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The accuracy of the information in the Protein Data Bank (PDB) is of great

importance for the myriad downstream applications that make use of protein

structural information. Despite best efforts, the occasional introduction of errors

is inevitable, especially where the experimental data are of limited resolution. A

novel protein structure validation approach based on spotting inconsistencies

between the residue contacts and distances observed in a structural model and

those computationally predicted by methods such as AlphaFold2 has previously

been established. It is particularly well suited to the detection of register errors.

Importantly, this new approach is orthogonal to traditional methods based on

stereochemistry or map–model agreement, and is resolution independent. Here,

thousands of likely register errors are identified by scanning 3–5 Å resolution

structures in the PDB. Unlike most methods, the application of this approach

yields suggested corrections to the register of affected regions, which it is shown,

even by limited implementation, lead to improved refinement statistics in the

vast majority of cases. A few limitations and confounding factors such as fold-

switching proteins are characterized, but this approach is expected to have

broad application in spotting potential issues in current accessions and, through

its implementation and distribution in CCP4, helping to ensure the accuracy of

future depositions.

1. Introduction

For more than five decades, the Protein Data Bank (PDB;

wwPDB Consortium, 2019) has been collecting experimen-

tally determined macromolecular structures. Currently, with

over 200 000 entries, its structures come from macromolecular

crystallography (MX), nuclear magnetic resonance (NMR)

and, more recently, cryogenic electron microscopy (cryo-EM).

The bulk of depositions derive from MX, but cryo-EM is on an

accelerating trend (Callaway, 2020). Whatever the method, the

experiment typically results in the determination of a model

that is considered by the authors to (best) satisfy the obser-

vations. However, as with all scientific endeavour, experi-

mental limitations can lead to unavoidable uncertainties and

hence, despite the best efforts of experimentalists, the intro-

duction of errors into the final model.

The 1990s saw a recognition of the need for error-detection

or structure-validation tools, and a first generation of methods

emerged. These were variously based on geometric and stereo-

chemical properties [for example PROCHECK (Laskowski

et al., 1993) and WHATIF (Vriend, 1990)], consideration of

statistics of favoured amino-acid environments (for example

VERIFY3D; Lüthy et al., 1992) or statistics of interatomic

contacts [for example ERRAT (Colovos & Yeates, 1993) and
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DACA (Vriend & Sander, 1993)], or a combination of a

C�–C� (or C�–C�) potential and solvent-exposure statistics

(ProSA; Sippl, 1993). More recent methods have further

refined these concepts, for example MolProbity (Davis et al.,

2007), and have introduced measures of map–model scoring

in programs such as EMRinger (Barad et al., 2015), Q-score

(Pintilie et al., 2020) and SMOC (Joseph et al., 2016). The very

recent method MEDIC marries the geometric and the map-

fitting approaches with special application to cryo-EM struc-

tures (Reggiano et al., 2023). Of particular note, Coot (Casañal

et al., 2020) and ISOLDE (Croll, 2018) each now provide a

sophisticated visualization of diverse structure-validation

results at the interactive model-building stage of structure

determination.

A key principle of structure validation is that the property

used for validation should not be included in the target

function during structure determination. Basic chemical

features such as bond distances and angles therefore have

limited validation utility since they are typically restrained

to ideal values during structure determination, especially in

recognition of the fact that many X-ray crystal structures are

under-determined, with fewer observations than model para-

meters. The danger of failing to maintain a distinction between

refined parameters and those used for validation is illustrated

by the introduction of Ramachandran plot restraints, which

have led to the emergence of structures that pass Rama-

chandran tests for outliers, but are shown by more sophisti-

cated statistical analysis to exhibit highly skewed and

implausible Ramachandran plot distributions (Afonine et al.,

2023). The ingenuity of researchers in finding novel, inde-

pendent metrics such as CaBLAM (Prisant et al., 2020) has

proved important, but new validation metrics are still very

valuable.

One particularly difficult class of errors to detect are

sequence-register errors, in which the main chain may be

broadly correct but residues are systematically assigned the

identity of a residue a number of amino acids up or down in

the sequence. Such errors are particularly easily introduced

where the local resolution of the map is lower, and especially

where more easily identifiable marker residues such as

aromatic amino acids are absent. The fact that the backbone is

often essentially correct in the region of the register error

means that some conventional validation scores will struggle

to detect a problem, although nonrotameric side chains and

steric clashes may sometimes be helpful (Chojnowski, 2022,

2023). By representing residue probabilities at each C� posi-

tion in an input using a neural network classifier, the program

checkMySequence has contributed significantly to the detec-

tion of register errors in both MX and cryo-EM structures

(Chojnowski, 2022, 2023), but its dependence on map quality

means that its sensitivity naturally declines at poorer resolu-

tion. The development of the DAQ score (Terashi et al., 2022)

and an associated database (Nakamura et al., 2023) are further

major contributions to structure validation, but this analysis is

also dependent on map quality and resolution.

We have recently introduced new methods for protein

structure validation (Sánchez Rodrı́guez et al., 2022) based on

the compatibility of a structure with the inter-residue distances

and contacts predicted by methods such as AlphaFold2

(Jumper et al., 2021). These were firstly a support vector

machine (SVM) classifier which predicts whether a given

residue is part of an error of any kind, and secondly a contact-

map alignment procedure which detects whether the mapping

between the observed residue contacts in a structure and the

predicted contacts is optimal or whether an alternative

alignment would score better: a sign of a possible register

error. After specific steps to filter out potential false positives

based on either a relative paucity of contacts for the potential

error region or excessive structural divergence between the

structure and the AlphaFold2 model, we found a combination

of the SVM and contact-map alignment to be very effective in

the detection of sequence-register errors. Notable features of

our method are its map independence, making it insensitive to

the resolution of the structure analysed, and its ability to use

the contact-map alignment step to suggest the correction

required to arrive at the correct sequence register.

