXS is an X-ray scattering technique that measures the

correlation between the intensities of pairs of points within a

diffraction pattern with respect to the scattering-length

magnitudes q1 and q2 and the angle between the scattering

vectors  (Zaluzhnyy et al., 2019). In a typical FXS experi-

ment, many identical structures in different orientations are

measured in each diffraction pattern. FXS analysis methods

often assume that the orientation distribution of the structures

is uniform and random. The correlation function C(q1, q2,  )

is then given by

Cðq1; q2;  Þ ¼

Z2�

0

Inðq1; �ÞInðq2; �þ  Þd�

* +

n

; ð1Þ

where hin represents the average over n diffraction patterns,

denoted by I(q, �) in polar coordinates (Kirian, 2012). If each

individual diffraction image contains multiple dilute particles

per exposure with a uniform orientation distribution, then the

multiple-particle correlation function converges to the single-

particle correlation function after averaging (Kam, 1977).

FXS has previously been used to study the diffraction of

single particles (Kurta et al., 2017) and amorphous materials

(Wochner et al., 2009). The reciprocal-space intensity function

of these scatterers is continuous, as illustrated in Fig. 1(a), and

so a continuous integral about � is used in equation (1).

However, in a crystallography experiment, a process of peak

finding is conducted that produces a list Q2D of peaks qi =

(qx, qy) 2 Q2D within a single diffraction pattern. The scat-

tering magnitude qi = |qi| of each peak can be calculated using

the sample-to-detector distance and X-ray wavelength, and

each peak has an integrated intensity I(qi). In this case, it is

convenient to define the correlation function C(q1, q2,  ) in

terms of a double sum over all pairs of peaks in the peak list

averaged over n diffraction patterns,

Cðq1; q2;  Þ

¼
P

q12Q2D

P

q22Q2D

Iðq1ÞIðq2Þ�  � arccosðq̂1 � q̂2Þ
� �

* +

n

: ð2Þ

The Dirac delta function � acts as a sifting function that only

includes the correlations between q1 and q2 if the angle

between the vectors is equal to  , as illustrated in Fig. 1(b).

This essentially replaces the continuous integral with a

discrete sum over the peaks observed within a single 2D

diffraction pattern, averaged over many diffraction patterns.

We can equivalently calculate the correlation function from

a list of 3D Bragg peaks, as described by Adams et al. (2020).

Let Qhkl be a list of reciprocal vectors qhkl = (qx, qy, qz) 2Qhkl,

where h, k and l are the Miller indices for the Bragg peaks. We

will denote Qhkl(q) as a subset of Qhkl that has vectors with

magnitude q:

QhklðqÞ ¼ fqhkl such that jqhklj ¼ qg: ð3Þ

Then the correlation function C(q1, q2, �) is given by

Cðq1; q2; �Þ

¼
P

qi2Qhklðq1Þ

P

qj2Qhklðq2Þ

IðqiÞIðqjÞ

Z

�ð� � q̂i � q̂jÞ d�: ð4Þ

Similar to equation (2), this correlation-function calculation is

a double sum over all pairs of peaks in the peak list Qhkl, as

demonstrated in Fig. 1(c). In equations (1) and (2) the angular

coordinate  is in units of radians, but in equation (4) the

coordinate � is a dimensionless quantity between � 1 and 1, or

cosð Þ. The re-parametrization of the angular coordinate will

become useful when describing the correlation function in

terms of Legendre polynomials in equation (8). There are

some factors to consider when establishing the equivalence of

the 2D and 3D correlation functions. Firstly, equation (4) is

related to the 2D function in equation (2) by a multiplicative

factor of |q1||q2|, which accounts for the curvature of the Ewald

sphere. Secondly, if the angular coordinate of the 3D corre-

lation function is sampled over  , it is related to the 2D

correlation function by a multiplicative factor of sinð Þ. The

3D correlation function presents an ideal or ‘ground truth’

correlation function and is the convergence point of the 2D

correlation function over many diffraction patterns. For the

purposes of developing and testing our algorithm, we will be

using the 3D correlation function here.
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2.2. Spherical harmonics

The 3D reciprocal-space intensity function I(q, �, �)

denotes the diffracted intensity from an object, and can be

expanded in terms of spherical harmonic functions Ylm(�, �)

and spherical harmonic coefficients Ilm(q) (Sloan, 2013). The

decomposition is given by

Iðq; �; �Þ ¼
P1

l¼0

Pl

m¼� l

IlmðqÞYlmð�; �Þ: ð5Þ

The spherical harmonic functions are an orthogonal set of real

basis functions determined by

Ylmð�; �Þ ¼

2wlmð Þ
1=2

cosðm�ÞPm
l ðcos �Þ if m> 0

2wlmð Þ
1=2

sinðjmj�ÞP
jmj
l ðcos �Þ if m< 0

wlmð Þ
1=2

P0
l ðcos �Þ if m ¼ 0

8
><

>:
ð6Þ

where Pm
l are the associated Legendre polynomials and wlm

are normalization constants given by

wlm ¼
ð2l þ 1Þðl � jmjÞ!

4�ðl þ jmjÞ!
:

The spherical harmonic coefficients are identified by

IlmðqÞ ¼

Z2�

0

Z�

0

Iðq; �; �ÞYlmð�; �Þ sinð�Þd�d�: ð7Þ

We will denote the forward and backward spherical harmonic

transformations as SH and SH� 1, respectively. That is

IlmðqÞ ¼ SH½Iðq; �; �Þ�

and

Iðq; �; �Þ ¼ SH
� 1
½IlmðqÞ�:

We can define the correlation function C(q1, q2, �) of an

intensity function in terms of the spherical harmonic coeffi-

cients Ilm(q). This derivation is described in the literature by

Saldin et al. (2009), and produces an expression for the

harmonic order matrix B(q1, q2, l), given by

Cðq1; q2; �Þ ¼
P

l

Fð�; lÞBðq1; q2; lÞ; ð8Þ

where

Bðq1; q2; lÞ ¼
Pl

m¼� l

Ilmðq1ÞIlmðq2Þ; and Fð�; lÞ ¼
1

4�
P0

l ð�Þ:

ð9Þ

The relationship between the 2D diffraction patterns in polar

coordinates I(q, �) can be expressed in terms of the 3D reci-

procal-space function of the molecule on the Ewald sphere

I[q, �(q), �] through a re-parametrization of the � coordinate

as a function of q and an arbitrary wavenumber k, stated by

Iðq; �Þ ¼
P1

l¼0

Pl

m¼� l

IlmðqÞYlm½�ðqÞ; ��: ð10Þ

The �(q) re-parametrization is determined by

�ðqÞ ¼
�

2
� sin� 1 q

2k

� �
: ð11Þ

An explicit mathematical description of how the 2D scattering

correlation function is related to the Ewald sphere is described

by Saldin et al. (2009).

