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In the folded state, biomolecules exchange between multiple conformational

states crucial for their function. However, most structural models derived from

experiments and computational predictions only encode a single state. To

represent biomolecules accurately, we must move towards modeling and

predicting structural ensembles. Information about structural ensembles exists

within experimental data from X-ray crystallography and cryo-electron micro-

scopy. Although new tools are available to detect conformational and compo-

sitional heterogeneity within these ensembles, the legacy PDB data structure

does not robustly encapsulate this complexity. We propose modifications to the

macromolecular crystallographic information file (mmCIF) to improve the

representation and interrelation of conformational and compositional hetero-

geneity. These modifications will enable the capture of macromolecular

ensembles in a human and machine-interpretable way, potentially catalyzing

breakthroughs for ensemble–function predictions, analogous to the achieve-

ments of AlphaFold with single-structure prediction.

1. Introduction

Most structural models deposited in the Protein Data Bank

(PDB) (Burley, Berman et al., 2017) result from experimental

X-ray crystallography or single-particle cryoEM studies. These

methods collect data averaged over tens of thousands to

billions of individual copies of the system (containing

macromolecules, solvent, ions, small molecules etc.). Each

molecule within the system can adopt a different conformation

(conformational heterogeneity) and may differ slightly in

chemical composition (compositional heterogeneity).

However, structural models generally represent the system

with a single coordinate set. This simplification overlooks the

multiple states present in the experimental data and conse-

quently omits details vital to understanding protein function

(Furnham et al., 2006; Holton et al., 2014). The single coordi-

nate set convention originated in the specifications of the

legacy PDB format and is perpetuated in the current PDBx/

mmCIF standard (Westbrook et al., 2022). However, with the

universal adoption of PDBx/mmCIF (Adams et al., 2019), we

propose to expand our representations to separate these two

aspects of heterogeneity within the sample, enabling more

precise and accurate structures to train deep-learning

approaches that model dynamic biomolecular systems.

In cases where the deposited models go beyond a single set

of coordinates, capturing the underlying experimental

ensemble is solved in two primary ways: ensemble models that

encode many copies of the system, each with a potentially

distinct conformation/composition; in a single PDB deposition
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or multiconformer models that encode alternate conforma-

tional/compositional states only for certain parts of the system

(Fig. 1). Nuclear magnetic resonance (NMR) data are typically

encoded in ensemble models because they inferentially

represent sparse distance and angle restraints (Rieping et al.,

2005). Occasionally, these conventional restraints are

augmented with other NMR observables, such as relaxation

dispersion measurements, that more directly report on distinct

states. There are proposals for the best ways to represent the

multiple ensembles necessitated by their inclusion (Ramelot et

al., 2023). In contrast, cryoEM and X-ray crystallography

density maps provide atomistic detail across the entire system,

enabling precise modeling of alternate states directly from a

real space signal. As there is currently no principled way of

choosing the most parsimonious ensemble size, encoding

cryoEM and X-ray crystallography data in ensemble models

can result in an exploding data-to-parameter ratio and over-

fitting [Fig. 1(b)] (Burnley et al., 2012; Babcock et al., 2018).

Moreover, ensemble models are difficult to modify manually

[e.g. in Coot or ISOLDE (Emsley et al., 2010; Croll, 2018)]. In
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Figure 1
Model types to represent conformational heterogeneity. (a) Examples of the multiple conformations of protein side chains captured by cryoEM and
X-ray crystallography. (b) Ensemble representation of a Lys side chain. (c) Multiconformer representation of a Lys side chain. (d) One-state NMR
ensemble from distant restraints and a two-state NMR ensemble from CEST data. (e) 3D classification from cyroEM results in different but related
maps, often with distinct associated models.



contrast, multiconformer models can represent all states

within a single model, reducing the data-to-parameter ratio

and allowing for more facile human visualization and manip-

ulation (Wankowicz et al., 2023; Riley et al., 2021; Stachowski

& Fischer, 2023). A limitation of the current PDBx/mmCIF

data structure for ensemble and multiconformer models is

that it cannot represent the complex interdependencies of

alternative conformational states in the experimental

ensemble.