Here, we present the results of validating all 3–5 Å reso-

lution structures in the PDB, both cryo-EM and MX, using our

new method. Even on applying stringent criteria, we identify

thousands of putative register errors which we further validate

by comparison with high-resolution crystal structures and with

the orthogonal map-based validation tool checkMySequence

(Chojnowski, 2022, 2023). Finally, automated correction of the

likely errors results, in most cases, in improved local real-space

correlation coefficients, adding further confidence that an

error has been identified. While our method remains limited

by factors that affect the prediction of residue distances and

contacts by AlphaFold2, such as the depth of the multiple

sequence alignment that can be constructed of the target

sequence and homologues, and can be misled by rare

fold-switching proteins, it is powerful and conceptually inde-

pendent of structure-validation methods hitherto applied to

PDB entries (Sali et al., 2015; Kleywegt et al., 2024). These

results should therefore help to avoid much misguided

research effort based on locally incorrect PDB structures

(Gao et al., 2023).

2. Materials and methods

2.1. Selection of protein models deposited in the PDB

The data set of protein structures used in this study was

selected by first retrieving a list of all structures determined

using cryo-EM or X-ray crystallography which were deposited

in the PDB up to 5 April 2022 at resolutions between 3.0 and

5.0 Å. The resulting 19 310 PDB entries were then split into

their constituent chains, leading to the creation of a data set of

203 533 protein chains. Chains solely formed by nucleotides or

ligands were discarded. Additionally, chains with more than

1000 residues were also discarded as obtaining AlphaFold2

predictions would be intractable due to hardware limitations.

The remaining set of 148 785 protein chains were then clus-

tered according to their sequence identity: protein chains

sharing 100% sequence identity were grouped together,
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resulting in the creation of a final data set of 30 731 clusters,

each having an approximate average of five members. To

ensure a match between the residue numbering observed in

the deposited models and the numbering in the reference

sequence deposited in the PDB used to obtain AlphaFold2

predictions, a pairwise sequence alignment was performed

using the BLOSUM62 substitution matrix and the chains in

these clusters were renumbered accordingly.

2.2. Prediction of contact maps derived from of inter-residue

distances obtained using AlphaFold2

Predictions of inter-residue distances were obtained using

AlphaFold2 for each of the clusters in the data set created as

described in Section 2.1. Since all of the structures in each

cluster have 100% sequence similarity, only one prediction

was carried out for each individual cluster. For efficiency, the

database search required as part of the AlphaFold2 run was

carried out with MMseqs2 (Mirdita et al., 2019) instead of the

original jackhmmer search (Eddy, 2011). The original CASP14

model preset was then used and all parameters were left to

their defaults. Using this setup, one predicted model was

produced with AlphaFold2 for each of the clusters in the data

set. The inter-residue distances for this predicted model were

then taken. These predictions consist of the predicted prob-

abilities that each residue pair in the structure is within a given

distance bin. Contact predictions were derived from these

inter-residue distance predictions by adding together all

probabilities observed for the distance bins up to 8 Å for each

residue pair. Finally, the top L/2 residue contacts scoring the

highest probability values were taken to form the final

predicted contact maps, where L denotes the sequence length

of the protein chain.

All of these predictions were carried out on a computing

grid where each node was equipped with a twin 16-core Intel

Xeon Gold 5218 running at 2.3 GHz with 160 GB of memory

and four NVIDIA Tesla V100 chips with 16 GB of video

memory each.

2.3. Contact map alignment-based model validation

Model validation was carried out for each protein model

present in the data set described in Section 2.1 using the

contact-map alignment step of the conkit-validate pipeline

(Sánchez Rodrı́guez et al., 2022). In this pipeline, the contact

map predicted by AlphaFold2 was aligned with the contact

map derived from the residue distances observed in the

deposited model using map_align (Ovchinnikov et al., 2017).

This tool introduces and extends gaps as required in order to

obtain the optimal alignment between the two input contact

maps, which is defined as the alignment where the maximum

number of contacts match each other in both maps (contact

maximum overlap; CMO). In cases where the maximum

overlap between contacts was achieved using a sequence

register different to that observed in the deposited model for

at least five consecutive residues, the mismatch was flagged by

conkit-validate as a possible sequence-register error and the

sequence register that achieved the CMO was proposed as a

possible fix for the predicted error. Additionally, this pipeline

merged consecutive regions flagged as register errors if they

were separated by three residues or fewer: it seemed unlikely

that nearby predicted errors had independent causes and so

counting them once seemed fairer. As a final step, errors

predicted with this pipeline were filtered using three criteria

established in a previous study (Sánchez Rodrı́guez et al.,

2022). These criteria were designed in order to discard

predicted errors detected in parts of the model where the

contact-map misalignment could be caused by reasons other

than a register error. The first filter discarded predicted errors

where either the mean or the median number of predicted

contacts per residue observed across the affected residue

range was less than two. The second filter eliminated predicted

errors affecting residues where the average AlphaFold2

pLDDT was <65, thereby avoiding calling an error based on

lower-confidence predictions. Finally, a structural alignment

between the deposited model in which a register error was

putatively detected and the model predicted by AlphaFold2

was performed using GESAMT (Krissinel, 2012). The

GESAMT Q-score was then calculated for the range of resi-

dues affected by the possible register error. Where the

GESAMT Q-score for the residues of the putative register

error was below 0.5, the putative error was again discarded.