2.3. Computation specifics

We represent the correlation function C(q1, q2, �) as a 3D

matrix array with two radial coordinates, q1 and q2, and a
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Figure 1
(a) Correlation calculated from single structures that have continuous reciprocal-space intensity on a 2D detector, as has been previously used for single
particles or amorphous materials. The angular correlation is calculated with respect to scattering magnitudes q1 and q2, and angle  , according to
equation (1). (b) Correlation of Bragg peaks on a 2D detector. The intensities of every pair of points are multiplied and summed together according to
their scattering magnitudes q1 and q2, and the angle  between them, according to equation (2). This illustration would apply to FXS-based crystal-
lography experiments. (c) Correlation of Bragg peaks in 3D reciprocal space. Intensities are similarly multiplied and summed together according to
equation (4). This method was used in this article for algorithm development because it is efficient to compute and it provides the ‘ground truth’ of
correlation intensity.



cosine coordinate, �. The size of this matrix is defined by the

integer parameters nq and n�, which determine the number of

radial and angular sampling points of the correlation function.

The parameter qmax sets the maximum q value for the corre-

lation function and is directly proportional to the minimum

resolution d of the electron density,

d ¼
2�

qmax

: ð12Þ

Hence, high-resolution features within the structure are

related to Bragg peaks with large scattering magnitudes.

The reciprocal-space intensity function is also represented

as a 3D matrix array, with a radial coordinate q and two

angular coordinates, � and �. The size and sampling of the

radial axis is defined by nq and qmax, similar to the correlation

function. The azimuthal angular coordinate � is sampled over

n� points between 0 and 2�, and the longitudinal angular

coordinate � is sampled over n� points between 0 and �. For

consistency with the Driscoll–Healy spherical grid format

(Driscoll & Healy, 1994), we require that n� = 2n�. Using this

format, the spherical harmonic transformations are invertible

up to a spherical harmonic limit nl that is half of n�. That is, n�
= 4nl.

Rearranging equation (8) to solve for the harmonic order

matrix, we invert the F matrix and solve the following equa-

tion:

Bðq1; q2; lÞ ¼
P

�

F � 1ð�; lÞCðq1; q2; �Þ: ð13Þ

We calculate the Moore–Penrose pseudo-inverse of a F matrix

(Ben-Israel & Greville, 2003) because F is a non-square

matrix.

2.4. Iterative projection algorithms

To recover the reciprocal-space intensity function I(q, �, �)

of a crystal given the scattering correlation function C(q1,

q2, �), we will use an iterative projection algorithm. Iterative

projection algorithms solve optimization problems that can be

represented as the intersection between sets. For each set, a

projection operator is defined that maps any given element to

the closest element in the set. An algorithm can be formulated

by applying the projection operators in different combinations

to iteratively search for the intersection between the sets. The

projection operators are typically formed from known prop-

erties of the solution, or constraints. See Marchesini (2007) for

a detailed overview and evaluation of iterative projection

algorithms.

Iterative algorithms have also previously been used in

conjunction with scattering correlation analysis to reconstruct

the electron density of single particles (Donatelli et al., 2015,

2017). Our algorithm is designed to recover the reciprocal-

space intensity function of a crystal, using the spherical

harmonic relationship between the scattering correlation

function and the intensity function, and the sparse support

constraint of known Bragg peak locations. An overview of the

algorithm is presented in Fig. 2.

2.4.1. Modulus constraint. The modulus-constraint projec-

tion operator Pm modifies an intensity function Ii(q, �, �) so

that the spherical harmonic coefficients Ilm(q) of the intensity

function are consistent with the harmonic order matrices

B(q1, q2, l). This process is illustrated in Fig. 3, following the

solid arrows between the blue boxes.

The application of Pm begins by first decomposing the

current intensity function Ii(q, �, �) into a set of spherical

harmonic coefficients Ilm(q), given by
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Figure 2
An overview of the iterative algorithm used in this work. A modulus constraint and a support constraint, shown in the blue boxes, are constructed from
the scattering correlation function C(q1, q2, �) and unit-cell parameters a, b, c, �, �, �, respectively, shown in the green boxes. Together, they are used in
an iterative algorithm to recover the reciprocal-space intensity If (q, �, �) of a single crystal from a random initial intensity Io(q, �, �), shown in the
orange boxes. The yellow box indicates an intermediate intensity function that is obtained after applying the modulus constraint but before the support
constraint.



