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Mineral identification and quantification are key to the understanding and,

hence, the capacity to predict material properties. The method of choice for

mineral quantification is powder X-ray diffraction (XRD), generally using a

Rietveld refinement approach. However, a successful Rietveld refinement

requires preliminary identification of the phases that make up the sample. This is

generally carried out manually, and this task becomes extremely long or virtually

impossible in the case of very large datasets such as those from synchrotron

X-ray diffraction computed tomography. To circumvent this issue, this article

proposes a novel neural network (NN) method for automating phase identifi-

cation and quantification. An XRD pattern calculation code was used to

generate large datasets of synthetic data that are used to train the NN. This

approach offers significant advantages, including the ability to construct data-

bases with a substantial number of XRD patterns and the introduction of

extensive variability into these patterns. To enhance the performance of the NN,

a specifically designed loss function for proportion inference was employed

during the training process, offering improved efficiency and stability compared

with traditional functions. The NN, trained exclusively with synthetic data,

proved its ability to identify and quantify mineral phases on synthetic and real

XRD patterns. Trained NN errors were equal to 0.5% for phase quantification

on the synthetic test set, and 6% on the experimental data, in a system

containing four phases of contrasting crystal structures (calcite, gibbsite, dolo-

mite and hematite). The proposed method is freely available on GitHub and

allows for major advances since it can be applied to any dataset, regardless of the

mineral phases present.

1. Introduction

Minerals are the inorganic building blocks of soils, rocks and

engineered solids (e.g. cement based materials). Amongst

others, minerals play a vital role in human welfare (Smith,

1999), climate change mitigation and green technologies

(Vidal et al., 2013), remediation of pollution (Grangeon et al.,

2020), nuclear waste disposal (Bildstein et al., 2019), CO2

geological storage (Bourg et al., 2015), geothermal systems

(Bird & Spieler, 2004), and in the understanding of planet

structure and evolution (Elkins-Tanton & Seager, 2008).

Understanding the occurrence, stability and evolution of

mineralogical assemblages in the above-mentioned applica-

tions requires the identification of the different minerals

present, deciphering their fundamental characteristics such as

crystal structure (Krivovichev et al., 2022) and chemistry, and

the relative abundance of each mineral in the assemblage.

Although crystal structure and chemical composition play a

role in the intrinsic properties of minerals [e.g. thermal
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conductivity (Ndlovu et al., 2011) or optical properties (Wood

& Strens, 1979)], the mineral mass fraction itself is a very

important parameter that controls material properties such as

unconfined compressive strength (Bourg, 2015); or sorption

capacity of, for example, metals or nutrients (Payne et al.,

2002). Since 1912 and the discovery of X-ray diffraction

(XRD) by Max von Laue (Fernandez-Diaz & Lemée-Cailleau,

2013), powder XRD (XRD) has been applied to decipher

crystal structures, and to identify minerals and quantify their

relative proportions in an assemblage (Bish & Post, 1990). The

challenging task of quantifying the different minerals in a

powder has benefited from the early work of Rietveld (1969),

who introduced a refinement method now commonly referred

to as ‘Rietveld refinement’. This method is still regarded as

state-of-the-art for quantitative analysis of XRD patterns.

However, since it is based on a point-by-point error mini-

mization using an iterative refinement method, it generally

requires that a preliminary identification of mineral phases is

performed before pattern modeling. Hence, in the analysis of

very large datasets containing patterns with contrasting

mineralogical composition, its use becomes extremely time-

consuming due to the need for preliminary manual phase

identification. This type of very large dataset is expected to be

increasingly collected with the development of methods such

as XRD computed tomography (XRD-CT) (Jacques et al.,

2013; Jensen et al., 2015), whereby the data typically contain

hundreds of thousands of patterns per slide, with a thickness

equal to the beam size (Claret et al., 2018). To circumvent the

problems of Rietveld refinement and the processing of large

datasets, deep learning (DL) methods have emerged as a

promising alternative (Feng et al., 2019).

In recent years, the use of DL (Goodfellow et al., 2016) and

neural network (NN) methods has seen considerable growth

in a wide range of applications. The domain of XRD data

analysis is no exception, as shown by the increasing integration

of DL techniques. One can refer to Surdu & Győrgy (2023) for

a comprehensive review of XRD analysis methods that

employ machine learning.

XRD data analysis with machine learning first appeared in

the work by Griffen (1999), with the use of artificial NNs to

tackle the challenge of quantitative phase analysis of clay

minerals via powder XRD. With the continuous advances in

DL, the last few years have seen a significant advance in

research in this domain. Though many studies have focused on

classification problems, such as categorizing materials into

symmetry space groups, crystal systems or extinction groups

(Park et al., 2017; Vecsei et al., 2019; Zaloga et al., 2020; Oviedo

et al., 2019), notable breakthroughs have been made. For

example, PQ-Net (Dong et al., 2021) introduced predictions

for lattice parameters, scale factors and crystallite sizes,

enriching the capabilities of XRD analysis. Recent research

efforts have also been made for predicting phase fractions

within multiphase compounds. Some approaches have trans-

formed this challenge into a classification problem, dividing

the output space into abundance classes (Lee et al., 2020).