Modeling the experimental ensemble also requires repre-

senting the chemical compositional heterogeneity. This

heterogeneity can result from covalent modification (e.g. post-

translational modification) or the presence of a binding

partner stabilized by non-covalent interactions (e.g. a subunit

of a macromolecular complex, a small-molecule ligand or even

a solvent molecule). Using ensemble-based approaches leads

to the same model size selection problems outlined above.

Refining the weight of different conformational ensemble

members in the modified/bound state also connects this

heterogeneity more naturally to the multiconformer format. A

major issue for encoding compositional heterogeneity in

multiconformer models is that the current formats use the

exact same representation for conformational and composi-

tional heterogeneity, creating ambiguity about the various

states present in the models and their relationship to the

experimental ensemble.

Here, we propose amendments to the PDBx/mmCIF model

format (Westbrook et al., 2022) to improve the encoding of the

conformational and compositional ensembles in experimental

structural biology data. Using the extensible and flexible

dictionary based data structure of the mmCIF/PDBx format,

we propose separated entities to capture conformational and

compositional heterogeneity that can be layered to show

hierarchical relationships (Fig. 1). These modifications will

improve our ability to explain structural ensembles and

provide critical training data for new protein ensemble–func-

tion predictions.

2. The current PDBx/mmCIF format inadequately

captures conformational and compositional

heterogeneity

The failure of deposited structures in the Protein Data Bank

(PDB) to represent the underlying experimental conforma-

tional and compositional heterogeneity is partly attributable

to the complexity of modeling in the presence of limited

signal-to-noise (Lane, 2023). Noise arises from many sources,

including crystal imperfections and radiation damage in X-ray

crystallography (Weichenberger et al., 2015; Karplus &

Diederichs, 2012), and beam-induced motion and imperfect

detector quantum efficiency (DQE) in cryo-EM (Glaeser,

2019). Additionally, poor modeling resulting from inaccurate

phases (for X-rays) and errors in particle alignment and

classification (for cryoEM) dominate the imperfect agreement

between experiment and model. Further complicating the

discovery of heterogeneity is that conformational hetero-

geneity manifests in many forms. A high amount of harmonic

heterogeneity manifests in a fall off of density from a mean

atomic position. This type of heterogeneity can be modeled in

the PDB format by isotropic, anisotropic or grouped [e.g.

translation–libration–screw (Winn et al., 2001; Afonine et al.,

2018)] B factors that fit the extent of the disorder (Konnert &

Hendrickson, 1980; O’Connor, 1975).

Additionally, many macromolecular motions have a highly

anharmonic character (e.g. rotamer jumps or sub-domain

opening) that manifests in discrete but weaker density around

distinct positions with no continuous density connecting the

states. This type of heterogeneity is not well fit by B factors,

which leads to underestimation of the displacements present

in the experimental ensemble (Kuzmanic et al., 2014; Kuriyan

et al., 1986). To overcome this limitation in PDB format, atoms

can be replicated and labeled with an ‘alternative location

indicator’ (altloc), signifying discrete states. Refinement and

validation programs treat atoms sharing the same altloc as

having the ability to interact with each other and with atoms

lacking an altloc, but not with atoms with different altlocs.

However, the lack of a hierarchical relationship between

altlocs restricts the complexity of information encoded by the

legacy format.

Capturing ensemble information in the legacy PDB format

becomes an even more complex problem when considering

compositional heterogeneity, which can coexist with confor-

mational heterogeneity. Compositional heterogeneity is often

observed with ligands bound at sub-stoichiometric occupancy

in X-ray structures (Danley, 2006; Turnbull & Emsley, 2013;

Müller, 2017) and with different components in large macro-

molecular complexes in cryoEM (Webster et al., 2023).