IlmðqÞ ¼ SH½Iiðq; �; �Þ�: ð14Þ

For each degree l, the q1, q2 indices of the harmonic order

matrices are used for the rows and columns of a 2D matrix,

respectively. This 2D matrix is decomposed into eigenvectors

and eigenvalues as a function q with respect to one of the q

indices. The choice of which q index is irrelevant is due to

symmetry through q1 = q2. These eigenvectors are denoted

ul,n(q), and the associated eigenvalues are denoted �l,n. Next,

the eigenvectors are used as a set of basis vectors to expand

the spherical harmonic coefficients into a set of new coeffi-

cients Klm,n. This basis transformation is denoted by � and

shown by

Klm;n ¼

Z

IlmðqÞul;nðqÞdq ð15Þ

and

Klm;n ¼ �½IlmðqÞ�: ð16Þ

The inverse basis expansion �� 1 is determined by

IlmðqÞ ¼
P

n

ul;nðqÞKlm;n ð17Þ

and

IlmðqÞ ¼ �
� 1½Klm;n�: ð18Þ

Once the Klm,n coefficients have been calculated, they are

scaled by the eigenvalues �l,n to make a new set of modified

K0lm,n coefficients,

K0lm;n ¼
�l;n

P
m jKlm;nj

2

�
�
�
�
�

�
�
�
�
�

 !1=2

Klm;n: ð19Þ

The modified K0lm,n coefficients are converted back to modi-

fied spherical harmonic coefficients I0lm(q) by

I0lmðqÞ ¼ �
� 1½K0lm;n�: ð20Þ

The spherical harmonic coefficients I0lm(q) are now consistent

with spherical harmonic coefficients in the harmonic order

matrix B(q1, q2, l). Finally, the spherical harmonic coefficients

I0lm(q) are used to obtain an updated intensity function I0i(q,

�, �):
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Figure 3
A flowchart illustrating the steps of the modulus constraint. The process begins with the current intensity function shown in the orange box and follows
the solid black arrows between the dark blue boxes. Dashed arrows between the light blue boxes indicate additional steps required to account for lossy
transformation processes. The green boxes illustrate the calculation of eigenvectors and eigenvalues from the harmonic order matrix and the correlation
function, and where they are used in the transformation steps. After applying the modulus constraint, the intermediate intensity function shown in the
yellow box is produced.



I0i ðq; �; �Þ ¼ SH
� 1
½I 0lmðqÞ�: ð21Þ

2.4.2. Lossy basis expansions. For each basis-expansion

step, there are a finite number of terms that can be calculated.

For example, the number of eigenvalues and eigenvectors that

are calculated in the � expansion depends on the number of

radial-sampling points nq that sample the intensity and

correlation functions. The maximum number of spherical

harmonic coefficients nl that can be calculated is limited by the

number of angular-sampling points n�, n� in the intensity

function. In both of these basis expansions, higher-order terms

are not accounted for and not constrained by the modulus

constraint. To account for the higher-order terms, there is a

series of extra steps that must be completed, which are illu-

strated in Fig. 3 by the dashed arrows.

After completing the first spherical harmonic decomposi-

tion to calculate Ilm(q) up to nl harmonic coefficients, the

reciprocal-space intensity is recomposed from the coefficients

to produce a low-pass filtered intensity function ISHðq; �; �Þ,

given by

ISHðq; �; �Þ ¼ SH
� 1
½IlmðqÞ�: ð22Þ

The difference intensity function I�(q, �, �) is calculated by

subtracting the low-pass filtered function from the starting

function Ii(q, �, �),

I�ðq; �; �Þ ¼ Iiðq; �; �Þ � ISHðq; �; �Þ; ð23Þ

so that I�(q, �, �) contains the contributions of higher-order

harmonic terms. These higher-order harmonic terms are then

added to the next iteration of the intensity function,

I0i ðq; �; �Þ ¼ SH
� 1
½I 0lmðqÞ� þ I�ðq; �; �Þ: ð24Þ

Through the � basis expansion, there are a limited number of

eigenvectors used as basis vectors for the expansion. After

expanding to the Klm,n coefficients, the spherical harmonic

coefficients filtered by the expansion IK
lmðqÞ are calculated:

IK
lmðqÞ ¼ �

� 1½Klm;n�: ð25Þ

The difference terms I�
lmðqÞ are calculated by subtracting the �

filtered terms from the original spherical harmonic coefficients

before the � expansion,

I�
lmðqÞ ¼ IlmðqÞ � IK

lmðqÞ: ð26Þ

The difference terms I�
lmðqÞ are then added to the harmonic

coefficients after scaling by the eigenvalues,

I0lmðqÞ ¼ �
� 1½K0lm;n� þ I�

lmðqÞ: ð27Þ

2.4.3. Support constraint. The support projection operator

Ps modifies the intensity function I(q, �, �) to retain the

intensity within a small volume around each Bragg peak and

sets the intensity to 0 everywhere else. A volume Vhkl is

centred on the Bragg peak qhkl = (qhkl, �hkl, �hkl) and extends

in each spherical coordinate axis by a small amount (qV, �V

and �V). The volume Vhkl is provided by

Vhkl

¼ ðq; �; �Þ 2 R3such that
\

x¼q;�;�

xhkl � xV � x � xhkl þ xV

( )

:

ð28Þ

Let M be a binary support mask that includes all the volumes

Vhkl around each Bragg peak qhkl, given by

M ¼ Vhkl for h; k; l 2 Z
� �

: ð29Þ

The support constraint can be applied to the intensity function

I(q, �, �) with the following equation:

Ps½Iðq; �; �Þ� ¼
max½0; Iðq; �; �Þ�; if ðq; �; �Þ 2 M

0; otherwise

�

ð30Þ

Within the support constraint, we also apply a global positivity

constraint using the max function, such that any intensity

values that are negative are set to 0.

2.4.4. Iterative schemes. After constructing our projection

operators Pm and Ps, the next step is to apply these constraints

within an iterative scheme, such as the error reduction (ER) or

hybrid input–output (HIO) algorithms (Marchesini, 2007). ER

is the simpler of the two iterative schemes, where the

projection operators are sequentially applied on the intensity

function I(q, �, �), as described by

Iiþ1ðq; �; �Þ ¼ Ps Pm Iiðq; �; �Þ
� �� �

: ð31Þ

It is known that ER converges to the closest minima, and only

converges to the global solution if it starts near the solution.

The HIO algorithm is based on nonlinear feedback theory

and does not stagnate at local minima (Marchesini, 2007).

HIO is given by

Iiþ1ðq; �; �Þ ¼
Pm½Iiðq; �; �Þ�; if ðq; �; �Þ 2 M

Iiðq; �; �Þ � �Pm½Iiðq; �; �Þ�; otherwise

(

for 0 � � � 1: ð32Þ

We assume a � value of 0.9 for all uses of HIO presented here,

which has been found to be successful in previous phase-

retrieval studies (Chen et al., 2007). Frequently, iterative

algorithms are run with alternating schemes and can be

described with an iterative algorithm recipe, e.g. 20 iterations

of the HIO scheme, followed by two iterations of the ER

scheme, repeated five times.