Alternatively, some methods leverage convolutional neural

networks (CNNs) for phase identification and subsequently

use machine learning techniques for precise phase quantifi-

cation (Lee et al., 2021).

Though DL seems promising for XRD data analysis, its use

remains challenging. Indeed, many DL methods require the

use of large experimental datasets to be trained. This

requirement is virtually impossible if the aim is to apply DL

methods to natural samples such as soil. Indeed, this would

require collecting thousands of patterns of mineralogical

assemblages, but also, and more challenging, of pure minerals

with a large yet systematic variation in lattice parameters,

crystallite sizes, shapes etc. so as to be representative, for each

mineral, of the variability that can be encountered in natural

systems. These requirements would be extremely time-

consuming, and would require that a collection of minerals

with the necessary variation in crystallographic parameters

and morphology exists. Both are hard to achieve experimen-

tally due to the time required, but also, and more impor-

tantly, because collecting samples of all existing minerals –

with a sufficient range of variation in the amount and crystal

chemistry of each mineral in individual samples to account for

the natural variability in chemistry, lattice parameters and

morphology – is probably impossible. Alternatively, some

researchers have explored data augmentation approaches

(Oviedo et al., 2019; Wang et al., 2020). However, applicability

of this method in the case of minerals that crystallize in low-

symmetry space groups, with hence complicated variation in

peak position as a function of changes in lattice parameters or

angles, is unclear.

To circumvent this difficulty, we propose here to use

synthetic data generated from crystallographic information

files (Hall et al., 1991). This approach has the advantage of

being applicable to a wide range of multiphase compounds. It

also offers the possibility to generate as much data as required

for the training (up to 100 000 in this study), but also to allow

for more flexibility with regards to the instruments used for

actual sample analysis: with our approach, the pure diffraction

profile is only calculated once, then corrected for absorption

phenomena, and finally convoluted with a wavelength func-

tion.

Specifically, in the following, we detail an approach based

on a CNN designed to identify and quantify phases in a

multiphase material. The CNN is exclusively trained with

synthetic data, and uses a loss specifically designed for

proportion inference. This loss function incorporates a

Dirichlet modeling approach (Sensoy et al., 2018) which has

been demonstrated to outperform traditional loss functions

such as mean squared error (MSE) (Simonnet et al., 2023).

Our results demonstrate that the method performs very well

on synthetic data, but also on experimental XRD patterns.

2. Materials and methods

2.1. Collection of experimental XRD patterns

XRD patterns were acquired on micronized powders using

a Bruker D8 Advance diffractometer equipped with a

LynxEye XE-T detector and a Cu anode (� = 1.5418 Å). The
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proportions of each phase were quantified by successive

weightings. Data were collected in a continuous scan mode,

averaged every 0.03� 2�, and modeled with the Profex soft-

ware (Doebelin & Kleeberg, 2015), which is a graphical user

interface to the BGMN software (Bergmann et al., 1998). The

aim of such quantitative modeling was to determine the

accuracy of the Rietveld refinement on our samples, and was

used for comparison with results from our CNN approach.

Table 1 gives the composition of these experimental XRD

patterns, determined from the weighting of each individual

phase in each sample. It can thus be assumed to be the exact

mineralogical composition of our samples.

2.2. Calculation of powder XRD patterns

XRD refers to the elastic scattering of photoelectrons from

an X-ray beam by a solid. The intensity of the scattered beam

is usually measured as a function of the scattering angle �. It

essentially depends on four main components: an atomic

scattering factor, an interference function, a structure factor

(Bish & Post, 1990) and a polarization factor. The first three

components can be calculated from the knowledge of the unit-

cell symmetry, size and composition (and its number of

repetitions). The polarization factor is dependent on the

nature of the X-ray source (e.g. laboratory or synchrotron

source). All these factors are presented in the following and

the method to generate XRD patterns is then described.

2.2.1. Atomic scattering factor. The atomic scattering factor

reflects the interaction of the X-rays with atoms. This inter-

action occurs at the electron cloud level, and the diffracted

intensity increases with the number of electrons. The

diffracted intensity for an angle � = 0� corresponds to the

number of electrons of the atom, and then decreases as the

angle increases up to � = 90�. Another parameter influences

the intensity diffracted by an atom. This is the thermal agita-

tion, which, in the present study, is accounted for by the

Debye–Waller factor (isotropic agitation factor). This factor

has the effect of attenuating intensity, particularly at high �

angles.