Filtering out instances where the deposited model and the

predicted model were very different addressed cases where

the AlphaFold2 predictions could be inaccurate or the

predicted model was modelled in a different conformation to

that deposited.

2.4. Selection of a high-resolution crystal structure for

cross-validation

In order to obtain a set of high-resolution structures that

could be used to cross-validate the predicted register errors

detected in this study, an advanced search was carried out in

the PDB to find entries that share 100% sequence identity

with each of the clusters in the data set described in

Section 2.1. To restrict analysis to higher-resolution, generally

more confident structures, the results of this search were

then filtered so that only structures determined at least at

2.5 Å resolution and using X-ray crystallography were left. In

cases where multiple entries meeting these criteria were

found, the structure determined at the highest resolution was

taken.

2.5. Modification of sequence register in models with

predicted errors

For the deposited models where a possible sequence-

register error was detected, a model with the alternative

sequence register predicted to be correct was created as

follows.

Firstly, for each error detected in the structure, a buffer was

added at each side of the predicted error to account for cases

where the register error was preceded or followed by a
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modelling error. The length of this buffer was proportional to

the predicted residue-shift error, and was calculated as

L ¼ 2�

PN

i¼1 xi � yið Þ

N

�
�
�
�
�

�
�
�
�
�
þ 3; ð1Þ

where L is the length of the buffer, N is the number of residues

affected by the predicted error, x is the residue number

observed in the deposited structure and y is the number of a

corresponding residue predicted to be correct.

In those instances where the buffer regions of two contig-

uous errors shared any number of residues, the errors were

joined and considered as a single error for the purpose of

creating a model with the alternative sequence register, but

they stayed as separate errors for the rest of the analysis.

Next, a C�-based sequence-independent structural align-

ment between the deposited model and the model predicted

by AlphaFold2 was carried out using GESAMT (Krissinel,

2012). Those residues predicted to be part of a sequence-

register error were then removed from the deposited model,

together with their buffers, and replaced with the equivalent

set of residues present in the superposed predicted model,

which were modelled with the register predicted to be correct.

Coot (Emsley et al., 2010) was then used to perform real-space

refinement on each pair of residues where the original

deposited model was adjacent to the fragment originating

from the predicted model. Further refinement and calculation

of quality metrics was then performed on both the deposited

model and the newly created model with the alternative

sequence register. This was carried out in a different manner

depending on the method used to determine the deposited

model.

In cases where the structure was originally determined

using cryo-EM, REFMAC5 (Murshudov et al., 2011) was used

to perform 20 cycles of jelly-body refinement both on the

original model and the alternative model. The local correla-

tion coefficient between the map and the modified set of

residues in both the original and the alternative model was

then calculated using phenix.map_model_cc from the Phenix

suite (Liebschner et al., 2019).

For MX cases, after correcting the predicted sequence-

register errors, all of the chains present in the asymmetric unit,

regardless of whether an error was detected in them or not,

were used as input to perform 20 cycles of restrained refine-

ment using REFMAC5 to help fit the modified region to the

density. To allow like-for-like comparisons, 20 cycles of

restrained refinement using default restraints and automatic

weights were also run on the deposited structure. density-

fitness (Hekkelman, 2023) from the PDB-REDO suite of

programs (Joosten et al., 2012) was used to calculate a per-

residue real-space correlation coefficient (RSCC). By iterating

through the residues of interest, a mean local RSCC was

calculated for the modified and unmodified structures in the

region of the predicted register error. To visualize the output

MTZ files in Chimera, the MTZ files were converted to MRC

files using Coot.

2.6. Alternative validation methods

2.6.1. checkMySequence

The map–model compatibility tool checkMySequence

was applied to all cryo-EM or crystal structures in the set

using the procedures described previously (Chojnowski, 2022,

2023).

2.6.2. Geometry

Unusual geometric features (Ramachandran outliers, side-

chain rotamer outliers and C� distortions) were detected with

MolProbity (Prisant et al., 2020; Davis et al., 2007).

2.6.3. DAQ scoring

To further assess the register errors in the cryo-EM struc-

tures, the average DAQ score across the residues corre-

sponding to each predicted error was mined from the DAQ

score database (Terashi et al., 2022). These were compared

with the delta phenix.map_model_cc score between the

original and alternative models.

3. Results and discussion

3.1. One in six models determined at 3–5 Å resolution

deposited in the PDB contains a putative register error

Processing of PDB entries at between 3 and 5 Å resolution

as outlined in Section 2 produced a set of 16 662 structures.

These were processed using the conkit-validate pipeline, with

the purpose of detecting possible register errors. During this

analysis, a total of 12 674 possible register errors were found

distributed among 2954 entries (17%). When taking into

consideration the fact that some sequences are represented

several times in the data set in the form of homomeric struc-

tures or the same protein in different PDB entries, the total

number of unique predicted register errors was 4606. Analysis

of the distribution of PDB depositions with at least one

predicted error across different resolution bins and deposition

years was carried out (Fig. 1). Unsurprisingly, predicted errors

are more common in lower-resolution entries: around 10%

of entries at 3.0 Å resolution contain a predicted error,

increasing to around 20% between 3.7 and 5.0 Å resolution.