2.5. Target structures

To test the algorithm, we used the structures of three

chemical crystals from the Crystallography Open Database

(Gražulis et al., 2009). These structures were silver nitrate with

a ligand, aluminophosphate and a dipeptide precursor. We

selected structures with different cell sizes, lattice types,

symmetries and constituent atoms, as outlined in Table 1. We

calculated the structure factors Fhkl for each crystal structure

using VESTA (Momma & Izumi, 2008), to a d resolution of

0.3 Å for the silver nitrate structure and 0.5 Å for the alumi-
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nophosphate and dipeptide precursor structures. This corre-

sponds to a qmax of 22 Å� 1 for the silver nitrate structure and

12.6 Å� 1 for the aluminophosphate and dipeptide precursor

structures. Due to the different cell sizes, each structure had a

different number of scattering vectors with scattering magni-

tude q � qmax. The silver nitrate had 121 382 vectors, the

aluminophosphate had 44 586 vectors and the dipeptide

precursor had 89 618 scattering vectors.

2.6. Correlation calculation and algorithm parameters

The algorithm and correlation calculation scripts are

available in the open-source Python package SCORPY

(Adams, 2022). All demonstrations of the algorithm were run

on an HP Pavilion 15 laptop, with 16 GB of RAM and an

eighth-generation Intel Core i7 processor.

We calculated the correlation functions from the Bragg

peak intensities according to equation (4), using the structure

factors generated in VESTA.

For each correlation function, the nq and n� parameters

were 300 and 5760 sampling points, respectively. The corre-

lation-function calculation for the silver nitrate, aluminopho-

sphate and dipeptide precursor samples took �34, 6 and 25 h,

respectively. After calculating the correlation functions, we

computed the harmonic order matrices B(q1, q2, l) for each

sample. These matrices were calculated up to l = 250 spherical

harmonics to satisfy the Driscoll–Healy grid format. The

magnitude of the harmonic order matrices for l� 45 was small

relative to those with l < 45. The reconstructions improved

when the matrices for l � 45 were set to 0. The eigenvectors

ul,n(q) and eigenvalues �l,n used within the modulus constraint

were calculated from these harmonic order matrices.

To run the algorithm, we initialized a random intensity

function with nq = 300, n� = 500 and n� = 1000. The random

intensity values ranged between � 1 and 1. A support mask M

was created from the unit-cell parameters for each sample that

included all peaks with q � qmax. For each peak, the support

mask included a cubic volume that was 5 voxels wide and

centred on the peak location. A single algorithm run consisted

of 120 iterations of HIO, which took �13 h. Eight runs were

performed for each of the three samples with different random

initial intensities per run.

2.7. Structure refinement

The crystal structure R factor compares the structure-factor

intensities from a model structure Icalc to the intensities

observed in an experiment Iobs (IUCr, 2017). It is given by

R ¼

P
Iobs � Icalc

�
�

�
�

P
Iobs

�
�

�
�

; ð33Þ

where the sums are calculated over all the Bragg peaks. The R

factor was calculated at every iteration of the algorithm and is

quoted as a measure of model quality. Here we use the same R

factor, substituting the target intensities for Icalc and the

intensities recovered by the algorithm for Iobs. Typical values

for R factors change depending on the structure being refined.

For protein model refinement, an R factor of �0.2 is consid-

ered a desirable target for 2.5 Å resolution. Small organic

molecule crystals frequently refine to an R factor of less then

0.05 (IUCr, 2017).

To compare solutions generated from independent runs of

the algorithm, we will use an Riso factor. A low value of Riso

indicates convergence of intensities to a uniform solution. The

expression for the Riso,ij factor between independent solutions

i and j is determined by

Riso;ij ¼
1

2

P
Ii � Ij

�
�

�
�

P
Ii þ Ij

�
�

�
�
: ð34Þ

We used SHELXL (Sheldrick, 2008) for structural refinement

from the crystal intensities that were recovered from the

algorithm. The average atomic displacement was calculated

from the difference between the atomic locations in the final

recovered structure from SHELX and the target structure. Let

Ti 2 T denote the (x, y, z) coordinates of the ith atom in the

target structure T with N total atoms. Similarly, denote the

atoms in the recovered structure by Pi. Then the mean atomic

displacement is given by

Mean atomic displacement ¼
1

N

XN

i¼0

jTiðx; y; zÞ � Piðx; y; zÞj:

ð35Þ

3. Results

3.1. Recovered intensities

The plots in Fig. 4 show the results of the recovered Bragg

intensities for the silver nitrate sample at different iterations

during the algorithm. For each Bragg peak intensity, the

intensity values of each run were averaged and plotted against

the target intensity values. Initially, after ten iterations, the

intensities are poorly recovered. This is illustrated in Fig. 4(a).

However, after further iterations, we observe that the inten-

sities approach the y = x line, indicating that each Bragg peak
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Table 1
Crystal structure data used for testing the algorithm.

Quantities a, b, c refer to the magnitudes of the unit-cell vectors. Quantities �,
�, � refer to the angles between the lattice vectors.

Structure Silver nitrate/ligand Aluminophosphate Dipeptide
precursor

Formula C10H14AgN2O5S (C5H16N2)[AlP2O8] C25H40N2O5

Lattice/Sym. Triclinic (P�1) Monoclinic (P21/n) Orthorhombic

(P212121)
a (Å) 5.187 (2) 7.8783 (2) 9.9400 (12)
b (Å) 10.722 (3) 10.46890 (10) 14.9395 (18)
c (Å) 12.636 (4) 16.0680 (4) 17.876 (2)
� (�) 82.315 (4) 90 90
� (�) 78.712 (4) 95.1470 (10) 90

� (�) 79.952 (4) 90 90
Reference Hanton & Lee

(2000)
Phan Thanh et al.

(2000)
Liao et al. (2007)



intensity is approaching its associated target intensity. This is

illustrated in Figs. 4(b)–4( f). Similar convergence behaviour

was observed for the aluminophosphate and dipeptide

precursor intensities.