2.2.2. Interference function. The interference function

depends on the dimension and geometry of the lattice, as well

as on the structural disorder. It dictates the scattering angles at

which intensity can be observed. In the case of a defect-free

three-dimensional-ordered crystal, the scattering angles at

which diffracted intensity can be observed obey Bragg’s law:

2d sinð�Þ ¼ n�; ð1Þ

where � is the scattering angle; n is a non-null integer; � is the

wavelength of the incident beam; and d is defined, for any

crystal symmetry, as

d ¼

1 � cos2 � � cos2 � � cos2 � þ 2 cos� cos� cos �

ðh2=a2Þ sin2�þðk2=b2Þ sin2�þðl2=c2Þ sin2� � k1 � k2 � k3

� �1=2

ð2aÞ

where

k1 ¼
2kl

bc
ðcos � � cos � cos �Þ; ð2bÞ

k2 ¼
2lh

ca
cos � � cos � cos �ð Þ; ð2cÞ

k3 ¼
2hk

ab
cos � � cos� cos�ð Þ; ð2dÞ

and a, b and c are the norms of the lattice vectors; �, � and �

are the crystallographic angles; and h, k and l are the Miller

indices.

The width of a given reflection depends on several factors,

the main one being crystallite size (i.e. the size of the

diffracting object, which is usually smaller than the crystal due

to strains or defects), while the shape (e.g. degree of asym-

metry) depends on factors such as structural disorder (e.g.

structural strains, stacking defects, interstratification). In this

study, crystallites were assumed to have an isotropic shape,

and the variation in crystallite size was modeled by a variation

in the full width at half-maximum (FWHM) of Gaussian-

shaped peaks.

2.2.3. Structure factor. The structure factor is a continuous

function of the scattering angle. It depends on the nature,

position and site occupancy of each unique atom in the unit

cell, and has been computed for each � step following
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Table 1
Composition of the 32 experimental datasets in terms of fraction of
mineral phases.

Data Calcite Gibbsite Dolomite Hematite

Sample 1 0 1 0 0
Sample 2 0.203 0.797 0 0

Sample 3 0.403 0.597 0 0
Sample 4 0.600 0.400 0 0
Sample 5 0.800 0.200 0 0
Sample 6 1 0 0 0
Sample 7 0.204 0.2001 0.595 0
Sample 8 0.402 0.200 0.398 0

Sample 9 0.602 0.201 0.196 0
Sample 10 0.201 0.402 0.397 0
Sample 11 0.401 0.399 0.200 0
Sample 12 0.202 0.599 0.199 0
Sample 13 0.202 0.200 0 0.598
Sample 14 0.402 0.198 0 0.399
Sample 15 0.599 0.201 0 0.199

Sample 16 0.199 0.401 0 0.400
Sample 17 0.401 0.400 0 0.199
Sample 18 0.202 0.597 0 0.200
Sample 19 0.204 0.199 0.197 0.401
Sample 20 0.400 0.202 0.199 0.199
Sample 21 0.204 0.398 0.199 0.199

Sample 22 0.201 0.202 0.398 0.199
Sample 23 0 0 1 0
Sample 24 0 0 0 1
Sample 25 0.824 0 0 0.176
Sample 26 0.838 0 0.162 0
Sample 27 0.234 0.766 0 0
Sample 28 0 0.736 0 0.264

Sample 29 0 0.790 0.210 0
Sample 30 0.202 0 0 0.798
Sample 31 0 0 0.220 0.78
Sample 32 0 0.174 0 0.826



X

j

njfj cos 2� Chkl
j

� �
" #2

þ
X

j

njfj sin 2� Chkl
j

� �
" #2( )1=2

; ð3Þ

where

Chkl
j ¼ hxj þ kyj þ lzj;

and j is the number of independent atomic positions; nj is the

occupancy of a given site; fj is the atomic scattering factor of

the atom occupying the jth position; h, k and l are the inte-

gration coordinates in reciprocal space; and xj, yj and zj are the

fractional coordinates of the jth atom in the unit cell.

2.2.4. Polarization factor. The polarization factor accounts

for the polarization of an incident photoelectron after its

interaction with matter. The polarization of the scattered

photoelectron depends on that of the incident photoelectron

and on the scattering angle.

2.2.5. Instrumental effects. To the various components

introduced in Sections 2.2.1, 2.2.2 and 2.2.3, instrumental

factors were added to account for the geometry of the

experiment, namely the wavelength function and the

attenuation factor. The wavelength function quantitatively

accounts for several instrumental factors, including the various

X-ray wavelengths emitted by the anode. This function was

calculated using the Profex (Doebelin & Kleeberg, 2015)

interface to BGMN (Bergmann et al., 1998). Adsorption of

part of the incident X-rays by the solid was accounted for by

calculating the X-ray mass attenuation factor at 8.0415 keV

(�mean = 1.5418 Å).

2.3. A convolutional neural network method

The proposed NN takes an XRD pattern as input (collected

on a sample that is a mixture of K mineral phases) and outputs

an estimation of the proportion of each of these phases. More

precisely, these patterns are approximated as linear combi-

nations of K mineral phases (or components), thus repre-

sented as xi ¼
PK

j¼1 yijcij 2 R
K, where ci 2 R

Kd is the matrix

containing the single-phase XRD patterns, and

yi 2 �K ¼
�

y ¼ ðy1; :::; yKÞ 2 R
Kjyj � 0; j ¼ 1; :::;K;

and
PK

j¼1 yj ¼ 1
�

represents the K-dimensional simplex, that is, the set of

proportion vectors. Here we consider a problem with K = 4

components to align with the experimental data we collected.