Compositional heterogeneity is captured using the same

‘altloc’ column as conformational heterogeneity. This ambig-

uous representation inhibits disentangling compositional and

conformational heterogeneity, especially for large data-mining

efforts.

Computational tools have recently improved in decoding

the complex conformational and compositional heterogeneity

signal from the noise. In cryoEM, human intervention or

machine-learning tools can distinguish different large confor-

mations. While many of these tools are primarily used for

visualization, some can incorporate discrete states into

heterogeneous refinement, moving towards ensemble-based

cryoEM models (Zhong, Bepler et al., 2021; Punjani & Fleet,

2021; Serna, 2019). In X-ray crystallography and cryoEM,

methods exist that automatically detect subtle conformational

shifts, like rotamer jumps, among structural ensemble

members through multiconformer approaches (Wankowicz et

al., 2023; Keedy et al., 2015; Riley et al., 2021; Stachowski &

Fischer, 2023; Ginn, 2021). Further, weak signals representing

compositional heterogeneity, often observed in X-ray ligand-

soaking experiments, can now be more easily identified using

approaches such as PanDDA (Pearce et al., 2017). In cryoEM,

compositional heterogeneity often occurs by having subsets of

complex subunits on the grid throughout the data collection.

This can been studied by exploring differences in the same or

related maps (Punjani & Fleet, 2023; Rabuck-Gibbons et al.,

2022; Zhong, Bepler et al., 2021; Powell & Davis, 2024).
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However, these tools are confined by the data structure that

must represent their output in the Protein Data Bank. Failing

to account for the diverse conformational and compositional

states hinders a thorough understanding of biological func-

tions, the precision of predictive modeling, and the innovation

in designing novel proteins and small-molecule inhibitors.

3. Alterations to the existing mmCIF format can capture

conformational and compositional heterogeneity in

structures

The PDBx/mmCIF is an extensible data representation built

on a flexible dictionary based system (Bourne et al., 1997;

Westbrook et al., 2022). While this data format allows for a

more robust representation of many structural models,

conformational and compositional heterogeneity is encoded in

the same way as the legacy PDB format (altlocs and B factors).

However, conformational and compositional heterogeneity

represent two very different types of heterogeneity. Confor-

mational heterogeneity refers to different conformations of

the same species (i.e. different atomic coordinates) within the

same dataset, whereas compositional heterogeneity refers to

different species (i.e. small molecules or monomers of a

macromolecular complex) within the same dataset.

We propose extending the PDBx/mmCIF model to include

new conformational and compositional data categories linked

to atom-level data (Fig. 1). Additionally, both data categories

would be hierarchical. For each atom, the first conformational

state would represent the base or first layer of heterogeneity,

with subsequent states explaining heterogeneity ‘within’ the

previous state. For example, in the conformational data cate-

gory, conformational state level 1 could contain information

on a loop state (in or out), whereas conformational state level

2 would contain a backbone peptide flip in the out loop state,

and conformational state 3 could contain information about a

side chain alternative conformation that occurs in a residue in

the out loop state and with the peptide flip. This layering

would allow us to build our knowledge of hierarchical

conformational heterogeneity. Isotropic and anisotropic

atomic displacement parameters (B factors) would still exist in

the atom-level data across the hierarchy. It would be

straightforward to continue to refine TLS-derived atomic

displacement parameters for non-multiconformer regions;

however, the exact implementation of how TLS-derived

groupings will co-exist with hierarchical representations of

conformational heterogeneity will require careful attention in

refinement software. Separating compositional and confor-

mational heterogeneity into individual data categories allows

us to understand how they are linked, such as multiple

conformations populated in the liganded state. Importantly,

the inherent flexibility of the mmCIF format (Westbrook et al.,

2022) paves the way for a standardized and adaptable format

to capture conformational and compositional heterogeneity

depending on the experimental data.