The R factor at every iteration was calculated for all of the

independent runs, comparing the recovered intensities Iobs to

the target intensities Icalc, as in equation (33). Fig. 5 shows the

average R factor over the course of the algorithm. The shaded

regions indicate �3 standard deviations from the average,

estimated from the independent runs. Overall, the R factor

decreases as the algorithm progresses. Each sample exhibits a

minimum R factor of �0.2 between 60 and 90 iterations. After

this, the R factor either continues to marginally increase, as in

the silver nitrate and dipeptide precursor samples, or

continues to marginally decrease, as in the aluminophosphate

sample. An interesting feature within the plots in Fig. 5 is that

the standard deviation error remains small after the minimum

R factor is reached, indicating that all eight independent runs

are close to the same intensity solution. This occurs at �85

iterations for the silver nitrate sample, 90 iterations for the
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Figure 4
The recovered Bragg intensities versus the target intensities for the silver nitrate structure at different numbers of iterations. Each plot is generated from
the intensities after different numbers of algorithm iterations, illustrating that as the algorithm progresses, the recovered intensities approach the y = x
line and, hence, approach the target intensities. Axis units are arbitrary.

Figure 5
Plots of the R factors versus iteration number for the silver nitrate, aluminophosphate and dipeptide precursor reconstructions, left to right, respectively.
The solid line traces the average R factor over eight independent reconstructions with the same parameters but different random starts. The shaded
regions above and below the average indicate �3 standard deviations from the mean of the eight runs. The R factor calculated at each step decreases,
indicating that the reconstructed intensities are approaching the target intensities.
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Figure 6
(a) The target and (b) the recovered structures for the silver nitrate sample. (c) The overlay of the blue target and red recovered structures.

Figure 7
(a) The target and (b) the recovered structures for the aluminophosphate sample.

Figure 8
Overlays of the blue target and red recovered structures for aluminophosphate. (a) Overlays only including Al, P and O atoms in the structure. (b)
Overlays only including C and N atoms in the structure.



aluminophosphate sample and 70 iterations for the dipeptide

precursor.

The average Riso factor was calculated between the final

intensities of every pair of independent runs for each sample.

The intensity solutions from the silver nitrate, aluminopho-

sphate and dipeptide precursor runs had an average Riso of

0.01 � 0.002, 0.02 � 0.004 and 0.02 � 0.003, respectively.

3.2. Recovered structures

The target structure for the silver nitrate sample is shown in

Fig. 6(a). Compared with the structure generated from the

algorithm intensities [Fig. 6(b)], the figure shows that the

structure was successfully recovered. This is further illustrated

in the overlay of the structures in Fig. 6(c), with the blue target

structure matching the red recovered structure quite closely.

The structures for aluminophosphate and the dipeptide

precursor were similarly successful, as illustrated in Figs. 7, 8

and 9. This demonstrates that the algorithm can recover

samples with different unit-cell symmetries.

To quantify the accuracy of the recovered structures, the

recovered bond distances and angles have been plotted

against the target values for the silver nitrate, aluminopho-

sphate and dipeptide precursor samples in Figs. 10, 11 and 12,

respectively. Across these figures, it is evident that some bond

lengths and angles are accurately reconstructed, while others

have larger standard deviations.

The inset figure of Fig. 10(a) illustrates that the lengths

between 1.25 and 1.35 Å show large variation compared with

other distances. The inset figure of Fig. 10(b) shows that the

bonds with angles between 115 and 125� have a similar large

variation. These bond lengths and angles are in the typical

range for aromatic bonding. The overlay image of Fig. 6(c)

shows visible variation in the structure within the aromatic

bonds. Despite the variance in some of the bond lengths and

angles, the average is still close to the expected target value.

Furthermore, the bond lengths and angles due to the heavier
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Figure 9
(a) The target and (b) the recovered structures for the dipeptide precursor sample. (c) The overlay of the blue target and red recovered structures.

Figure 10
Comparison of (a) bond lengths and (b) bond angles of the target and the average structure for the silver nitrate sample. Error bars are �3 standard
deviations, estimated from the eight reconstructions. The insets show a zoomed vision of the grey areas in the respective plots.



elements (S and Ag) within the structure are accurately

reconstructed. Heavier atoms scatter more readily (Warren,

1990) and this implies their contribution to the Bragg peak

intensity is higher. It then follows that their contribution to the

correlation function is more apparent and, hence, has a greater

influence on the recovered Bragg intensities. This is also

evident in the aluminophosphate structure, where there is no

observable change in the locations containing the aluminium

atoms. The bond comparison plots in Fig. 11(a) demonstrate

accurate refinement of the inorganic bonds above 1.7 Å, and

higher variance in the organic bonds between 1.4 and 1.6 Å.

The dipeptide precursor structure has no heavier elements

and the peptide bonds within this structure resemble compo-

nents in proteins. The recovery of this structure is a step

towards the potential application of the algorithm to macro-

molecular crystal structure determination. All of the elements

refined equally well and refined more accurately than the

lighter elements (C, N, O) of the previous two samples. This is

probably due to the lack of heavy elements in the dipeptide

precursor structure. This is illustrated in the bond comparison

plots in Figs. 12(a) and 12(b), where similar variance is shown

throughout the bond lengths and angles. The variance in the

organic bond lengths and angles in the dipeptide precursor

structure is smaller than the variance in the organic bond

lengths and angles of the silver nitrate and aluminophosphate

structures. Overall, the variance in the structures is compar-

able to the resolution limits of the simulated structures.

3.3. Radial-sampling requirements

To test the effects of radial sampling on the algorithm, we

generated structure factors for the silver nitrate structure to a
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Figure 11
Comparison of (a) bond lengths and (b) bond angles of the target and the average structure for the aluminophosphate sample. Error bars are �3
standard deviations, estimated from the eight reconstructions.

Figure 12
Comparison of (a) bond lengths and (b) bond angles of the target and the average structure for the dipeptide sample. Error bars are �3 standard
deviations, estimated from the eight reconstructions.



qmax of 9 Å� 1 or to a minimum resolution d of 0.7 Å. This

provided 8324 scattering vectors from which we calculated six

scattering correlation functions according to equation (4).

These correlation functions had increasing radial sampling,

where nq ranged from 50 to 200 sampling points. The corre-

lation angular-sampling parameter n� was set to 11 520 and the

harmonic order matrix was calculated to a maximum spherical

harmonic of l = 45. The nq parameter for the reciprocal-space

intensity functions ranged from 50 to 200 sampling points,

depending on the correlation function. The angular-sampling

parameters of the intensity functions were n� = 360 and n� =

720.

