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Cryogenic electron microscopy (cryo-EM) is a pivotal technique for imaging

macromolecular structures. However, despite extensive processing of large

image sets collected in cryo-EM experiments to amplify the signal-to-noise ratio,

the reconstructed 3D protein-density maps are often limited in quality due to

residual noise, which in turn affects the accuracy of the macromolecular

representation. Here, crefDenoiser is introduced, a denoising neural network

model designed to enhance the signal in 3D cryo-EM maps produced with

standard processing pipelines. The crefDenoiser model is trained without the

need for ‘clean’ ground-truth target maps. Instead, a custom dataset is

employed, composed of real noisy protein half-maps sourced from the Electron

Microscopy Data Bank repository. Competing with the current state-of-the-art,

crefDenoiser is designed to optimize for the theoretical noise-free map during

self-supervised training. We demonstrate that our model successfully amplifies

the signal across a wide variety of protein maps, outperforming a classic map

denoiser and following a network-based sharpening model. Without biasing the

map, the proposed denoising method leads to improved visibility of protein

structural features, including protein domains, secondary structure elements and

modest high-resolution feature restoration.

1. Introduction

1.1. Noise sources and denoising in cryo-EM

Cryogenic electron microscopy (cryo-EM) is one of the

leading methods to elucidate protein structures (Bai et al.,

2015; Cheng, 2018). In a cryo-EM experiment, a low-intensity

electron beam must be used in order to minimize the organic

sample degradation during imaging, resulting in noisy images.

Thousands of these noisy images are collected and processed

to improve the low, significantly below 1 (Frank & Al-Ali,

1975; Egelman, 2016), signal-to-noise ratio (SNR). This

approach ultimately allows for modeling detailed atomic

resolution 3D protein maps (Nakane et al., 2020). Still, the

remaining noise is one of the factors limiting the reconstructed

map’s quality (Rosenthal & Henderson, 2003; Frangakis,

2021).

The low-intensity electron beam is responsible for shot

noise in the cryo-EM images. Furthermore, the protein

particle projections are modulated by structural noise. This

noise appears due to the non-uniform surroundings of the

imaged particles: for example, amorphous ice impurities and

ice thickness fluctuations. The resulting 3D protein-density

maps are also affected by errors in data processing: for

instance, inaccuracies of 3D image alignment (Jiménez-

Moreno et al., 2021).
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The most successful cryo-EM denoising method so far is

simply processing and averaging a large number of images.

The improvement of the reconstructed map as a function of

the number of acquired images can be estimated (Rosenthal &

Henderson, 2003). The relation is logarithmic, which sets

improvement limits due to acquisition costs. Other methods,

such as 2D micrograph denoising (Palovcak et al., 2020; Bepler

et al., 2020), 3D map denoising (Ramlaul et al., 2019; Tegunov

et al., 2021) and corrections for 3D image alignment (Jiménez-

Moreno et al., 2021), are an active area of development and

testing.

1.2. Deep learning enhances cryo-EM data processing

Deep learning has found extensive use in image processing.

Therefore, the adoption of neural network models in cryo-EM

processing is broad and the application of new methods has

often been straightforward (Chung et al., 2022). For example,

the popular YOLO object detection network (Redmon et al.,

2016) was adapted to pick protein particles from EM images as

crYOLO (Wagner et al., 2019). Denoising network models,

developed for general-purpose image denoising and restora-

tion, can also be used for contrast enhancement in 2D EM

images (Bepler et al., 2020; Lehtinen et al., 2018; Batson &

Royer, 2019). There are also a number of specialized methods

for 3D model building [e.g. CryoDRGN (Zhong et al., 2021),

3DFlex (Punjani & Fleet, 2023), GMM-based methods (Chen

et al., 2024)] map post-processing [DeepEMhancer (Sanchez-

Garcia et al., 2021), EMReady (He et al., 2023)], map analysis

[DeepRes (Ramı́rez-Aportela et al., 2019)] and atomistic

model building [Emap2sec (Maddhuri Venkata Subramaniya

et al., 2019), ModelAngelo (Jamali et al., 2022)], which are

powered by neural networks.