In the following sections, we present various examples that

contrast the current representation in the mmCIF format

(most of which are holdovers from the legacy PDB format)

versus our envisioned depiction. We discuss how these

changes can be integrated with refinement protocols.

4. Example 1: simple conformational heterogeneity

The simplest example is an apo protein with alternative

conformations of single residues or sections of residues.

Currently, these could be captured by alternative conforma-

tions or increased B factors. In our proposed mmCIF format,

the first conformational data category would represent the

alternative positions of an individual residue [Fig. 2(a)] or

multiple residues, such as a loop [Fig. 2(b)]. We envision this

‘conformational state 1’ category to be within the atom_site

loop of the mmCIF dictionary and optional. We would allow

users to use any REGEX categories to identify each confor-

mation and have an additional data category with the

description for each ID to inform others of what each state

means. In this scenario, refinement software would work

exactly as it is now by constraining the occupancy of each atom

to sum to one, but the altloc names will be longer than a single

character. We also propose that ‘altloc’ in the current mmCIF

format be moved into the conformational state 1 data cate-

gory. Further, existing ensemble structures could be trivially

converted to this data format by having each model in the

ensemble have a different identifier in the conformational

state 1 data category.

5. Example 2: layered conformational heterogeneity

Next, a more complicated scenario with the apo protein to

demonstrate hierarchically related conformational hetero-

geneity, such as an alternative conformation within a loop. For

example, in the ‘loop out’ conformation (state 1), there are

multiple positions of a single leucine side chain (state 2) [Fig.

2(b)]. In the current mmCIF format, you could encode the

three conformations as A (loop in), B (loop out, position 1)

and C (loop out, position 2), but these would have no

descriptive or hierarchical relationship to each other. In our

proposed mmCIF additions, we could encode the loop

conformational heterogeneity in conformational state 1 and

the leucine conformational heterogeneity within conforma-

tional state 2. We see this as another category of conforma-

tional heterogeneity state 2 within the atom_site loop, and it

has the exact requirements of the other conformational

heterogeneity layer. However, to have a conformational

heterogeneity state 2 category, the atom must have a confor-

mational heterogeneity state 1 category. For refinement,

restraints would be linked to each level of conformation, such

that all conformations in conformational heterogeneity state 1

(loop in and loop out) would have to equal 1, while the

categories in conformational heterogeneity state 2 (confor-

mations in loop out) would have to sum to occupancy of the

conformational heterogeneity state 1 class it belongs in (loop

in) [Fig. 2(b)]. Clashes could be evaluated in the PDB

deposition validation by all atoms with the same label at the

same hierarchy level, extending the current validation scheme

(Read et al., 2011). A full example of PDB entry 6b90 (Keedy

research letters

IUCrJ (2024). 11, 494–501 Wankowicz and Fraser � Comprehensive encoding through the mmCIF data structure 497



et al., 2018) represented in the historical PDB format,

proposed mmCIF and ensemble representation is available in

the supporting information.

6. Example 3: simple compositional heterogeneity

Next, we have a protein with a partially occupied ligand (i.e.

present in 50% of the protein copies) in a space that does not

clash with the apo state of the protein. Compositional

heterogeneity is almost always observed in high-throughput

ligand soaking experiments, which now make up a huge

percentage of the PDB depositions (Gahbauer et al., 2023;

Barthel et al., 2022; Skaist Mehlman et al., 2023), and is

increasing in frequency in deposited cryoEM structures.