The support peak width was 5 voxels, as in the previous

structure-determination cases. The algorithm recipe consisted

of 20 iterations of HIO, followed by two iterations of ER,

repeated five times. The time to run this recipe increased

linearly with increasing radial sampling, ranging from�30 min

for nq = 50 to 2.5 h for nq = 200. The algorithm was run once

for each radial-sampling parameter and the intensity was not

averaged over multiple independent runs. For each iteration,

we calculated the R factor to compare the target intensity with

the recovered intensity according to equation (33). We

completed SHELXL refinement at every iteration and

calculated the mean atomic displacement according to equa-

tion (35).

Fig. 13(a) illustrates that the R factor decreases with

increasing radial sampling. When the radial sampling is

increased by having more q points within the intensity func-

tion, fewer Bragg peaks are found within each q position of

the intensity function. This causes less overlap between Bragg

peaks in the intensity function and less overlap in correlation

peaks in the correlation function. Both of these factors

improve the reconstruction. As expected, increasing the radial

sampling of the intensity function improves algorithm accu-

racy. This is supported by the plot in Fig. 13(b), which plots the

mean atomic displacement as a function of algorithm iteration.

With increasing radial sampling, the average displacement of

the atoms in the structure compared with the target decreases.

In Figs. 13(a) and 13(b), there appears to be a radial

sampling of nq = 100 after which further increases do not

improve the R factor or mean atomic displacement of the

reconstruction. This effect is governed by the overlap of peak

areas Vhkl in the support M. For example, in the reciprocal

lattice of the silver nitrate crystal, the smallest q-axis vector

magnitude is |c*| = 0.51 Å� 1. This is the smallest distance

between two adjacent Bragg peaks. With a qmax ¼ 9 Å
� 1

over

nq = 100, the size of each q sampling point is dq = 0.9 Å� 1.

Consequently, two adjacent Bragg peaks in the intensity

function could be in adjacent voxels with respect to the q axis.

The overlap is most problematic at high q, since there are

more Bragg peaks with increasing q. This presents a sampling

issue within the reconstruction and, hence, the R factor is

higher for these cases. The smaller the number of sampling

points in q, the larger the size of each sampling point over the

same qmax. This increases the overlap between Bragg peaks in

the binary support mask M. For radial sampling above this

limit, nq between 100 and 200, the R factor decreases sharply

until iteration 40, after which the R factor plateaus, with

marginal increase. The sharp onset of the plateau was also

observed in the structure-recovery results in Fig. 5. A series of

kinks in the graphs at �22, 44, 66, etc. iterations occur due to

the recipe changing between the HIO and ER iterative

schemes.

3.4. Angular-sampling requirements

To test the effect of angular sampling on the algorithm, we

conducted six runs with angular sampling ranging from n� =

120 to n� = 360 sampling points. We produced a correlation

function for the silver nitrate sample to a qmax of 9 Å� 1, or to a

minimum resolution of 0.7 Å, with 11 520 sampling points for

n� and 150 sampling points for nq. The harmonic order matrix
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Figure 13
(a) The R factors and (b) mean atomic displacement for the silver nitrate structure as a function of iteration number for various radial-sampling
conditions.



limit was set to 45 harmonics. The time to run the algorithm

scaled quadratically with n�, between 15 min and 1.2 h for the

n� = 120 to n� = 360 runs. The quadratic scaling occurs due to

increasing two axis dimensions in the intensity function,

compared with increasing one axis in the radial case. When

running the algorithm, we used the same recipe as in the

radial-sampling case. That is, 20 iterations of HIO, followed by

two iterations of ER, repeated five times. The algorithm was

run once for each angular-sampling parameter, and the

intensity was not averaged over multiple independent runs.

The R factor and mean atomic displacement as a function of

iteration number are shown in Figs. 14(a) and 14(b), respec-

tively. By decreasing the angular sampling, the onset of the

plateau shifts from 40 iterations, as seen in the radial-sampling

case, back to a range of 15–20 iterations. This is consistent with

the structure-recovery tests in Fig. 5, where the angular

sampling was higher, n� = 500, and the plateau begins after 60

iterations. The high angular-sampling runs have a higher R

factor and have a slower descent before the plateau. This is

also observed in the mean atomic displacement plots, where

the higher angular sampling causes a slower descent into the

minimum displacement value. Overall, the angular-sampling R

factor converges at n� = 120 and n� = 180, where further

increases do not change the R factor. This was not observed in

the mean atomic displacement plot, as all the final recon-

structions appear to fall within the same range. As in the

radial-sampling case, kinks in the R-factor plot are observed

where the recipe changes between HIO and ER.

3.5. Algorithm recipe testing

To test the effect of the algorithm recipe on the recovered

intensities, the following recipes were tested: 120 ER, (10 HIO

+ 10 ER)� 12, (20 HIO + 20 ER)� 6, (30 HIO + 30 ER)� 2,

(20 HIO + 2 ER) � 5, and 120 HIO. The correlation function

used in this test was calculated for the silver nitrate sample to a

qmax of 9 Å� 1, or to a minimum resolution d of 0.7 Å, over 150

nq sampling points, with 11 520 sampling points for n�
sampling. All the reconstructions used the same angular and

radial sampling, n� = 360 and nq = 150, and one reconstruction

was conducted per recipe. The R factor and mean atomic

displacement as a function of iteration number for each recipe

are plotted in Figs. 15(a) and 15(b), respectively.

The R factor steadily decreases in the 120 ER recipe, as

shown in Fig. 15(a). This is expected from ER, where it

approaches a minimum with monotonically decreasing error

(Marchesini, 2007). In Fig. 15(b), the mean atomic displace-

ment of the 120 ER recipe is comparable to that of the other

recipes that contain HIO. This indicates that although ER

converges to the closest local minimum, it does appear to be

approaching a similar solution to the recipes that include HIO.