The schematic in Fig. 1 provides an overview of the entire

method, which is further described in the following.

2.3.1. Neural network modeling. A CNN, denoted f, was

trained and adapted from Oviedo et al. (2019). In this previous

work, the CNN was used to classify XRD patterns according

to their space group or crystallographic dimensionality. Fig. 2

describes the architecture of the CNN. It starts with three

convolutional layers to extract the key signal features. The

convolution kernel widths are 8, 5 and 3, respectively, and the

stride values are equal to the kernel widths. Next, two linear

layers are used to reduce the dimension to K. Each hidden

layer has a ReLU activation function. Specifically, given an

array a, ReLUðaÞ ¼ maxð0; aÞ, where the max operator is

applied to each element. Each of the CNN layers, or opera-

tions, is associated with a large number of parameters. The NN

with the parameter h is denoted f(xi|h). The architecture

described above has 832 868 parameters, and these parameters

are optimized during the training phase. The CNN was trained

on 100 epochs with the Adam optimizer (Kingma & Ba, 2014),

with a constant learning rate equal to 0.001. Five training runs

were carried out to assess the stability of the method. To

ensure a meaningful comparison, the same five random weight

initializations were used for both databases. Since the primary

aim of this study is to introduce a CNN based method for

phase quantification using synthetic data and to evaluate the

impact of instrumental effects, we did not investigate for the

optimal values for training (number of epochs, Adam para-

meters etc.).

Finally, the loss function is a key point of the proposed

method. Indeed, it was chosen to use a specifically designed

loss for proportion inference using a Dirichlet model

(Simonnet et al., 2023). This approach proved to be more

effective than alternative loss functions such as MSE or cross-

entropy. It also demonstrated good stability when applied to

different types of data.

This modeling approach allowed us to infer proportions by

minimizing the disparity between the actual distribution of

proportion and a Dirichlet distribution parameterized by an

NN. The probability density function (PDF) of the Dirichlet

distribution is defined as

f Dir
P ðpjaÞ ¼

1

�ðaÞ

YK

j¼1

p
�j� 1

j ; with �ðaÞ ¼

QK

j¼1 � ð�jÞ

� ðSaÞ
; ð4Þ

where a is the parameter vector, with �i > 0 for all i 2

1, . . . , K, and S� =
PK

j¼1 �j is the Dirichlet strength.
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Figure 1
Graphical summary. First, the NN is trained to retrieve the phase
proportions from XRD patterns using a synthetic database. Then the
trained NN is tested with experimental XRD patterns.



A multivariate random variable Pi was associated to each of

the input XRD patterns xi following a Dirichlet distribution:

Pi ¼ ðPi1; :::;PiKÞ ’ DirðaiÞ:

An NN was used to parameterize the Dirichlet distribution,

that is using the output of the NN denoted by ai ¼ f ðxijhÞ to

determine the parameter vector ai. Due to the constraints

imposed on ai, a transformation function, denoted �, was

applied to the vector a to ensure that all its elements were

strictly positive. � is a two-term function defined as follows:

�ðaiÞ ¼ max½0; f ðxijhÞ� þ 1; ð5Þ

where the max operator is applied element-wise.

Once the vector ai is determined (that is, after the NN

training), a prediction vector ŷi can be proposed for the

proportion by considering the expectation of the para-

meterized Dirichlet distribution:

byij ¼ E½Pij� ¼
�ij

Sai

: ð6Þ

The last step is to present the function for optimizing the NN

parameters h to minimize the difference between the true

proportion distribution and the Dirichlet distribution. This is

done by minimizing the expected square error (SE):

L
SE
i ðhÞ ¼ E k yi � Pi k

2
� �

¼ k yi � E½Pi� k
2 þVarðPiÞ

¼ k yi � ŷi k
2 þVarðPiÞ; ð7Þ

where VarPi =
PK

j¼1 VarðPijÞ =
PK

j¼1½�ijðSa � �ijÞ=S2
aðSa þ 1Þ�.

2.3.2. Synthetic database. The CNN training phase requires

a substantial database to include a wide variety of XRD

patterns for different mineral phases.

Using the methods introduced in Section 2.2, a database

containing four different pure minerals, namely calcite

[CaCO3 (Markgraf & Reeder, 1985)], dolomite [CaMgC2O6

(Steinfink & Sans, 1959)], gibbsite [AlO3H3 (Balan et al.,

2006)] and hematite [Fe2O3 (Blake et al., 1966)] was built. In

total, 1500 XRD patterns for each mineral were generated by

varying the norm of the lattice vectors, the Debye–Waller

coefficient and the FWHM. These 6000 XRD patterns will be

hereafter referred to as ‘single-phase’ patterns. For each

mineral, these data were divided as follows: 1000 for training,

250 for validation and the last 250 for testing, to ensure that

the three resulting datasets were well separated.