Perhaps less expected is the historical trend towards a larger

number of predicted errors recently: only 8% of entries

deposited between 1995 and 2000 contain a predicted error,

increasing to almost 20% in recent years. However, this

presumably reflects the increasing presence of cryo-EM in

structure determination more recently and the encouragement

that its experimentally measured maps offer to lower-resolu-

tion structural analysis (see below).

Further characterization of the predicted errors was carried

out by studying the sequence shift predicted to be required

to correct the error, the number of residues affected by the

possible error and the fraction of residues present in the

overall structure that were found to be part of the error

(Fig. 2). Most of the predicted errors are small, with two-thirds
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affecting 15 residues or fewer. The shifts required to correct

predicted errors are also small: two-thirds involve a single

residue.

3.2. Errors are more common among PDB depositions

determined by cryo-EM than by MX

A comparison of the distribution of predicted errors found

in structures solved using cryo-EM or MX was carried out.

Interestingly, a lower ratio of structures containing errors was

observed for MX, regardless of the year of submission or the

resolution bin. In contrast to the MX error incidence, which

was broadly stable over time, the proportion of cryo-EM

structures which contain a predicted error was observed to

decrease over recent years, with values approaching those

observed among MX structures (Fig. 3).

Breaking down the incidence of cryo-EM and MX predicted

errors into resolution bins (Supplementary Fig. S1) suggests

that the recent reduction in the incidence of predicted regis-

tered errors for cryo-EM structures seems to be centred

principally on the 3.5–4.5 Å resolution range.

3.3. High-resolution crystal structures support the existence

of many predicted errors

We used the same error-detection method to analyse high-

resolution counterparts of crystal structures from our low-

resolution set. We searched for structures with 100% sequence

identity that were solved using MX at a resolution of at least

2.5 Å. In total we found 147 structures that met these criteria:

our proposal is that where the later (in 79% of cases), higher-

resolution structure does not contain the predicted error

found in its lower-resolution predecessor, then the correction

of an error with the benefit of better data is the likely

explanation. In many cases both high- and low-resolution

counterpart structures will have been present in the training

set of AlphaFold2, but we expect that contacts and distances

inferred from evolutionary covariance information should

nevertheless be compatible uniquely with the correct register.
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Figure 1
Distribution of models deposited in the PDB where a sequence-register error was predicted across different resolution bins (left column) or year of
deposition (right column). Plots in the top row depict the stacked count of deposited models without a predicted error (light grey) and models where an
error was predicted (dark grey). Plots in the bottom row show the percentage of deposited structures where an error was predicted. Depositions before
1995 have been omitted for clarity because the number of entries is small (only 201 in total from 1981 to 1995). Note that sequence-redundancy removal
between different PDB entries has not been applied here: some entries represented here will contain the same error.

http://doi.org/10.1107/S2052252524009114


These 147 structures covered 403 unique errors representing,

since there were 4606 unique errors in total, approximately

10% of the unique errors (i.e. after sequence-redundancy

removal) that we found in the original set of depositions. This

small set of errors is representative of the full set of errors

found in this study in terms of the distribution of register error

size and shift (Supplementary Fig. S2).

After repeating the exercise on the set of 147 structures,

no register error was predicted using our approach for 115 of

these high-resolution depositions, supporting (since these

structures encompassed 350 predicted errors) 87% of these

unique predicted errors (Fig. 4).

Supplementary Fig. S3 shows a typical case where the

electron density unambiguously supports the sequence

register in the high-resolution (1.42 Å) structure (of Ragulator
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Figure 3
Proportion of structures containing a register error across different
resolutions and years. Ratios for structures determined using MX are
coloured blue, while those determined using cryo-EM are in red. Data for
MX structures deposited before 1995 and for cryo-EM structures
deposited before 2013 are small in number and have been omitted for
clarity (136 and 28 entries, respectively).

Figure 2
Number of predicted sequence-register errors plotted by the predicted residue shift (left), by the number of affected residues (middle) and by the
fraction that the affected residues represent compared with the overall structure (right). Errors consisting of a shift of more than ten residues, affecting
more than 50 residues or more than 10% of the residues in the structure have been omitted for clarity (127, 248 and 27 errors, respectively). Note that
where two errors were separated by three residues or fewer they were combined (see Section 2), meaning that where the two errors involved shifts of
different numbers of residues, the average shift for a predicted register error may be non-integral. Note that the numbers here are after sequence-
redundancy removal and represent unique errors within and between PDB entries.

Figure 4
Comparison of 403 predicted unique errors with 147 high-resolution MX
structures. Each predicted unique error is plotted according to the
resolution of the structure in question and the number of residues
affected by the predicted error. Blue points indicate cases where no error
is detected in the high-resolution crystal structure and red points indicate
where this is not the case.

http://doi.org/10.1107/S2052252524009114
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complex protein LAMTOR4; PDB entry 6b9x, chain D, resi-

dues 24–36), thereby supporting the prediction of a register

error in the lower-resolution (3.01 Å) structure (PDB entry

5yk3, chain I).

Cases where a predicted error is called in the lower-

resolution structure but also in the higher-resolution structure

are more surprising where the quoted resolution would

generally be considered sufficient to allow unambiguous

sequence tracing. The three highest-resolution examples were

examined in more detail.

