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There are a large number of scientific disciplines which benefit from advanced X-ray-

based analytical techniques. The X-ray diffraction (XRD) method is a powerful

technique which can provide qualitative and quantitative information about the crys-

tallographic structure and composition of matter in a non-destructive way. Such

information is crucial in several fields, such as in materials science for novel materials

research, or in environmental and geological sciences where it improves the under-

standing of subsurface composition and chemistry, which is essential for resource

exploitation and pollutant dispersion studies, to name a few.

The XRD techniques range from powder XRD, where the samples are provided in a

homogeneous powder form, to XRD computed tomography (XRD-CT) where spatial

investigation of heterogeneous samples in 2D and 3D is possible. At the same time, XRD

techniques are paired with several synchrotron X-ray-based techniques and provide

crucial complementary information (Allen, 2023). The working principle of XRD is

based on the diffraction of X-rays resulting from their interaction with the crystalline

planes of the considered material. The diffracted X-rays are collected by a specialized

detector, where the diffraction pattern is recorded as a plot of the diffracted X-ray

intensity versus the scattering angle. These diffraction patterns are subsequently analysed

and compared with reference patterns. Each crystal is characterized by a unique

fingerprint of peaks which allows the identification of multiple crystals within the same

signal. Signal fitting to known patterns is a complex computationally demanding process,

especially when multiple crystals are present. While powder XRD typically provides a

single diffraction pattern, in XRD-CT there is one XRD pattern for each pixel within the

considered 2D/3D domain resulting in multi-dimensional big data. The number of pixels

within such a 3D tomogram can easily become very large (>105) introducing several

challenges related to tomographic reconstruction, high-throughput data acquisition and

their respective modelling (Hayashi et al., 2015, 2019; Finegan et al., 2020). More speci-

fically, the model refinement computations are, due to the large number of the XRD-CT

patterns that have to be processed, a few orders of magnitude slower than powder XRD

computations. A potential solution to accelerate these computationally intensive

processes is the application of artificial intelligence (AI) techniques.

In recent years, developments in AI and machine learning have been quite impressive

opening new avenues in numerical modelling and data interpretation. There are already

several applications which take advantage of these advancements, ranging from the

acceleration of reactive transport simulations using machine learning (Jatnieks et al.,

2016), to image and pattern recognition in the sense of ultrafast processing and detection

which surpasses human capability (Ragone et al., 2023; Boiger et al., 2024; Omori et al.,

2023). More specifically, for XRD measurement interpretation, recent seminal works of

Dong et al. (2021, 2023) and Lee et al. (2021) have implemented convolutional neural

network (CNN) models to extract important information like phase identification and

lattice parameters directly from XRD patterns. In Dong et al., it is demonstrated that

using a trained CNN model the results can be interpreted up to three orders of magnitude

faster, while Lee et al. (2021) reported achieving the completion of the task in a few

seconds instead of several hours, compared with the use of traditional techniques

(Rietveld method).
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In the same direction, there are the recent efforts for phase

quantification using deep neural network processing of XRD

patterns (Simonnet et al., 2024; Poline et al., 2024). In the

article by Simonnet et al. (2024) in this issue of IUCrJ, the

authors aim to introduce a CNN-based method for direct

mineral phase quantification from the XRD signals. The

training of these models requires a very large dataset and for

that purpose pure XRD samples of four minerals and their

mixtures are generated synthetically, using crystallographic

information files. Interestingly, the authors incorporate the

effect of the instrumental factors into the synthetic dataset, in

order to increase the model realism and to accurately account

for the exact experimental geometry, such as the wavelength

function and the attenuation factor.

This approach results in a significant improvement in the

accuracy and efficiency of the model in the considered real

mineral mixture example, as shown in Fig. 1 (Simonnet et al.,

2024). Although the authors provide information, validation

benchmarks and examples for a four-component system, the

extension to systems composed of more than four minerals,

which is common in practice, appears straightforward if the

same methodology is followed. However, it should be noted

that the number of training samples as well as the training

efforts to build a more general model are expected to also

increase hand in hand with the number of components, in

order to maintain the same levels of accuracy.

It is of paramount importance and an excellent example of

open research that the code has been made freely available

as open-access software on the GitHub software develop-

ment platform (GitHub – titouansimonnet/XRD_Proportion_

Inference, https://github.com/titouansimonnet/XRD_

Proportion_Inference). This repository and version control

system includes well-documented input files, the code for

generating the training datasets (synthetic XRD patterns),

and the machine learning model architecture and parameters,

as well as the test cases. This provides to the scientists in the

community an excellent starting point to familiarize them-

selves with the tool, to use it, to optimize it and to extend it for

the description of more complex systems.

AI-based tools enable ultrafast interpretation and proces-

sing of XRD patterns, significantly reducing the time required

compared with traditional methods. The speed of interpreta-

tion and the resulting reduction in computational cost should

not be underestimated. With these advancements, there is the

potential to develop real-time experimental companions

capable of interpreting and possibly reducing the dimension-

ality of the acquired data during the experiment. This opens

new horizons such as conducting dynamic experiments with

parallel XRD analysis, similar to Cai et al. (2020), and

obtaining real-time high-resolution 3D information, which

could be further used for the steering and adjustment of the

experiment. Additionally, integrating real-time experimental

data with highly sophisticated physical modelling algorithms

can facilitate the development of digital twins of experiments,

supporting the fitting of physical model parameters of interest

and the exploration of parametric system responses within a

single experiment.
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Figure 1
Scatter plot of the CNN model prediction versus the ground truth for
mixtures composed of four mineral phases (calcite, gibbsite, dolomite and
hematite). The training database takes into account the instrumental
effects [DwIE in Simonnet et al. (2024)]. The centers of gravity are the
weighted mean of each data points subset. Figure reproduced from
Simonnet et al. (2024).
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