The advantage of the recipes containing HIO, however, is the

speed at which the algorithm approaches the solution. The R

factors and mean atomic displacements for the 120 HIO recipe

decrease more sharply than the 120 ER recipe. Unlike the ER

scheme, the HIO scheme does not necessarily monotonically

decrease, due to the global minima search style of the scheme

(Marchesini, 2007).

In the combination recipes, we can see a series of steps in

the graph that indicate the iteration number at which the

recipe changes from HIO to ER. Comparing the (30 HIO + 30

ER) � 2 and (20 HIO + 20 ER) � 6 recipes, we observe that

the R factor plateaus at later iteration numbers, 80 and 60

iterations, respectively, compared with the minimum observed

at 40 iterations in the HIO-only recipes. This indicates that the

inclusion of ER in the algorithm recipe can delay the onset of

the plateau in the R factor.

3.6. Protein crystal reconstruction

Finally, we tested the algorithm’s capability in recon-

structing the intensities of a hen egg-white lysozyme protein

crystal structure (PDB ID 193l; Vaney et al., 1996). The

structure-factor intensities for the crystal were downloaded
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Figure 14
(a) The R factors and (b) mean atomic displacement for the silver nitrate structure as a function of iteration number for various angular-sampling
conditions.



from the PDB and the 3D scattering correlation function was

calculated up to qmax = 3Å� 1, or to a minimum resolution of d

= 2.1 Å, which included 106 124 scattering vectors. The

correlation function was sampled over 23 040 n� points and

300 nq radial bins, and the radial sampling for the intensity

function was n� = 500 and n� = 1000. The harmonic order

matrix limit was set to 45 harmonics, and the support peaks

had a width of 5 voxels, as in the previous examples. The

algorithm recipe consisted of 240 iterations of HIO. We

produced nine independent runs using these parameters. To

merge the intensities, we used AIMLESS (Kabsch, 2010) in

the CCP4 software package (Winn et al., 2011). The Rmeas

factor after merging was 0.1, indicating good agreement

between the runs. The space group of the original crystal

structure was P43212, but, after merging, AIMLESS deter-

mined a P422 space group. We then used the merged inten-

sities to perform basic molecular replacement with the target

structure using PHASER (McCoy et al., 2007). The structure

produced from PHASER had an R factor of 0.29 and an Rfree

of 0.31, and the correct P43212 symmetry was identified. A

portion of the recovered protein structure and electron

density is shown in Fig. 16(a). The average R factor as a

function of the iteration number over the nine independent

runs is plotted in Fig. 16(b).
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Figure 15
(a) The R factors and (b) mean atomic displacement for the silver nitrate structure as a function of iteration number for various algorithm recipes.

Figure 16
(a) Electron-density results of the hen egg-white lysozyme structure, from the intensities recovered with the iterative algorithm. Electron-density
surfaces are plotted at 0.046e Å� 3, with 1.5 root-mean-square deviations. The blue mesh indicates the 2Fo � Fc density, where Fo and Fc are the structure
factors recovered from the algorithm after phasing and the structure factors of the model, respectively. The green and red meshes indicate the difference
map Fo � Fc, and show over and under represented regions of electron density, respectively. (b) A plot of the R factor versus iteration number for the
lysozyme reconstruction. The solid line traces the average R factor over nine independent reconstructions with the same parameters but different
random starts. The shaded regions above and below the average indicate�3 standard deviations from the mean of the nine runs. The R factor calculated
at each step decreases, indicating that the reconstructed intensities are approaching the target intensities.



4. Discussion

We have demonstrated that the Bragg intensities of crystal

structure factors can be successfully recovered from the

correlation functions of FXS analysis using an iterative algo-

rithm. To do this, we devised a set of projection operators that

modify intensity functions, which were based on the unit-cell

parameters of the crystal and the correlation function that can

be measured experimentally during an FXS experiment.

In our work, we used the R factor as a measure of algorithm

accuracy, which is the typical method of assessing the refine-

ment of a crystal structure. We quoted final R factors of our

small-molecule reconstructions between 0.15 and 0.2. Typical

R factors for small chemical crystals refine to less then 0.05

(IUCr, 2017), an order of magnitude smaller than we report.

Despite this, the average distance between an atom in the

recovered structure and the target was 0.05 Å. Furthermore,

visual inspection of the final structures generated after

SHELXL refinement confirmed that the recovery of the

structure was accurate. Further improvement to the R factors

could be achieved with finer sampling parameters for the

intensity function.

The R factor calculated after phasing for the protein crystal

reconstruction was 0.29, which is higher than was obtained for

the small molecular crystals. It is also higher than the R factor

from which the test structure was sourced (Vaney et al., 1996),

which was 0.23. It is typical to complete multiple iterations of

refinements on a phased structure, which includes the addition

of water molecules to the structure and adjusting bond para-

meters to better fit with the electron density. Vaney et al.

(1996) optimized their structure with multiple iterations of

refinement and the inclusion of water molecules, which we did

not reproduce. The lack of water molecules in the structure

could account for the regions of positive difference density in

Fig. 16(a).

Preliminary testing regarding the effect of support peak

overlap on the algorithm was also conducted. Increasing the

support width for the same nq and n� sampling parameters led

to significant overlap between Bragg peaks in the support, and

the algorithm did not converge. This suggests that the

sampling should be selected to avoid peak overlap, but further

investigation is still needed to determine if minor levels of

overlap can be tolerated, and if so, to quantify how much.

Further improvements in the analysis process could be

made by utilizing symmetry constraints within the crystal

structure. The intensity function has a point-group symmetry

related to the crystal space group (Shmueli et al., 2010). This

could be used as an additional constraint of the intensity

function. In the algorithm we present, we have made no

assumptions about the symmetry of the intensity function,

including Friedel symmetry, I(q) = I(� q). Previous calcula-

tions of harmonic order matrices often excluded odd-order

harmonics (l ¼ 2nþ 1; n 2 Z), under the assumption that

Friedel symmetry is preserved (Martin, 2017; Donatelli et al.,

2017). The algorithm we have developed currently includes

odd-order harmonics in all calculations. Excluding odd-order

harmonics could potentially improve algorithm accuracy and

improve the speed of calculation, halving the number of

harmonics that are calculated at each algorithm step.