The first was a predicted one-residue register-shift error

spanning eight residues from positions 63 to 70 in the 3 Å

resolution MX structure of an Escherichia coli FimH complex

(PDB entry 4xob, chain C). The 1.14 Å resolution MX struc-

ture of the same protein (PDB entry 4xo9, chain A) was also

predicted to have a register error in the same region and had a

similar local structure. The AlphaFold2 model had a different

register in the region, which was the source of the predicted

error in both MX structures, but, unexpectedly, a further high-

resolution 1.0 Å resolution structure of (one domain of)

FimH (PDB entry 4x5p, chain A) shared the AlphaFold2

register. The electron density for each high-resolution struc-

ture unambiguously supports the atomic interpretation

[Supplementary Fig. S4(a)], suggesting that the region is

genuinely structurally ambivalent. A possible explanation for

the difference lies in the observation that the stretch imme-

diately prior to the predicted register error differs in the

structure, forming either an uninterrupted �-strand (PDB

entry 4x5p) or a �-bulge (Richardson et al., 1978; PDB entry

4xo9); indeed, this difference triggers the downstream register

difference. Crucially, however, this surface-exposed stretch is

at the crystal lattice interface in each of the structures, and the

lattice differs since the crystals are in different space groups

[Supplementary Fig. S4(b)]. In particular, hydrogen bonds

made by the side chain of Arg60 in each form may help to

drive the local structural difference [Supplementary Fig.

S4(c)]. Fold-switching proteins with more dramatic differences

between alternative biologically relevant structures are

considered below.

The second example involves structures of tick anti-

coagulant peptide at both high resolution (1.62 Å; PDB entry

1dod; chain A) and low resolution (3.0 Å; PDB entry 1kig;

chain I). They share a one-residue register shift with respect to

the AlphaFold2 model over residues 19–28. Although, unfor-

tunately, no diffraction data are available, the crystal struc-

tures also share the same register with two NMR structures of

the same protein (PDB entries 1tcp and 1tap), suggesting that

here the AlphaFold2 model, and hence the error prediction,

is either straightforwardly wrong or captures an alternative

legitimate conformation. Notably, this protein contains three

disulfide bonds and some of the literature has suggested that

these may lead to difficulties for AlphaFold2 (Thornton et al.,

2021; Wehrspan et al., 2022). It is also worth noting that the

AlphaFold2 model can be fitted to the crystal structures only

rather poorly, with a 2.89–3.03 Å r.m.s.d. on 59 C� atoms.

The third example involves structures of Methylophilus

methylotrophus flavoprotein at high resolution (1.60 Å; PDB

entry 1o97; chain A) and low resolution (3.1 Å; PDB entry

1o96; chain Z). They share a one-residue register shift with

respect to the AlphaFold2 model over residues 196–201.

Immediately prior to this region they each have a number of

residues, three or six, that are not traced in the final structure:

this relates to the lower local quality of the electron density in

the domain-linker region. Although not allowing immediate

and unambiguous interpretation, the electron density calcu-

lated using the higher-resolution structure seemed to be more

consistent with the AlphaFold2-preferred register (not

shown). Indeed, the register matching the AlphaFold2 model

is seen in structures deposited six years later by the same

group, for example PDB entry 3cls at 1.65 Å resolution.

3.4. Local correlation values improve when predicted errors

are corrected

Deposited models in which a sequence-register error was

predicted were corrected as described in Section 2.5. Then,

research papers

944 Filomeno Sánchez Rodrı́guez et al. � Register errors in PDB depositions IUCrJ (2024). 11, 938–950

Figure 5
Density plots illustrate that local CC values improve for most (a) cryo-
EM (Phenix map–model correlation coefficient) and (b) MX (density-
fitness real-space correlation coefficient) cases after the correction of
predicted errors.

http://doi.org/10.1107/S2052252524009114
http://doi.org/10.1107/S2052252524009114
http://doi.org/10.1107/S2052252524009114
http://doi.org/10.1107/S2052252524009114


either the density-fitness real-space correlation coefficient

(RSCC; MX cases) or the Phenix map–model correlation

coefficient (CC; cryo-EM cases) was calculated for the stretch

of residues that were modified and compared with the coef-

ficient achieved with the set of residues present in the original

deposition. Comparison of these local correlation values

revealed that the CC improved in 4522 of the 5599 cryo-EM

cases (80%) and the RSCC improved in 3266 of the 4059 MX

cases cases (80%) (Fig. 5).

3.5. Comparison with other validation tools

3.5.1. New-generation map-based validation with

checkMySequence

We used checkMySequence (cMS) to look for possible

register errors within the structures in our data set. cMS is

based on map–model compatibility and hence is a completely

independent approach. Since cMS is based on comparison of

the model with the experimental data, only those models that

had experimental data deposited could be analysed. Of the

16 662 PDB entries that we analysed, 12 879 met this

requirement. Furthermore, due to the underlying methods

used within cMS, only register errors spanning at least ten

residues will be flagged. This means that out of the 4606

‘unique’ errors that we found in the data set, only 1556 could

be potentially found by cMS (33%).

A total of 672 errors were predicted by cMS among the

12 879 entries in the data set that contained experimental data.

Of these, only 90 were part of the set of 1556 errors also

predicted by conkit-validate. A comparison of the resolution

distributions of the deposited structures where an error was or

was not found using cMS is shown in Fig. 6. The distribution of

predicted errors extending to lower-resolution cases in the

set found by conkit-validate alone illustrates the valuable

resolution independence of the program.