Regarding the training set, from the 4000 single-phase XRD

patterns (1000 for each mineral), 10 000 XRD synthetic

patterns of mixtures were created by combining one to four of

the different mineral phases with a given proportion vector.

Similarly, a validation set and a test set were simulated, each

containing 2500 XRD patterns.

Fig. 3 summarizes the different steps of the databases

construction. An example of a synthetic XRD pattern with K

= 2 mineral phases is displayed in Fig. 4. Two different simu-

lation schemes were tested for simulating the ‘single-phase’

patterns:

(1) Database without instrumental effects (Dw/oIE). This

dataset only includes the data resulting from the calculation of

pure XRD patterns, without any instrumental effects.

(2) Database with instrumental effects (DwIE). This second

database contains data including the instrumental effects

discussed in Section 2.2.5 (i.e. wavelength function and
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Figure 2
CNN architecture used to infer XRD pattern proportion (Oviedo et al., 2019). The convolution kernel widths are 8, 5 and 3, respectively, and the stride
values are equal to the kernel widths.

Figure 3
Construction of the multiphase synthetic XRD patterns database. (a)–(d)
Single phase (calcite, dolomite, gibbsite and hematite); and (e) linear
combinations of (a), (b), (c), (d) representing the multiphase patterns.



attenuation factor). The evaluation of the database on

experimental data is completed by a pre-processing treatment

to remove a background of constant value.

Thus, the expression of the corrected one-dimensional

signal xn
i is

xn
i ¼ xi � minðxiÞ: ð8Þ

An example of simulations from each database is displayed in

Fig. 5.

2.4. Neural network training and validation set

To monitor the network training, at each epoch (i.e. each

time run through the training set), the method is evaluated

using an independent set termed the ‘validation set’ and

denoted V ¼ fðxi; yiÞ; 1 � i � NVg. Using this set allowed us

to track the evolution of evaluation metrics over epochs on a

dataset independent from the training set. This provided

insights into the effectiveness of the training and the possibi-

lity of overfitting to the training data. As previously

mentioned, the validation set contained 2500 synthetic data.

The method was evaluated using three metrics to measure the

error between predictions fŷi; 1 � i � NVg and the ground

truth yi.

First, the root mean square error compares yi and ŷi, and is

defined as follows:

RMSE ¼
1

NV

X

ðxi;yiÞ2V

1

K
k yi � ŷi k

2

" #1=2

: ð9Þ

An alternative way to compare yi and ŷi is the mean maximal

absolute error (MMAE), expressed as follows:

MMAE ¼
1

NV

X

ðxi;yiÞ2V

max
j2f1;...;Kg

jbyij � yijj: ð10Þ

MMAE can be interpreted as a percentage accuracy on all the

inferred proportions. The last measure used in this paper is the

rate of recovered support (RRS), which quantifies the capacity

of the network to correctly identify components by comparing

true components with predicted ones. However, due to

Dirichlet modeling, the components of the CNN prediction

(i.e. yij) are not exactly equal to zero. Thus, the predicted

support is defined with a low-value threshold ". Given an array

y 2 �K and " 2 (0, 1), we define

suppðyÞ ¼ fj 2 f1; . . . ;Kg; y>0g

and

supp"ðyÞ ¼ fj 2 f1; . . . ;Kg; yj>"g:

The RRS is defined as

RRS ¼
1

NV

X

ðxi;yiÞ2V

1½suppðyiÞ ¼ supp"ðŷiÞ�:

In the following, two threshold values were considered. The

first was arbitrarily set to " = 0.01, and the second was adapted

as a function of the MMAE value. To summarize, MMAE and

RMSE serve to measure the quantification quality, while RRS
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Figure 4
Example of a two-phase synthetic XRD pattern (40% calcite and 60% gibbsite) construction using a linear combination of two single-phase XRD
patterns.

Figure 5
Comparison between real and simulated data from both databases (DwIE
and Dw/oIE). The experimental XRD pattern is a mixture of the four
mineral phases with abundances of around 40% calcite, 20% gibbsite,
20% dolomite, 20% hematite (Sample 20 in Table 1).



is employed for identification. All three metrics are also used

in Table 2 to highlight the need for a large amount of training

data to ensure successful CNN training. As mentioned above,

this clearly shows that even training a CNN with 1000 data

points leads to poor mineral phase identification and quanti-

fication. However, obtaining a sufficient number of experi-

mental XRD patterns with the required variability is not

feasible in practice. This makes it necessary to resort to

synthetic data for training the network. Based on our

experiments (see Table 2), a training set of 10 000 appears to

be sufficient to address the problem of mineral phase quan-

tification. The evolution of the epoch loss and of the three

metrics (MMAE, RMSE and RRS) as a function of the epoch,

on the validation set and during the training, is provided in

Fig. 6. This allows us to assess the number of epochs required

to train the CNN. For the databases presented in Section 2.3.2,

a sharp decrease in the loss over the first 40 epochs is

observed. Then, the decrease in loss continues, but at a slower

rate, and finally stabilizes during the last �10 epochs. This

suggests that training the network for more than 100 epochs

does not bring significant improvements in the presently used

CNN configuration, i.e. with a constant learning rate. This is

supported by the fact that, for both databases, the evolution of

the RMSE and MMAE is similar to the epoch loss, while the

RRS also plateaus in the last �10 epochs (Fig. 7). Even in the

early epochs, the CNN proves effective, reaching an RMSE of

around 1.5% after 10 epochs. However, as will be shown later,

using a learning rate scheduler over a larger number of epochs

allows the loss to continue decreasing concomitantly with the

error metrics.