However, representing these data has been a topic of great

debate (Weiss et al., 2022; Jaskolski et al., 2022). In the legacy

PDB format, we could encode the compositional hetero-

geneity by indicating that the small molecule has an occupancy

of 0.5 (50%) and provide it with an altloc, often conflated with

conformational heterogeneity [Fig. 3(a)]. In the proposed

format, we proposed separating compositional heterogeneity

from conformational heterogeneity. We propose a composi-

tional state data category that would also be within the

atom_site loop and have a dictionary of categories based on

the combination of each unique, non-water HETATM (i.e.

ligand 1 bound, ligand 1 and 2 bound, ligand 2 bound,

unbound, or blank indicating unknown and therefore inter-

acting with all compositional states). For every atom, the user

can choose if this is bound, unbound or unknown for each

HETATM. For the ligands themselves, they will always be in

the bound state, but for the other atoms around they can be in

the bound, unbound or unknown state. The unknown state will

consist of most of the atoms in the protein as it is typically

unknown if the atom is in the unbound or bound state, espe-

cially in residues far from the binding site. This also allows for

ligand 1 bound to be indicated in the compositional hetero-

geneity category and pose 1 or 2 in the conformational

heterogeneity column.

7. Example 4: compositional and conformational

heterogeneity

We now consider building on this example of a partially

occupied ligand with conformational heterogeneity in the

protein. The interplay between conformational and composi-

tional heterogeneity is often inferred from the ligand clashing

with some protein conformations [Fig. 3(b)]. In this example,

the ligand binding is compatible with the ‘loop in’, but not the

‘loop out’ conformation. In addition, there are individual

residues in each loop state. The complexity of this interlinked

conformational and compositional heterogeneity would be

completely lost in the legacy PDB format (see the supporting

information). We would have to encode the conformational

heterogeneity of the protein with at least four altloc IDs and

make copies of the ligand that match the altloc IDs of the

compatible conformations. There would be no link between
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Figure 2
Conformational heterogeneity. Boxes represent how data categories would be connected in the mmCIF format. We are using the CG atom on the Asp
residue as our example. The categories shown are: atom (CG), compositional state, conformational state 1, conformational state 2 and occupancy. (a)
Example 1: simple conformational heterogeneity with a single residue. (b) Example 2: layer conformational heterogeneity with layer one conformational
heterogeneity being a loop and layer two conformational heterogeneity being additional heterogeneity in the Asp residue.
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how the conformational heterogeneity interacts with the

compositional heterogeneity. Furthermore, the hierarchy of

conformational heterogeneity is also lost. This encoding is

critical in certain time-resolved experiments, where proteins

are perturbed with temperature (Thompson et al., 2019),

electric field (Greisman et al., 2023) or light (De Zitter et al.,

2022). In these experiments, the ground and excited states can

contain the same conformational states, although at different

occupancies. With hierarchy and different compositional

states, it would be possible to represent both states within the

same PDB entry.

In our proposed mmCIF model, within the atom_site,

we would encode compositional heterogeneity (bound or

unbound or unknown for ligand 1) and conformational

heterogeneity state 1/2. For example, when the composi-

tional column indicated a ‘bound’ state, the corresponding

conformational state 1 would indicate the alt A. However,

when the ligand was not bound, the compositional state

will be unbound but the conformational state 1 could

indicate alt A or alt B. The occupancies of the confor-

mations in the bound state would be restrained to the

sum of the bound occupancy. For residues that do not

interact with the ligand, we would imagine that the

compositional column would be blank or unknown (see

the supporting information). This concept can be extended

to subunits in assemblies from cryoEM data or covalent

linkages, such as a post-translational modification, as

presented in Fig. 1(e).

8. Conclusions
The development of deep-learning methods to predict the

single-structure representations in the PDB have been a

breakthrough for structural biology (Jumper et al., 2021; Baek

et al., 2021). However, the next challenge lies in predicting

ensembles. This is important for two reasons: first, ensembles

dictate function; and second, the accuracy gap between

prediction methods and experiments may result from an

incomplete consideration of ensembles on both sides (Lane,

2023). A substantial upgrade in representing our experimental

structural data is needed to meet this challenge.