Additionally, analysis of the structures where a sequence-

register error was flagged by cMS but not by conkit-validate

revealed that 70% had been predicted to contain the same

error by conkit-validate, but these errors were discarded by the

filters described in Section 2.3 and established in a previous

study (Sánchez Rodrı́guez et al., 2022). This suggests that there

is room for improvement in the filtering of results that we

previously found necessary to reduce the incidence of false-

positive results (Sánchez Rodrı́guez et al., 2022), i.e. it has

removed some true positives that were also discovered by

cMS.

3.5.2. Model geometry

It has been observed that register shifts may result in local

concentrations of model-geometry violations (Chojnowski,

2022, 2023), so we evaluated the fractions of various geometry

errors identified using MolProbity (Ramachandran plot

outliers, rotamer outliers and C� deviations) in model frag-

ments with identified register shifts and random fragments

of comparable lengths selected from the same models. We

observed that the fraction of errors is indeed larger in regions
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Figure 6
For those deposited structures where a possible sequence register was
predicted by conkit-validate and experimental data were available,
comparison of the distribution of the resolutions at which they were
solved and whether a possible register error was also predicted by
checkMySequence.

Figure 7
Comparison of distributions of (a) Ramachandran plot outliers, (b) rotamer outliers and (c) C� deviations detected using MolProbity in model fragments
with plausible register shifts (grey bars) and random fragments (hatched bars). The p-values shown on the plots correspond to a two-sample t-test with a
hypothesis that the expectation value for random fragments is smaller. The numbers below the p-values are mean fractions of outliers for fragments with
errors and random fragments, respectively.



with putative errors, but the difference is relatively small

for all of the validation criteria tested (Fig. 7). This

clearly supports our previous observation that register

shifts may result in a locally increased number of validation

outliers. However, it is clear that many regions with confident

putative register errors that are identifiable with our new

method lack geometric issues that alone would enable their

identification.

3.5.3. The composite cryo-EM validation measure DAQ score

We further assessed the predicted register errors for the

cryo-EM targets by comparing the average �CC score

between the original and the alternative models against the

average DAQ score over the predicted register error (Fig. 8).

Where the DAQ score indicated a potential error [average

DAQ(AA) < 0] we observed that �CC improved in 1699 of

the 2136 cases (79.5%). Where no error was indicated by the

DAQ score [average DAQ(AA) > 0] we observed that �CC

improved in 2525 of the 3758 cases (67.2%). It should be noted

that in a large number of these cases the average DAQ score

was very close to zero, indicating that the map lacked

distinctive map features that would allow the DAQ neural

network to make a decisive call. This helps to highlight the

importance of our map-independent method when looking for

potential errors.

3.6. Selected examples

3.6.1. Cryo-EM examples

Fig. 9 illustrates two representative predicted errors

discovered by conkit-validate. The first, also flagged by cMS

[Fig. 9(a)], indicates a predicted 18-residue error in chain SB

(note that we use author chain IDs throughout) of the E. coli

30S ribosomal protein S2 in a ribosome structure, PDB entry

3j9z, determined to a reported resolution of 3.6 Å. The

second, found solely by conkit-validate [Fig. 9(b)], illustrates a

predicted 28-residue error in chain BJ of the rabbit ribosome

structure, PDB entry 6gz3, also at 3.6 Å resolution. Notably,

the regions in question, when analysed by CryoNet (Dai et al.,

2023), appear to have a local map resolution that is signifi-

cantly worse than the overall quoted values and certainly

worse than 4 Å (Supplementary Fig. S5). In each case, bulky,

aromatic side chains provide visual confirmation that the new

register is correct. Indeed, the local map–model CC for the

region in question improves dramatically after correction of

the error as suggested by conkit-validate: for PDB entry 3j9z it

improves from 0.29 to 0.71, while the values before and after

correction for PDB entry 6gz3 are 0.51 and 0.82, respectively.

3.6.2. MX examples

Fig. 10 shows representative examples of predicted register

errors in crystal structures before and after correction. The

predicted errors are found in a bacterial ion channel deter-

mined to 3.3 Å resolution [Fig. 10(a)], a human coagulation

factor complex at 4.19 Å resolution [Fig. 10(b)] and a bacterial

carbonic anhydrase at 3.17 Å resolution [Fig. 10(c)]. The first

two were also detected by cMS, while the last was not. The

case in Fig. 10(a) is the same error as highlighted in a cryo-EM

structure in our previous paper (Sánchez Rodrı́guez et al.,

2022), illustrating the map-agnostic nature of our method.

3.6.3. Fold-switching

Our method depends on spotting mismatches between a

deposited structure and the structure implied by deep-

learning-based prediction of inter-residue distances and

contacts. It will therefore potentially struggle with the small

proportion of proteins, known as fold-switchers, which have

alternative, distinctly different, but equally biologically valid

folds. We find one such example in our set, human calcineurin

(PDB entry 5c1v, determined by X-ray crystallography to

3.35 Å resolution), which undergoes a significant rearrange-

ment of C-terminal �-strands as a result of reversible cis–trans

isomerization of a proline residue (Guasch et al., 2015). In

chain A of the structure trans-Pro309 adopted the previously

universal structure, whereas cis-Pro309 in chain B led to a

novel conformation in the C-terminal region and, in particular,

a different sequence register of two �-strands compared with

chain A (Fig. 11). Electron density provides good support for

the novel conformation [Fig. 11(b)], yet residues 288–340 are

flagged as a potential error by conkit-validate. The attempted

‘correction’ of register leads to a confirmation resembling that

of chain A which has a poorer fit to the density [Fig. 11(d)],

demonstrating that this case is a false-positive error predic-

tion.