Overall, RMSE and MMAE quickly reach values of around

5%, while RRS approaches 85%. The evolution of measure-

ments on the validation set shows that CNN training is not

subject to overfitting with training data, as shown by the

consistent decrease in the validation errors. In the next

section, for both databases the training with the smallest

MMAE on the validation set will be considered the best

training.

3. Results

Unless otherwise mentioned, all results presented in this

section were obtained with one of the 10 000 synthetic XRD

pattern training sets.

3.1. Simulated test set

The efficiency of the proposed approach was first evaluated

with our test set of 2500 synthetic XRD patterns, which is
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Table 3
RMSE, MMAE and RRS values (%) for the synthetic test set.

Top (first three rows): mean value and standard deviation over five training
sessions; middle (next three rows): mean value and standard deviation for the

successful training; bottom (last three rows): mean value and standard
deviation for the best training.

RMSE # MMAE # RRS1% "

5 training sets

Dw/oIE 10.44% � 12.07 1 4.46% � 16.91 70.16% � 32.89
DwIE 05.49% � 09.98 07.58% � 14.00 83.49% � 27.49

Successful training sets
Dw/oIE 00.58% � 00.00 00.65% � 00.20 97.01% � 00.24
DwIE 00.50% � 00.02 00.58% � 00.03 97.22% � 00.47

Best training sets

Dw/oIE 0.58% 0.62% 97.20%
DwIE 0.49% 0.55% 97.40%

Table 2
Performance comparison of a trained NN on the experimental test set.

Each network is trained using the DwIE training set from 100 to 100 000 XRD
patterns. The calculation time remains constant.

Training set size Epochs RMSE MMAE RRS1%

100 10000 34.14 46.69 12.5
1000 1000 45.22 68.42 16.67
10000 100 5.16 6.96 43.75

100000 10 5.84 6.68 51.52

Figure 6
Monitoring of NN training for each database (DwIE and Dw/oIE): (a) training loss evolution for each training epoch; and RMSE (b), MMAE (c) and
RRS (d) measures on the validation set at each epoch.



independent of both training and validation sets. For all our

experiments, we did not observe any performance difference

between the validation set and the test set.

Table 3 presents the mean and standard deviation across

five training runs for each database. This serves as a measure

of method stability. First, for the Dw/oIE dataset, the mean

RMSE of the five training sets was 10.44 � 12.07% (mean �

standard deviation). Among the five training sessions

conducted, three were successful. For these three successful

training sets, the mean RMSE was 0.58 � 0.00%. For the

DwIE dataset, four training sets out of five were successful.

The mean RMSE of the five training sets was 5.49 � 9.98%,

while that of the four successful was 0.50 � 0.02%. For both

datasets, the high proportion of successful training sets (60–

80%) highlights a satisfying stability.

For the successful training sets, the MMAE, RMSE and

RRS of the Dw/oIE were 0.65 � 0.20%, 0.58 � 0.00% and

97.01 � 0.24%, respectively, hence demonstrating the ability

of the CNN to identify and quantify the different minerals.

However, introducing the instrumental effects into the calcu-

lation (DwIE training) significantly improved the quality of

the predictions, with an absolute decrease in the RMSE and

MMAE parameters of 0.08 and 0.07%, respectively, and a

0.21% increase in the RRS value. These observations hold

true for the best training, with comparable yet systematically

better values for the Dw/IE training compared with the

Dw/oIE training (Table 3). Note that no comparison with the

Rietveld refinement (Rietveld, 1969) (detailed below in

Section 3.2) was done, because the equations used here for

generating synthetic patterns are similar to those minimized

by the Rietveld method. Hence, the method used for produ-

cing data and for minimizing errors during quantification

would have been correlated, and calculation of a residual error

meaningless.

3.2. Experimental XRD patterns

In this section, an experimental XRD database consisting of

32 patterns and specifically acquired for this study was used to

evaluate the robustness of the presently proposed approach to

the quantification of not only simulated data, but also real

data. Although relatively small, this evaluation provides

valuable insights into the efficiency of the method. These

experimental XRD patterns were recorded on pure minerals

and on assemblages that are mixtures of the same mineral

phases as in the synthetic dataset (see Table 1). Fig. 8

compares the maximum value of the diffracted intensity for

the four mineral phases from the DwIE, the Dw/oIE and the

experimental databases, thus highlighting the importance of

including instrumental effects in the simulation to be closer to

real XRD patterns.