X-ray crystallography and single-particle cryoEM capture

an ensemble of atomistic information, enabling the modeling

of compositional and conformational states. Numerous

methods exist to disentangle these states (Wankowicz et al.,

2023; Riley et al., 2021; Keedy et al., 2015; Ginn, 2021; Plos-

cariu et al., 2021; Pearce et al., 2017; Hoff et al., 2023), but the

current PDBx/mmCIF format inadequately captures these

states. We also believe this proposal can be expanded to other

structural biology techniques such as neutron crystallography

(Catapano et al., 2023). While it is possible to capture these

data with ensemble data representation, there can be an

explosion of the number of states due to the atomistic detail.

Ensemble representations in NMR result from inferential

determination of positions based on highly local observables,

which face this issue and generally represent a fixed number

without any Boltzmann weighting implied (Ramelot et al.,

2023). Similarly, recent integrative modeling approaches that
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Figure 3
Compositional heterogeneity. Boxes represent how data categories would be connected in the mmCIF format. Shown are: atom, compositional state,
conformational state 1, conformational state 2, occupancy. Information from the CG atom of the Phe residue is shown. (a) Example 3: simple
compositional heterogeneity, where the ligand has 50% occupancy (bound state). (b) Example 4: compositional and conformational heterogeneity,
where the ligand has 50% occupancy (bound state), and the Phe exists in two conformations in the other 50% (or unbound state)

http://doi.org/10.1107/S2052252524005098


rely heavily on distance restraint and other non-atomistic data

can be deposited in the PDB-Dev (Burley, Kurisu et al., 2017;

Vallat et al., 2019). However, these integrative and inferential

modeling challenges are distinct from those faced by real and

reciprocal space modeling in X-ray crystallography and

cryoEM in an important way: integrative approaches are

generally underdetermined and inferential, whereas X-ray/

EM density maps are generally overdetermined for a single

model.

Our proposed amendments to the PDBx/mmCIF model are

designed to better represent conformational and composi-

tional heterogeneity by capturing these heterogeneities with

new data categories in PDBx/mmCIF (see the supporting

information). This modification will separate out conforma-

tional and compositional heterogeneity and allow for infor-

mation to be transferred about the interconnectedness of this

heterogeneity. We propose adding these data categories onto

the atom_site loop within the PDB, connecting each atom in a

structure to its conformational or compositional state. While a

data category in the PDBx/mmCIF dictionary allows for more

description of conformational heterogeneity (alt_ens), this

does not separate conformational versus compositional

heterogeneity, nor does it allow for layering of conformational

heterogeneity.

This improved data structure will accelerate the develop-

ment of new tools and create representative training datasets

for structural ensemble prediction. Alongside this format,

infrastructure changes to refinement, visualization and vali-

dation tools are likely to be needed. We have outlined changes

here to maximize backward compatibility for refinement and

visualization software; for example, the hierarchical repre-

sentations can be implemented, at first, as parsable group

occupancy definitions. This new format should also help with

the interconversion of existing multiconformer and ensemble-

based models. Such interconversion enables manual manip-

ulations, such as in Coot (Emsley et al., 2010) or data mining

approaches. We envision refining mmCIF further to more

effectively correlate grouped data, including time-resolved

techniques, ligand soaking experiments or EM classification/

reconstructions (Zhong, Lerer et al., 2021; Zhong, Bepler et al.,

2021). For example, a ‘perturbation’ data category could

connect to specific structure factors or real-space maps,

enabling restrained refinements of coordinates.

The notion that a single, static structure defines a protein is

outdated for experimental and structural prediction. Macro-

molecules adopt an ensemble of conformations, and modeling

those structural distributions accurately is now possible. By

more correctly encapsulating the underlying experimental

data, we can enable both benchmarks for prediction and a new

class of ensemble–function studies. Moreover, accurately

modeling compositional heterogeneity will reveal how ligands

interact with the receptors, increasing the potential for an

‘AlphaFold’-type of breakthrough in ligand design. Inevitably,

all models are wrong, but we can at least aspire to make more

useful models that take advantage of the expressive mmCIF

format to better model the heterogeneity in the underlying

experimental data.
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