1.3. 3D map sharpening and denoising

Cryo-EM 3D density maps show a loss of contrast at high

resolutions. This is caused by the decay of high-frequency

signal amplitudes, which are smaller than expected when

compared with the reference X-ray scattering data (Rosenthal

& Henderson, 2003). Contrast degradation is caused by

imperfect imaging due to inherent instrument limitations in

transmission electron microscopy (TEM) apparatus, including

specimen movement and charging, radiation damage, inelastic

electron scattering events, partial microscope coherence, and

particle flexibility and heterogeneity, and also due to the

limitations of data-processing methods (Henderson, 1992;

Rosenthal & Henderson, 2003). To restore the degraded

signal, global sharpening methods and, more recently, local

sharpening methods have been developed. LocScale (Jakobi et

al., 2017) uses an atomic reference structure to locally correct

signal amplitudes. LocalDeblur (Ramı́rez-Aportela et al.,

2020) performs deblurring based on the local resolution esti-

mation. LocSpiral (Kaur et al., 2021) uses the spiral phase

transform to enhance high-resolution map features. Vargas et

al. (2022) utilize a multiscale tubular filter to enhance post-

processed maps. DeepEMhancer (Sanchez-Garcia et al., 2021)

is a network model trained on pairs of raw experimental and

sharpened maps. It uses LocScale (Jakobi et al., 2017) maps as

targets to mimic LocScale’s local sharpening effect without the

need for atomic reference structures. EMReady is a similar

method (He et al., 2023), but trained on pairs of raw experi-

mental maps and maps simulated from atomistic models.

EMReady is optimized to match the ground-truth final post-

processed maps but not necessarily to represent the raw

experimental data optimally. Another widely used sharpening

method is phenix.auto_sharpen (Terwilliger et al., 2018), which

has also been employed in this article to visually compare

maps (see Section 2.6). Another relevant method, LAFTER

(Ramlaul et al., 2019), is a classic local 3D map denoising

algorithm based on two serial filters. LAFTER operates in

both real and Fourier space. It compares independent half-set

reconstructions to identify and retain shared features with

power greater than the noise. LAFTER does not sharpen EM

maps, it only denoises them, which makes it a suitable refer-

ence method for benchmarking our network-based denoising

model.

1.4. Contributions

Entries in the Electron Microscopy Data Bank (EMDB)

repository contain not only the final processed cryo-EM 3D

maps but also, in many cases, ‘half maps’, which result from

processing two randomly divided half-datasets. The two half-

maps are used for the determination of the map resolution

(Van Hell & Schatz, 2005; Rosenthal & Henderson, 2003), and

can be used to illustrate how the map’s SNR changes as a

function of the signal frequency with Fourier shell correlation

plots [FSC (Van Heel, 1987)] or by directly calculating power

spectra of signal and noise components (Palovcak et al., 2020).

This type of data is suitable for training a neural network 3D

map denoising model. The most natural setup would be the so-

called noise-to-noise model (Lehtinen et al., 2018), in which

the first half-map is used as a denoising template and the

second serves to calculate loss during the supervised model

training. This is how the M software (Tegunov et al., 2021) is,

on the fly, training a map-specific model during a map

refinement procedure. Here, we take advantage of existing

theoretical analysis to further enhance the model’s denoising

power. Rosenthal & Henderson (2003) derive a relation

between an ideal noise-free 3D map and a pair of two noisy

half-maps as a function of FSC. In Methods, we outline how we

employ this relation to optimize the denoising network in self-

supervised training. We compare our model crefDenoiser with

the recent 3D map denoiser LAFTER (Ramlaul et al., 2019),

the sharpening model EMReady (He et al., 2023) and the pre-

trained 3D Topaz denoising model (Bepler et al., 2020; specific

for cryo-electron tomography data, TopazTomo), and analyze

their denoising performance on the test maps set with a

number of selected characteristics. Furthermore, we analyze

the signal-to-noise enhancements as a function of signal

frequency, and we show that crefDenoiser improves the SNR,

without introducing large biases in the denoised maps. This is

in contrast to the EMReady model, whose primary role is to
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enhance maps by ingesting additional signal to the maps,

rather than filtering the noise.

Finally, we provide examples of denoising with selected

maps, where our processing provides insights into the usability

and advantages of denoising.

2. Methods

2.1. Model optimization

The crefDenoiser model is trained using a loss function

based on FSC and the statistical measure known as Cref. FSC

score is the most popular metric used in cryo-EM imaging to

determine image and map quality (Rosenthal & Henderson,

2003). It measures the normalized cross-correlation between

two volumes over corresponding shells in the Fourier domain.