Fig. 7 compares the mean square error between synthetic

and experimental XRD patterns for Dw/oIE and DwIE
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Figure 7
MSE comparison between the 32 real data and synthetic data. Blue for
Dw/oIE, red for DwIE, gray for DwIE with real data pre-processing (see
Section 2.3.2). The simulations have the same mineral phases proportions
as the experimental XRD patterns, and the parameters are optimized
using the Rietveld refinement.

Table 4
RMSE, MMAE and RRS values (%) for experimental test set.

Top (first three rows): mean value and standard deviation over five training
sessions; middle (next three rows): mean value and standard deviation for the

successful training and (next three rows) mean value and standard deviation
for the best training; bottom (last row): result obtained using a Rietveld
refinement to the data.

RMSE # MMAE # RRS1% " RRS7% "

5 training sets
Dw/oIE 18.79% � 07.15 26.92% � 12.06 45.62% � 27.36 49.09 � 30.33
DwIE 09.37% � 09.12 13.51% � 14.12 38.75% � 13.35 65.62% � 27.67

Successful training sets
Dw/oIE 12.96% � 00.24 17.08% � 00.36 67.71% � 05.31 75% � 02.55
DwIE 04.82% � 00.74 06.47% � 01.15 45.31% � 02.71 78.91% � 08.71

Best training
Dw/oIE 12.71% 16.68% 75.00% 75.00%
DwIE 05.16% 06.96% 43.75% 71.87%
Rietveld 01.27% 01.78% 100% 100%



databases, while Table 4 provides the results for both training

sets. The training sets that performed poorly on synthetic

databases also yielded unsatisfying results on the experimental

data. However, compared with the simulated datasets, the

difference between the Dw/oIE and DwIE databases was

more marked, with the DwIE being �10% more efficient in

terms of MMAE and RMSE. Whereas Dw/oIE was 20% more

efficient in terms of RRS. The Dw/oIE performance for RRS,

although not intuitive, is probably related to its absence of the

consideration of the linear attenuation factor. This leads to a

more discernible signal for the phases present in low

concentration and hence better identification (less difference

in maximum intensity between the different phases). In turn,

this biases the quantification because of inaccurate intensity

ratios between the different phases, thus explaining the higher

MMAE and RMSE values. To assess the validity of the

hypotheses, cumulative frequency histograms, based on

absolute errors for each class, are plotted in Fig. 9 that

compare the DwIE and Dw/oIE database with cumulative

histograms (one for each mineral phase). The most efficient

database is the one which reaches its maximum (here the

maximum number of experimental XRD patterns = 32) the

fastest. Even with smaller values of RRS, the DwIE performed

better, based on absolute errors. This highlights that the

chosen RRS threshold value has a major influence for

comparison of different training sets, and must be considered

with care. To minimize such threshold effects, two different

RRS values were calculated, with threshold values of 1 and

7%, with the second threshold value being chosen according

to the MMAE. This approach enabled us to focus on predic-

tion errors rather than small quantification errors. For the

DwIE database, the RRS increased from 43.75 to 71.87% with

an adapted RRS threshold. This indicates that the majority of

prediction errors have small values, highlighting the efficiency

of the DwIE database for training.

The substantial differences in RRS between synthetic and

experimental XRD patterns likely stems from the complexity
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Figure 9
Cumulative histograms of absolute error by classes for the 32 experimental XRD patterns: (a) calcite, (b) gibbsite, (c) dolomite and (d) hematite. Each
bar of the histogram corresponds to a interval of 2%, from 0 to 40%.

Figure 8
Absolute diffracted intensity for the four mineral phases.



of the experimental data, which contain not only pure

diffraction data, but also for example instrumental effects,

‘noise’ related to detector sensitivity and accuracy, air scat-

tering etc. While describing accurately how the NN discerns

information from the data remains challenging, it may be

speculated that some low-intensity background ‘peaks’ related

to, for example, statistical errors of count may be interpreted

by the NN as actual diffraction peaks. Consequently, the

algorithm may attribute small proportions to certain mineral

phases, hence contributing to the observed disparity in RRS.

Overall, these results show that taking into account the

instrumental effects on the XRD patterns (DwIE training)

improves the quality of both phase identification and quanti-

fication compared with the NN method trained from pure

XRD profiles (Dw/oIE training). Real data are affected

by uncertainties arising from instrumental parameters

(e.g. detector efficiency, source brightness and divergence).

Consequently, analyzing real data is obviously more challen-

ging than working with simulated data, and this discrepancy

certainly accounts for the performance gap. Fig. 10 illustrates

the importance of simulation quality by comparing the

performance of both databases (DwIE and Dw/oIE).

In terms of performance, the DwIE training database

yielded very good results with an RMSE value of 5.16% and

MMAE of 6.96%. Fig. 10 illustrates the predictions compared

with the ground truth for this training. Each point corresponds

to one of the 32 four-dimensional proportion vectors of the

experimental XRD pattern. The center of gravity and the

majority of the prediction points align with the identity

function, indicating good predictions. Interestingly, the centers

of gravity obtained with the DwIE or Dw/oIE training are

comparable, but data scattering is much lower with the DwIE

training, and systematic quantification biases were only

observed in the Dw/oIE training, where hematite is under-

estimated and gibbsite is overestimated. Because of the high

scattering observed with this training database [Fig. 10(a)],

increasing the RRS threshold from 1 to 7% led to no

improvement in the RRS value (75%, see Table 4).