4. Conclusions

We have presented a PDB-wide analysis of deposited struc-

tures determined to between 3 and 5 Å resolution using our
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Figure 8
A scatter diagram showing average delta in Phenix map–model CC
before and after correction versus the average DAQ score over the
predicted error. The points in the plot are coloured by density, where blue
represents a low density of points and red represents a high density of
points.

http://doi.org/10.1107/S2052252524009114


new validation protocol. It is based on deep-learning-derived

predictions of inter-residue distances and contacts, but the

availability of an associated 3D structure prediction provides

extra confidence by enabling the filtering out of some false

positives (Sánchez Rodrı́guez et al., 2022). Potential errors are

flagged as disparities between the observed residue distances

and contacts and those predicted by the latest generation of

deep-learning-based tools, most notably AlphaFold2 (Jumper

et al., 2021). Although general in its ability to detect errors, our

method is particularly effective when applied, as here, to the

detection of register errors (Sánchez Rodrı́guez et al., 2022).

Importantly, our method is orthogonal to current validation

metrics, providing a valuable further tool for the detection of

errors in protein structures. Also notably, it is independent of

the experimental map, be it cryo-EM or crystallographic, and

hence its performance is unaffected by (local) resolution.

We found that around one in six PDB depositions deter-

mined to 3–5 Å resolution contained a predicted register

error, although this amounts to only 2.3% of residues. Given

the benchmarking previously carried out, the implementation
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Figure 9
Detailed views of portions of deposited cryo-EM structures in which a possible sequence-register error was detected using conkit-validate. (a) The error
corresponds to PDB entry 3j9z chain SB residues 7–24, and residues 14, 15 and 17 have been highlighted. (b) The error corresponds to PDB entry 6gz3
chain BJ residues 153–180, and residues 156, 159 and 165 have been highlighted. In each case, a mask of 2.5 Å around the model was applied; the original
deposition is coloured red, with the structure corrected with the sequence register suggested by conkit-validate in blue. The density map for the deposited
structure is represented as a transparent grey surface with the contour level set to 0.035 in (a) and 2.2 in (b).

Figure 10
Detailed views of portions of deposited MX structures in which a possible sequence-register error was detected using conkit-validate. (a) The error
corresponds to PDB entry 2yks chain A residues 130–157, and residues 142 and 148 have been highlighted. (b) The error corresponds to PDB entry 5k8d
chain A residues 664–673, and residues 664, 671 and 673 have been highlighted. (c) The error corresponds to PDB entry 6yl7 chain A residues 199–219,
and residue 210 has been highlighted. In each case, a mask of 2.4 Å around the model was applied. The maps are 2Fo � Fc maps coloured at the same
contour level, with the original deposition in red and the structure corrected with the sequence register suggested by conkit-validate in blue. The contour
levels are 0.207, 0.154 and 0.24 in (a), (b) and (c), respectively.



of filters to catch false positives and the observable improve-

ments in map–model compatibility after correction (Fig. 5), we

are confident that these represent high-confidence predictions.

The large numbers involved allow trends to be analysed:

unsurprisingly, entries in the higher-resolution part of the

studied range are less likely to contain a predicted error than

lower-resolution depositions. We find that cryo-EM structures

are more likely to contain a predicted error than crystallo-

graphic structures at the same quoted resolution, but it must

be borne in mind that cryo-EM maps, especially, often contain

regions in which the resolution is much poorer than the

headline value. In addition, the gap in error frequency

between the two methods seems to be narrowing recently.

While powerful, our method has limitations. Most

obviously, it depends on the quality of the distance and contact

predictions available. In most cases, the quality is very high,

as illustrated by the superb accuracy achieved by methods

such as AlphaFold2 (Jumper et al., 2021; Pereira et al., 2021;

Simpkin et al., 2023). However, recent analysis demonstrates

that contemporary modelling methods of different kinds still

consistently struggle with targets that are singletons or for

which very few homologues can be found in databases. In

addition, small size and high �-helical content may be addi-

tional aggravating factors (Simpkin et al., 2023). In such cases,

where accurate modelling is not possible, the corresponding

distance and contact predictions will also be lower quality and

hence, potentially, not suitable for use in validation. In this

regard, we have also presented an example in which the

presence of disulfide bonds in the target may have resulted in

an unusually low quality AlphaFold2 prediction. As we have

also shown, our method can also misbehave in rare cases of

fold-switching proteins, flagging a potential error in the part of

the structure that has two biologically valid structures. A

similar situation will arise in very unusual cases of homologous

proteins that adopt entirely different structures (Schierholz et

al., 2024). More positively, such a misprediction in regions of

confident structure building could potentially be interpreted

as a sign of a potentially interesting fold-switching region or a

different kind of biologically relevant structural ambivalence.

It may also be that future work looking at AlphaFold2-
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Figure 11
Detailed view of the section of the deposited model where conkit-validate erroneously identified a potential sequence-register error in human calcineurin
(PDB entry 5c1v). (a) The deposited structure is shown in grey with the fold-switching region (residues 309–340) shown in a rainbow spectrum, where
blue indicates its N-terminal part and red indicates the C-terminus. The density map for the deposited structure is represented as a transparent grey
surface and the contour level was set to 0.25. (b) A close-up of the fold-switching region in chain B of the deposited structure and the associated density.
(c) The automated attempt at fixing the potential sequence-register error identified by conkit-validate. (d) A close-up of the fold-switching region in
chain B of the attempted fix.



predicted distance probabilities in more detail (see, for

example, Brown et al., 2024) can flag such regions directly,

thereby avoiding these rare mispredictions.