It quantifies the similarity of signals between two maps (or

images when a 2D signal is analyzed) as a function of

frequency. The FSC value between two map volumes is given

by

FSCðsÞ ¼

P
r2s F1ðrÞ � F

�
2 ðrÞ

P
r2s jF1ðrÞj

2 �
P

r2s jF2ðrÞj
2

� �1=2
; ð1Þ

where F1 and F�2 represent the Fourier transform and conju-

gate Fourier transform of the two volumes, and s is the shell

being considered. The summation is performed over all

frequency voxels r contained in the shell s. To calculate a

scalar score, we integrate the FSC curve over all frequency

shells up to the Nyquist frequency:

FSCscalar ¼

Zf

0

FSCðsÞ ds: ð2Þ

FSC values can range from +1 for perfectly correlated images

to 0 for completely uncorrelated images. Negative values (up

to � 1) imply a negative correlation. An FSC of � 1 would

represent identical images with opposite contrasts (Penczek,

2020). In cryo-EM imaging, the FSChalf curve between half-

dataset maps is used to determine the ‘gold standard’ reso-

lution (Rosenthal & Henderson, 2003). The frequency at

which the FSC curve first falls below a fixed value (usually

0.143) (Rosenthal & Henderson, 2003) is used as a resolution

estimate.

F1 and F2 in equation (1) can be represented by a common

signal term and an additional noise term, F1 = S + N1, F2 = S +

N2, where N1 and N2 are realizations of noise N. With this,

FSChalf becomes (Rosenthal & Henderson, 2003)

FSChalfðsÞ ¼

P
ðSþ N1Þ � ðSþ N2Þ

�

P
jSþ N1j

2
P
jSþ N2j

2
� �1=2

�

P
jS2j

P
jS2 þ N2j

;

ð3Þ

when signal and noise are uncorrelated and data in the half-

sets are on the same scale. Using the above notation, we can

also write FSC between an ideal map and a map reconstructed

from a complete dataset. The ideal map has no noise term, and

the noise of the full-dataset map becomes N=
ffiffiffi
2
p

when

compared with the half-dataset noise N. This so-called Cref can

be expressed as a function of FSChalf [substituting with the

result of equation (3), see also Rosenthal & Henderson

(2003)]:

CrefðsÞ ¼

P
Sþ Nffiffi

2
p

� �
� S�

P�
�
�Sþ Nffiffi

2
p

�
�
�

2 P
jSj2

� �1=2
�

2� FSChalfðsÞ

1þ FSChalfðsÞ

� �1=2

:

ð4Þ

Signal and noise in the above equations are uncorrelated only

in a statistical sense (i.e. the expectation value of S · N = 0),

and for a given map, noise realization might have a non-zero

correlation with the signal (van Heel & Schatz, 2017, 2005).

Furthermore, equation (4) has many solutions, in the sense

that a noise-free map that fulfills equation (4) is not unique

(Ramlaul et al., 2019).

Our loss function is the mean absolute difference between

the Cref in equation (4) (calculated using readily available

FSChalf curves) and FSCFD, which is calculated between the

average of half-maps (used as the network input map for

denoising) and the denoised output map:

LC ¼
1

f

Xf

s¼0

�
�CrefðsÞ � FSCFDðsÞ

�
�: ð5Þ

Calculating the loss, we assume that the average of two half-

maps represents a map reconstructed from a complete dataset.

The FSCFD between a noise-free map and the average of

two half-set maps should completely overlap with Cref. An

FSCFD value above Cref indicates that the denoised map still

contains some residual noise (under-denoised), while a value

below Cref points to a loss of signal. The lower the LC, the

closer the FSCFD of our network output is to the Cref, indi-

cating a more effective denoising operation. The loss function

LC is differentiable since it is directly derived from the FSC

function, which itself is differentiable (Kaczmar-Michalska et

al., 2022) and can thus be readily applied in gradient-based

model training. The LC loss allows us to perform Fourier space

based model optimization for the real-space theoretical noise-

free map, even without actually having noise-free maps to

drive the model training. The correlations of signal and noise

realizations in the training maps should not limit the loss

performance since the training is performed over many maps,

and these correlations should average out.

2.2. Bias analysis

The denoising process might introduce a spurious bias

signal to the map (Palovcak et al., 2020). For example, the self-

supervised Noise2Void model introduces checkerboard arte-

facts to the denoised images (Höck et al., 2023). In general,

bias manifestation can be of any form and can potentially

harm the denoised map quality. Can the magnitude of bias be

quantified and used to assess denoising model quality?

A noisy map consists of signal and noise,

M ¼ Sþ N; ð6Þ
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and a denoised map consists of signal, bias and some leftover

noise,

D ¼ Sþ Bþ Nd: ð7Þ

A variance of signal [var(S)], noise [var(N)], bias [var(B)] and

leftover noise after denoising [var(Nd)] can be calculated from

the noisy and denoised half-maps. We follow derivations

provided by Palovcak et al. (2020) to show that these prop-

erties are readily calculable starting from covariances of noisy

and denoised maps. Elementary relations between variance

and covariance of variables are used in the calculations and

are provided below. With variables X, Y, V and Z:

varðXÞ ¼ covðX;XÞ; ð8Þ

covðX;YÞ ¼ E
�
½X � EðXÞ�½Y � EðYÞ�

�

¼ EðXYÞ � EðXÞEðYÞ ð9Þ

and

covðX þ V;Y þ ZÞ ¼ covðX;YÞ þ covðV;YÞ

þ covðX;ZÞ þ covðV;ZÞ; ð10Þ

where cov(·, ·) is the covariance and E(·) is the expectation

value. Equations (8) and (10) imply that

varðX þ YÞ ¼ varðXÞ þ varðYÞ þ 2covðX;YÞ; ð11Þ

and if X and Y are independent, E(XY) = E(X)E(Y), equation

(9) implies that cov(X, Y) = 0. Assuming that S and N are

independent, the variance of signal and noise in 3D cryo-EM

maps, var(S) and var(N), can be calculated using the noisy

half-maps M1 and M2:

covðM1;M2Þ ¼ covðSþ N1; Sþ N2Þ

¼ covðS; SÞ þ covðS;N2Þ þ covðN1; SÞ

þ covðN1;N2Þ

� covðS; SÞ ¼ varðSÞ ð12Þ

and

covðM1;M1ÞcovðM2;M2Þ
� �1=2

� covðM1;M2Þ

¼ covðSþ N1; Sþ N1ÞcovðS þ N2; Sþ N2Þ
� �1=2

� covðSþ N1; Sþ N2Þ

¼
n

varðSÞ þ varðN1Þ þ 2covðS;N1Þ
� �

� varðSÞ þ varðN2Þ þ 2covðS;N2Þ
� �o1=2

� varðSÞ

� covðS;N2Þ � covðN1; SÞ � covðN1;N2Þ

�
n�

varðSÞ þ varðNÞ
�2
o1=2

� varðSÞ ¼ varðNÞ: ð13Þ

Furthermore, assuming that B and N, B and Nd, and S and Nd

are independent, we can calculate the variance of B using the

noisy (M1, M2) and denoised (D1, D2) half-maps:

covðD1;D2Þ þ covðM1;M1ÞcovðM2;M2Þ
� �1=2

� 2covðM1;D2Þ � varðNÞ

¼ covðSþ Bþ Nd
1 ; Sþ Bþ Nd

2 Þ þ
�
covðSþ N1; Sþ N1Þ

� covðSþ N2; Sþ N2Þ
�1=2
� 2covðS þ N1; Sþ Bþ Nd

2 Þ

� varðNÞ

¼ varðSÞ þ varðBÞ þ 2covðS;BÞ þ covðB;Nd
2 Þ þ covðB;Nd

1 Þ

þ covðS;Nd
2 Þ þ covðS;Nd

1 Þ þ covðNd
1 ;Nd

2 Þ

þ
n�

varðSÞ þ varðN1Þ þ 2covðS;N1Þ
�

�
�
varðSÞ þ varðN2Þ þ 2covðS;N2Þ

�o1=2

� 2
�
varðSÞ þ covðN1;Nd

2 Þ þ covðS;BÞ þ covðB;N1Þ

þ covðS;Nd
2 Þ
�
� varðNÞ

� varðBÞ: ð14Þ

A similar derivation for Nd is provided below:

covðD1;D1ÞcovðD2;D2Þ
� �1=2

� covðD1;D2Þ

¼
�
covðSþ Bþ Nd

1 ; Sþ Bþ Nd
1 Þ

� covðSþ Bþ Nd
2 ; Sþ Bþ Nd

2 Þ
�1=2

� covðSþ Bþ Nd
1 ; Sþ Bþ Nd

2 Þ

¼
�
covðS; SÞ þ covðB;BÞ þ covðNd

1 ;Nd
1 Þ þ 2covðS;BÞ

þ 2covðB;Nd
1 Þ þ 2covðS;Nd

1 Þ
�1=2
�
�
covðS; SÞ þ covðB;BÞ

þ covðNd
2 ;Nd

2 Þ þ 2covðS;BÞ þ 2covðB;Nd
2 Þ

þ 2covðS;Nd
2 Þ
�1=2
� varðSÞ � varðBÞ � 2covðS;BÞ

� covðNd
1 ;Nd

2 Þ � covðB;Nd
2 Þ � covðB;Nd

1 Þ

� covðS;Nd
2 Þ � covðS;Nd

1 Þ

� varðNdÞ: ð15Þ

The covariances can be calculated separately for each

frequency shell s in 3D maps:

cov
�
F1ðsÞ; F2ðsÞ

�
¼

1

n

Xn

r2s

F1ðrÞ � F
�
2 ðrÞ; ð16Þ

where n is the number of voxels r in the shell s. Usefully, the

Electron Microscopy Data Analytical Toolkit (EMDA)

(Warshamanage et al., 2022) provides routines to calculate 3D

map covariances.