Not surprisingly, the Rietveld refinement outperformed our

methods, since the network was exclusively trained on simu-

lated data, while Rietveld refinement incorporates slightly

more refinement parameters and aims to minimize the RMSE.

Indeed, with respect to the RMSE, the Rietveld method

achieves a precision of 1.27%. In contrast, our method

presents a comparable RMSE that is only 4% higher. This

further underscores the value of a CNN based method for

XRD analysis, or alternatively, a hybrid analysis combining

both methodologies.

4. Discussion and perspectives

Here, an automated analysis method for XRD patterns was

proposed. It proved capable of both identifying and quanti-

fying mineral phases within a material sample. Utilizing an NN

and optimizing a specially designed loss function for propor-

tion inference, the proposed method, which is a two-step

approach described by Fig. 1, demonstrated robust perfor-

mance. A main aspect of our strategy lay in the training phase

of the NN, which exclusively employs synthetic data. This

allowed us to generate a wide variety of XRD patterns, both

for a given phase, where the structural and size parameters

were varied (intra-class variation), and for mixtures of mineral

phases. Consequently, this approach not only enhances

performance but also facilitates the analysis of extensive

experimental databases. A very important aspect of the

proposed method is that, in contrast to the Rietveld refine-

ment, no human intervention is needed to identify phases

before the quantification. A database containing a sufficient

number of different mineral phases should be able to find,

with good precision, the abundance of each phase in multi-

phase compounds. Furthermore, our method excels in terms of

analysis of speed once the NN is trained. These collective

advantages open the door to the identification and quantifi-

cation of mineral phases within large datasets, such as time-

resolved synchrotron analyses or XRD-CT data. Datasets of

this nature are typically composed of up to ten mineral phases.

Thus, to keep the same accuracy, the number of training data

must be increased, leading to increased calculation time. To

maintain a constant ratio of the number of data in the test set

relative to the total number of data, accounting for variations

in lattice parameters and proportion vectors sampled, an

exponential increase in the number of XRD patterns calcu-

lations should be done. However, based on our knowledge, a

linear augmentation should be enough to achieve similar

performance.
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Figure 10
Experimental test set: scatter plot of the prediction according to the
ground truth: (a) trained with Dw/oIE, (b) trained with DwIE.



Further improvements in the calculation of synthetic data

could consist of considering counting statistics, or employing

explicit calculations of XRD patterns, for example using

numerical methods proposed by Debye (1915), Warren (1990),

or Drits & Tchoubar (2012). Specifically, these methods allow

us to calculate the actual profile of each diffraction maximum

instead of using a Gaussian intensity distribution, as done in

the present work. This approach offers significant advantages,

particularly when dealing with XRD patterns of anisomorphic

mineral phases: a common occurrence in XRD-CT data.

Another aspect to explore is the database construction (i.e. the

distribution of single-phase and multicompound XRD

patterns) as well as the proportion distribution.

Additional enhancements can be made at the NN level.

First, regarding the choice of network architecture, particu-

larly the hidden layers of the network, the number of layers,

their dimensions and the type of layers can be discussed

(Goodfellow et al., 2016). Optimization can also be achieved

by selecting the best activation functions between each of

these layers (Sharma et al., 2020). Additionally, various opti-

mization hyperparameters can be adjusted, such as the opti-

mizer (Choi et al., 2019), the number of epochs, batch size and

learning rate (Smith, 2018). To test such effects, an experiment

where a network was trained with 300 epochs was carried out,

in which a learning rate scheduler (Fig. 11) was used. Inter-

estingly, the epoch loss decreased after 100 epochs, i.e. when

the learning rate was reduced. Additionally, the error metrics

on the validation set decreased, further highlighting the

benefits of a learning rate scheduler. For the experimental test

set it enhanced the results across all metrics by approximately

10%. Specifically, the RMSE was reduced to 4.75%, the

MMAE to 6.21% and the RRS7% to 87.5%. Otherwise, further

investigation into the application of auto-encoders (or the

Unet architecture) should be considered for future work. Such

an extension would explore the reconstruction aspects of

XRD patterns, enabling a comparison between the original

and reconstructed signals. This comparison can serve in the

identification of missed peaks, potentially corresponding to

unknown mineral phases.

Data availability

The Python code developed for XRD pattern simulation is

available on GitHub (https://github.com/titouansimonnet/

XRD_Proportion_Inference). To read the CIF, the code uses

the Python package Crystals (René de Cotret et al., 2018).
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Surdu, V.-A. & Győrgy, R. (2023). Appl. Sci. 13, 9992.
Vecsei, P. M., Choo, K., Chang, J. & Neupert, T. (2019). Phys. Rev. B,

99, 245120.
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