All our algorithm testing was performed on correlations

calculated from 3D scattering vectors, which, in principle, are

equivalent to a converged correlation function from 2D scat-

tering vectors. Peaks in 2D patterns are partial reflections and

the convergence of the 2D correlation function performs a

type of Monte Carlo integration on peaks in the correlation

function. The convergence of the Monte Carlo integration of

indexed reflections is well established for serial crystal-

lography (Kirian et al., 2011), but not for correlation functions.

Although a full study of this convergence is beyond the scope

of this work, we briefly summarize here some preliminary

tests. We have performed simulations with pattern_sim

from the CrystFEL package (White et al., 2012) that compare

the correlation function from simulated 2D diffraction

patterns of lysozyme crystals with the correlation function

from the 3D Bragg vectors of the lysozyme. The convergence

between the 2D and 3D correlation functions depends on

many factors, such as the sampling of the functions in terms of

nq, n , qmax, the number of patterns used to calculate the 2D

correlation function, the unit-cell dimensions and the size of

the crystal. After �105 simulated diffraction patterns, the

location and relative intensity of peaks within the 2D corre-

lation function had a clear resemblance to peaks within the 3D

correlation function. However, peaks in the 2D correlation

function tend to spread due to the width of the Bragg peaks in

the diffraction patterns. This essentially creates a blurred

appearance for the 3D correlation function. The effect of this

blurring on the algorithm recovery is unknown and requires

further investigation. There are some other numerical differ-

ences that can arise between the two cases. The 2D correlation

function requires a factor of jq1jjq2j sinð Þ, which, as

previously stated, accounts for the curvature of the Ewald

sphere and to maintain even sampling of  . The size of the

Bragg peaks in the diffraction patterns also affects the

convergence of the functions. With larger Bragg peaks, each

correlation peak spreads depending on the spread of the

Bragg peak in reciprocal space. This can be accounted for by

blurring the 3D correlation function, or integrating peaks in

the 2D correlation function to the positions in the 3D corre-

lation function. With regards to experimentally calculating the

correlation function from crystals, convergence of the 2D

correlation function to the 3D correlation function can depend

on various factors such as the signal-to-noise ratio, number of

crystals per pattern, the distribution of the crystal size and

preferred orientation. The effect of these factors on the ability

to obtain a correct and ideal 3D correlation function requires

further investigation. Further simulation work on 2D crystal

correlations would help illuminate the convergence issues and

identify how much data are required in an experiment.

5. Conclusions

We have demonstrated the extraction of crystal structure-

factor amplitudes from FXS correlation functions through the

use of an iterative algorithm. We constructed a set of projec-
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tion operators for an iterative algorithm that recovers the 3D

reciprocal-space intensity of a crystal from a random starting

point. The algorithm was successfully tested on three small

chemical crystal structures and a protein crystal structure. It

was shown that the sampling should be sufficient to avoid peak

overlaps to improve performance. This approach could be

further developed in the future to facilitate the extraction of

structure factors from spotty powder patterns collected from

sub-micrometre chemical crystals, and could open the door to

novel structural-determination techniques through the use of

fluctuation-scattering analysis.

Acknowledgements

The authors are thankful to Tim Berberich and Ruslan Kurta

for their support and insight during the development of this

project. Author contributions were as follows: conceptualiza-

tion, PA, AVM and TLG; methodology, PA and AVM; soft-

ware, PA; investigation, PA; writing – original draft

preparation, PA; writing – review and editing, PA, AVM and

TLG; supervision, AVM and TLG; project administration,

AVM and TLG; funding acquisition, AVM and TLG. All

authors have read and agreed to the published version of the

manuscript. The authors declare no conflicts of interest.

Funding information

AVM and TLG acknowledge funding support from the

Australian Research Council Discovery Project grant

(DP190103027). The funding body had no role in: the design

of the study; the collection, analyses or interpretation of data;

the writing of the manuscript; or the decision to publish the

results.

References

Adams, P. (2022). Scorpy, https://github.com/YellowSub17/scorpy-pkg.
Adams, P., Binns, J., Greaves, T. L. & Martin, A. V. (2020). Crystals,

10, 724.
Anderson, A. C. (2003). Chem. Biol. 10, 787–797.
Ben-Israel, A. & Greville, T. N. E. (2003). Generalized Inverses:

Theory and Applications. Springer Science & Business Media.
Berman, H. M., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T. N.,

Weissig, H., Shindyalov, I. N. & Bourne, P. E. (2000). Nucleic Acids
Res. 28, 235–242.

Beyerlein, K. R., Dierksmeyer, D., Mariani, V., Kuhn, M., Sarrou, I.,
Ottaviano, A., Awel, S., Knoska, J., Fuglerud, S., Jönsson, O., Stern,
S., Wiedorn, M. O., Yefanov, O., Adriano, L., Bean, R., Burkhardt,
A., Fischer, P., Heymann, M., Horke, D. A., Jungnickel, K. E. J.,
Kovaleva, E., Lorbeer, O., Metz, M., Meyer, J., Morgan, A., Pande,
K., Panneerselvam, S., Seuring, C., Tolstikova, A., Lieske, J., Aplin,
S., Roessle, M., White, T. A., Chapman, H. N., Meents, A. &
Oberthuer, D. (2017a). IUCrJ, 4, 769–777.

Beyerlein, K. R., White, T. A., Yefanov, O., Gati, C., Kazantsev, I. G.,
Nielsen, N. F.-G., Larsen, P. M., Chapman, H. N. & Schmidt, S.
(2017b). J. Appl. Cryst. 50, 1075–1083.

Botha, S., Nass, K., Barends, T. R. M., Kabsch, W., Latz, B., Dwor-
kowski, F., Foucar, L., Panepucci, E., Wang, M., Shoeman, R. L.,
Schlichting, I. & Doak, R. B. (2015). Acta Cryst. D71, 387–397.

Boutet, S., Fromme, P. & Hunter, M. S. (2018). Editors. X-ray Free
Electron Lasers: A Revolution in Structural Biology. Springer
International Publishing.

Brink, A. & Helliwell, J. R. (2019). IUCrJ, 6, 788–793.

Burmeister, W. P. (2000). Acta Cryst. D56, 328–341.
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