2.3. Network architecture

We use a 3D U-Net-like (Ronneberger et al., 2015) model

with five levels of depth in the contracting path and corre-

sponding five levels in the expanding path. The overall

architecture of crefDenoiser is enumerated below:

(i) Input layer. The model takes as input a 3D image with a

single channel.

(ii) Contracting path. The contracting path consists of five

blocks, each containing a 3D convolutional layer with 16

filters, a Leaky ReLU activation function and a 3D

MaxPooling layer.
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(iii) Bottleneck. The bottleneck consists of a 3D convolu-

tional layer and a Leaky ReLU activation function. This part

of the network is responsible for learning the most abstract

features of the input data.

(iv) Expanding path. The expanding path also consists of

five blocks, each containing a 3D UpSampling layer, a

concatenation operation, two 3D convolutional layers and two

Leaky ReLU activation functions. The concatenation opera-

tion combines the features learned in the contracting path

with the upsampled output, allowing the network to use both

local and global features for the reconstruction of the

denoised image.

(v) Output layer. The final layer of the network is a 3D

convolutional layer with a single filter, which outputs the

denoised 3D image.

The total number of parameters in the model is 322 881, all

of which are trainable.

Since cryo-EM images inherently capture the intricate 3D

structures of macromolecules, this architecture is particularly

well suited to the task due to its ability to effectively learn

spatial hierarchies and extract features from the 3D data.

Although the network is trained on patches of maps (see

Section 2.4), it is fully convolutional and can denoise whole

maps of any size without any architectural restrictions.

2.4. Data preparation

Our model was trained on data collected from the EMDB

repository. All cryo-EM entries, with an associated mask and

two half-maps attached, were downloaded from the online

EMDB FTP server. Any entries with size mismatches between

the two half-maps and/or the mask files were pruned. The

remaining 3710 records, with resolutions in the range 1.22–

9.9 Å, were used in constructing the training and test datasets.

All the half-map pairs were first independently masked and

standardized to have a mean voxel value of 0 and an intensity

standard deviation of 1. They were then randomly shuffled (as

a pair) and split into patches of size 96 � 96 � 96. Any

patches that lay completely outside the masking region were

removed. Those remaining were then divided in a 1:9 ratio to

construct the test and training datasets. The training set finally

contains 55 176 such pairs of half-map patches from 3386

maps, while the test dataset contains 6126 pairs from 324 maps.

The model was not tuned on validation data, and we do not

distinguish between the validation set and the test set. Trained

model performance analysis was performed on 50 random

maps selected from the test dataset.

2.5. Training process

The training process was conducted using the Adam

(Kingma & Ba, 2014) optimizer (�1 = 0.9, �2 = 0.999, � = 10� 8)

with an initial learning rate of 0.0003. The learning rate was

reduced exponentially with a decay rate of k = 0.7 every ten

epochs. The model was trained for 195 epochs with a batch size

of 6 on three NVIDIA A100 80GB GPUs. The training time

was �120 h. After each epoch, the model’s performance was

evaluated on the validation set, and the model weights were

saved. The training convergence analysis is shown in Fig. S2 of

the supporting information.

2.6. Map sharpening

Cref-denoised maps may be further sharpened. Here, the

selected denoised maps were sharpened only to facilitate

graphical comparison with the published maps, and were not

used for any quantitative analysis. Local sharpening with

Phenix software (Adams et al., 2010), with the resolution

threshold set to be slightly lower than the published resolution

(� 0.5 Å), was chosen. The sharpening method was auto-

matically selected using phenix.auto_sharpen (Terwilliger et

al., 2018).

3. Results

3.1. Comparison with EMReady, LAFTER and TopazTomo

methods

For a random set of masked denoised test maps (n = 50), we

calculated FSCFD and compared it with the theoretical Cref,

analyzing root mean square difference between the two

curves. Fig. 1 shows results for denoising with crefDenoiser,

LAFTER and EMReady, as well as the TopazTomo 3D

denoiser (Bepler et al., 2020). As is evident from the plot,

crefDenoiser has the smallest value (is the closest to Cref) of all

the methods by a significant margin, which is not surprising

since crefDenoiser was trained to minimize this map property.

EMReady performs second best, while TopazTomo and

LAFTER demonstrate lower performance. In Fig. S1, FSCFD

and Cref for one representative map, EMD-23276 (Zhang et

al., 2021), are shown. FSCFD for crefDenoiser follows closely

the theoretical Cref curve. The pattern visible for this map

repeats in other test maps: EMReady shows deviations in
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Figure 1
Analysis of denoising performance for a test set of cryo-EM maps. Root
mean square error (RMSE) between FSCFD

2 and Cref
2 curves is shown

for 50 test masked maps processed using crefDenoiser, EMReady,
TopazTomo and LAFTER as box and whisker plots. The solid central line
depicts the median and the boxes represent the interquartile range. The
whiskers span the distribution, excluding any outliers denoted by circles.
RMSE is calculated for the squared values to ensure the numerical
stability of calculations.
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FSCFD from Cref in lower frequencies (possibly due to the low

accuracy of denoising lipids and other molecules not present

in the atomistic structures used to construct reference maps

for the EMReady model training), LAFTER shows rather

large (as in Fig. S1) or rather low (see outliers in Fig. 1) RMSE

to the Cref curve, and TopazTomo under-denoises the high-

frequency signal. The RMSE results of the FSCFD to Cref

curves alone are not enough to claim that the maps are close to

the true biological reconstruction, since various denoised

maps can minimize the RMSE measure. Further analysis of

the denoised map properties is provided below.

EMReady (He et al., 2023) authors use the resolution at

which the FSC between a pair of maps falls to one-half (i.e.

FSC-0.5) as a metric for the model evaluation. Here, we

compare the performance of crefDenoiser with the other

denoisers using this same metric.

For this we calculated FSC-0.5 values for the noisy [FSC-

0.5(M1, M2)] and denoised–noisy half-map pairs [FSC-

0.5(D2, M1)] for the 50 test maps. LAFTER is not designed to

denoise single half-maps, so it was excluded from this analysis.

In Fig. 2, we present the change of FSC-0.5 after applying

crefDenoiser, EMReady and TopazTomo models for masked

and non-masked maps.

For the majority of the analyzed maps, the FSC-0.5 change

is negative for all three methods when the analyzed maps are

unmasked (with a median change around � 0.2 Å). A negative

change suggests improved quality of the processed maps since

the FSC-0.5 shifts to higher resolution values. When masked

maps are used as inputs, crefDenoiser and EMReady facilitate

a negative change, albeit smaller (with a median change of less

than � 0.1 Å). TopazTomo does not manage to significantly

affect the FSC-0.5 with the masked inputs.

The presented analysis suggests that the crefDenoiser model

can perform half-map denoising, even though it was trained on

the full-data density maps. We reason that the noisy maps from

the large training set have a broad range of noise levels, and

most of the half-maps fall within that range.
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Figure 2
Comparison of FSC-0.5 for maps denoised with the crefDenoiser,
EMReady and TopazTomo methods. The difference in FSC-0.5 values
between denoised–noisy half-maps and noisy-to-noisy half-maps
(M1, M2) for 50 EMDB test entries is shown as box-whisker plots for (a)
non-masked and (b) masked maps. The plots depict distributions of FSC-
0.5 difference for each method. The solid central line depicts the median
and the boxes represent the interquartile range.

Figure 3
Comparison of denoised maps with a higher-resolution map. Half-maps
for human apoferritin EMDB entries EMD-20027 (2.3 Å) and EMD-
20028 (3.1 Å) were averaged (within entry), and the mean maps were
subsequently denoised. Next, FSC curves to the mean map of the high-
resolution entry, EMD-20026 (1.8 Å), were calculated. Maps EMD-
20026, EMD-20027 and EMD-20028 were obtained by processing
different fractions of the same single-particle dataset (Pintilie et al., 2020).
Denoising with EMReady and crefDenoiser improves FSC curves to the
higher-resolution map for masked maps. The maps are part of the test set.
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Next, we tested methods by comparing lower-resolution

denoised maps with a high-resolution map. The analyzed

apoferritin entries EMD-20026 (1.8 Å), EMD-20027 (2.3 Å)

and EMD-20028 (3.1 Å) are reconstructed from the same

dataset using different fractions of the acquired single-particle

images (Pintilie et al., 2020). In Fig. 3, we show that denoising

with EMReady and crefDenoiser improves FSC curves for

both lower-resolution models (on masked maps). Mainly, the

high-frequency part of the FSC curve is changed; the effect is

significantly more pronounced for the EMReady model.

TopazTomo gives little to no improvement for EMD-20028 and

actually degrades map quality for EMD-20027 over most of

the frequency range. LAFTER performs poorly for both maps.

We further analyze whether crefDenoiser introduces any

spurious densities in appoferritin maps in Fig. S3.

Unfortunately, the analysis for low-resolution denoised and

high-resolution benchmark maps cannot be performed on a

larger number of maps due to a lack of accessible data.

However, we can approximate this analysis by comparing

experimental cryo-EM maps with the maps calculated from

atomic models. In Fig. 4 we demonstrate the difference in fit

between 33 full maps from the test set (for which we extracted

atomic models in a programmatic way) and their corre-

sponding atomic models, before and after denoising. The fit is

evaluated using the d_fsc_model_0143 metric from

phenix.mtriage (Adams et al., 2010). This measure signifies the

resolution cutoff at which the FSC between the EM map and

the atomic model falls below 0.143. We observe that denoising

using crefDenoiser generates a modest improvement in the

resolution cutoff (with a median change around � 0.3 Å) while

EMReady maps demonstrate large similarity with the model
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Figure 4
A comparison of the fit of denoised and noisy test-set maps with their
published atomic models. The 33 test maps (from 50) for which automatic
model extraction was successful were used in the analysis. The masked
FSC = 0.143 values were directly computed using phenix.mtriage (Adams
et al., 2010).

Figure 5
Denoising a medium-resolution map. The map of Sec61 membrane channel from Saccharomyces cerevisiae (Itskanov et al., 2021) and its fragment
focused on one selected internal channel helix with the fitted atomistic model are visualized. This map is part of the test set and has a resolution of 4 Å.
The noisy map, constructed as a mean of two half-maps, is presented in (a). The final published map is shown in (b). The noisy sharpened mean map is
presented in (c). The denoised and sharpened mean map is presented in (d). The denoised map preserves lower-resolution motifs (the black-arrow
marked �-helix) and high-resolution details (the inset), while the noise is substantially reduced. Contouring was tuned to make the maps most similar.
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maps (with a median change larger than � 1 Å). This result is

not unexpected since EMReady was directly trained using

maps simulated from the reference atomic models. On the

other hand, crefDenoiser was exposed only to the experi-

mental half-maps and still provides maps with improved

similarity with the atomic model maps.

For LAFTER and TopazTomo processed maps, we do not

observe an improved resolution cutoff for most of the test

maps. TopazTomo has little to no effect on the fit, while

LAFTER performs inconsistently and can sometimes degrade

the fit by a large amount. For a large fraction of LAFTER

processed maps, the d_fsc_model_0143 metric could not

be calculated.

3.2. Comparison with published maps

In Figs. 5 and 6, we visually compare Cref-denoised maps

with the published final 3D cryo-EM maps, as deposited by

authors in the EMDB repository. For example, in medium-

resolution map EMD-22778 (4 Å) of Sec61 membrane

channel (Itskanov et al., 2021), densities of some �-helices

improve after denoising (see Fig. 5), while noise due to lipid

densities is mostly removed. To exclude that the effects are

only due to sharpening, we also show noisy-sharpened maps.

In the case of the SARS-CoV-1 Spike Protein map, EMD-

34420 (Zhang et al., 2023), shown in Fig. 6, denoising removes

high-frequency noise that obscures an overview of the domain

positions within the spike map [Fig. 6(d)], while the high-

resolution information, in particular densities of amino acid

side chains, is unaffected [Figs. 6(b) and 6(d)].

3.3. Signal, noise and bias in the denoised maps

In Fig. 7, we show ratios of signal-to-noise and signal-to-bias

powers for the set of 50 test maps. The signal, noise and bias

variances are computed as explained in Section 2.2. At first

sight, the analysis shows unfavorable signal-to-bias ratios for

the high-frequency range of the EMReady processed maps.

This seems intuitive since the method modifies maps to

include additional signal that is digested from the atomic

model based ground truth (and both half-maps are modified in

a similar manner by EMReady). The SNR is similar or worse

when compared with noisy maps, suggesting that EMReady’s

main action is not denoising. In effect, high-frequency noise is

(visually) dampened in the EMReady processed maps by the

much larger bias signal. In the case of the crefDenoiser, the
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Figure 6
Denoising high-frequency noise. The map of SARS-CoV-1 Spike Protein [EMD-34420 (Zhang et al., 2023)] and its fragment focused on a single helix
with the fitted atomistic model are presented. The map is part of the training set and has a resolution of 2.99 Å. The noisy map, constructed as a mean of
two half-maps, is presented in (a). The final map published in the EMDB repository is shown in (b). The noisy sharpened mean map is presented in (c).
The denoised and sharpened mean map is presented in (d). Contouring was tuned to make the maps most similar. The high-frequency structural features
of the published and denoised maps are similar (see the �-helix); however, the denoised map provides a clear outlook of the overall architecture of the
spike due to the removal of high-frequency noise.



SNR is higher in the high-frequency range (denoising effect),

while network-based bias is much lower when compared with

EMReady. However, the overall analysis of data from Fig. 7 is

confusing when the TopazTomo model SNR is considered. The

plot suggests very effective denoising of the high-frequency

signal by TopazTomo, while, with data presented in Fig. S1, we

conclude that TopazTomo is a poor denoiser. To better

understand the source of this phenomenon, we plot for two

maps, signal and noise variances and covariance for two

denoised half-maps in Fig. S4. The plot suggests that both

noise and signal are dampened by the TopazTomo model in the

high-frequency range. Since this effect is correlated, the noise

and signal independence assumptions in equations (14) and

(15) are not fulfilled, and the variance of noise and bias cannot

be accurately computed.

4. Discussion and conclusions

This article presents crefDenoiser, a self-supervised deep

network model for denoising 3D cryo-EM density maps, and

compares its performance with the EMReady, LAFTER and

TopazTomo methods. To our knowledge, it is the first network-

based model for denoising this type of 3D EM data in a self-

supervised manner. The model is trained on �3700 experi-

mental maps deposited in the EMDB repository to optimize

an ideal noise-free map using the presented theory-based loss.

We showcase the benefits of denoising in 3D EM map analysis

on real-map examples and provide further data that confirm

the improved quality of the denoised maps.

The recent sharpening model EMReady (He et al., 2023)

might, as a side effect, also perform map denoising, since it is

trained to match simulated maps in which noise is not present.

The presented crefDenoiser, on the other hand, is trained to

maximize the consistency of raw cryo-EM data, i.e. half-maps,

with the denoised map employing the Cref based analytical

loss. The presented analysis suggests that EMReady enhances

maps by ingesting additional signal, which we observe as bias

in the analysis presented in Fig. 7. On the other hand,

crefDenoiser restores maps by improving the SNR in the high-

frequency range but without introducing additional large

signal components, i.e. map biasing. The map enhancement

due to SNR change is rather moderate, while the additional

signal in EMReady maps moves them closer to higher-reso-

lution maps and to atomic models, as shown in Figs. 3 and 4.

Still, the observed map enhancement by crefDenoiser is not

given per se. First, the model optimization (minimization of

Cref based loss) does not guarantee that the model restores the

‘true’ noise-free map because the loss is approximate and the

space of solutions is degenerate. It is likely that, similar to

models trained on a standard L2 loss [see Menon et al. (2020)],

crefDenoiser generates a ‘mean’ solution, here a 3D density

map, that approximates all possible noise-free maps. Second,

crefDenoiser is not able to restore the underlying signal if the

corruption affects both half-maps similarly; for example,

power loss of high-frequency signal in the half-maps.

The two other tested denoising methods, LAFTER and

TopazTomo, do not enhance map quality in our analysis. For

TopazTomo, quality enhancement was not expected, since the

model was trained for cryo electron tomography data.

However, analysis of TopazTomo-processed maps provides

useful insights into the limitations of bias and noise power

spectra analysis.

The Cref loss is more sensitive to high-frequency signal than

a standard L2 based loss, which seems to be beneficial for

model training (Fig. 1). ‘Noise-to-noise’ models, where one 3D

half-map is used as denoising input and the second half-map is

used to compute loss, could also be trained with a high-

frequency focused loss, such as FSC [equation (1) (Kaczmar-

Michalska et al., 2022), see also Tegunov et al. (2021)], instead

of an L2 loss. However, the noise-to-noise setup, as used for

example in the M software (Tegunov et al., 2021), does not

take advantage of both noisy maps during training (one is used

to compute loss and the other is used as denoising input). In

our model, we use the mean of both half-maps as input for

denoising training, with the noise magnitude reduced by
ffiffiffi
2
p

.

Furthermore, the model is extensively trained on a relatively

large dataset (compared with M) until convergence, resulting

in a versatile denoiser. Training models with a larger training

dataset, when it becomes available, might further reduce the

leftover noise and improve the denoising results.

While in the presented analysis all the results were calcu-

lated for maps that were not part of the training set, it is

important to highlight that in real-world applications, the

maps requiring denoising could also be incorporated into the

training process. This flexibility is made possible by

crefDenoiser’s ability to train without the need for ground-

truth clean maps (self-supervised learning) and has the

potential to yield even better denoising results as the model

can adapt to more specific noise patterns present in these

maps.

We anticipate that the presented model could be beneficial

during map analysis and processing steps. Furthermore, since

it effectively improves SNR and introduces only low-level bias
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Figure 7
Denoising bias. The ratio of signal to noise [var(S)/var(N)] and signal to
bias [var(S)/var(B)] is plotted as a function of resolution for noisy and
network processed maps. The mean values were calculated with 50
masked maps taken from the test set. Noisy half-maps and denoised half-
maps were used to calculate the plotted characteristics, as described in the
main text.
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in the processed maps, it could find applications as a regular-

izer in 3D map reconstruction pipelines.
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