In summary, our method, which is map-independent and

orthogonal to the prevalent validation software, effectively

pinpoints register errors in large numbers of mid-resolution

PDB entries, illustrating the challenges facing even diligent

and expert structural biologists when working on this kind

of target. Notably, and unlike other validation methods, our

method provides a suggested correction to the register for

putative errors. Finally, with a simple adaptation to use C�

rather than C� atoms in the definition of contacts, we expect

that our method could answer the recent call from the PDB

cryo-EM Data Archiving and Validation Group (Kleywegt et

al., 2024) for methods to validate C�-only structures. We hope

that the availability of our method through CCP4 (Agirre et

al., 2023) will contribute to detecting errors before deposition

in the PDB.
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Beilsten-Edmands, J., Borges, R. J., Brown, D. G., Burgos-Mármol,
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Mirdita, M., Steinegger, M. & Söding, J. (2019). Bioinformatics, 35,

2856–2858.
Murshudov, G. N., Skubák, P., Lebedev, A. A., Pannu, N. S., Steiner,

R. A., Nicholls, R. A., Winn, M. D., Long, F. & Vagin, A. A. (2011).
Acta Cryst. D67, 355–367.

research papers

IUCrJ (2024). 11, 938–950 Filomeno Sánchez Rodrı́guez et al. � Register errors in PDB depositions 949

http://doi.org/10.1107/S2052252524009114
http://doi.org/10.1107/S2052252524009114
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=lz5074&bbid=BB1
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=lz5074&bbid=BB1
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=lz5074&bbid=BB2
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=lz5074&bbid=BB2
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=lz5074&bbid=BB2
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=lz5074&bbid=BB2
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=lz5074&bbid=BB2
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=lz5074&bbid=BB2
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=lz5074&bbid=BB2
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=lz5074&bbid=BB2
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=lz5074&bbid=BB2
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=lz5074&bbid=BB2
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=lz5074&bbid=BB2
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=lz5074&bbid=BB2
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=lz5074&bbid=BB2
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=lz5074&bbid=BB2
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=lz5074&bbid=BB2
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=lz5074&bbid=BB2
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=lz5074&bbid=BB2
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=lz5074&bbid=BB2
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=lz5074&bbid=BB2
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=lz5074&bbid=BB2
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=lz5074&bbid=BB2
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=lz5074&bbid=BB3
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=lz5074&bbid=BB3
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=lz5074&bbid=BB4
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=lz5074&bbid=BB4
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=lz5074&bbid=BB5
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=lz5074&bbid=BB6
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=lz5074&bbid=BB6
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=lz5074&bbid=BB7
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=lz5074&bbid=BB8
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=lz5074&bbid=BB9
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=lz5074&bbid=BB10
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=lz5074&bbid=BB11
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=lz5074&bbid=BB11
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=lz5074&bbid=BB12
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=lz5074&bbid=BB12
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=lz5074&bbid=BB12
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=lz5074&bbid=BB13
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=lz5074&bbid=BB14
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=lz5074&bbid=BB14
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=lz5074&bbid=BB15
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=lz5074&bbid=BB17
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=lz5074&bbid=BB17
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=lz5074&bbid=BB17
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=lz5074&bbid=BB16
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=lz5074&bbid=BB16
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=lz5074&bbid=BB16
https://github.com/PDB-REDO/density-fitness
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=lz5074&bbid=BB18
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=lz5074&bbid=BB18
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=lz5074&bbid=BB19
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=lz5074&bbid=BB19
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=lz5074&bbid=BB20
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=lz5074&bbid=BB20
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=lz5074&bbid=BB20
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=lz5074&bbid=BB20
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=lz5074&bbid=BB20
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=lz5074&bbid=BB20
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=lz5074&bbid=BB20
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=lz5074&bbid=BB20
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=lz5074&bbid=BB21
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=lz5074&bbid=BB21
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=lz5074&bbid=BB21
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=lz5074&bbid=BB21
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=lz5074&bbid=BB21
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=lz5074&bbid=BB21
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=lz5074&bbid=BB21
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=lz5074&bbid=BB21
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=lz5074&bbid=BB21
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=lz5074&bbid=BB21
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=lz5074&bbid=BB21
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=lz5074&bbid=BB22
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=lz5074&bbid=BB23
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=lz5074&bbid=BB23
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=lz5074&bbid=BB24
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=lz5074&bbid=BB24
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=lz5074&bbid=BB24
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=lz5074&bbid=BB24
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=lz5074&bbid=BB24
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=lz5074&bbid=BB24
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=lz5074&bbid=BB24
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=lz5074&bbid=BB25
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=lz5074&bbid=BB26
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=lz5074&bbid=BB26
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=lz5074&bbid=BB27
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=lz5074&bbid=BB27
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=lz5074&bbid=BB27


Nakamura, T., Wang, X., Terashi, G. & Kihara, D. (2023). Nat.
Methods, 20, 775–776.

Ovchinnikov, S., Park, H., Varghese, N., Huang, P.-S., Pavlopoulos,
G. A., Kim, D. E., Kamisetty, H., Kyrpides, N. C. & Baker, D. (2017).
Science, 355, 294–298.

Pereira, J., Simpkin, A. J., Hartmann, M. D., Rigden, D. J., Keegan,
R. M. & Lupas, A. N. (2021). Proteins, 89, 1687–1699.

Pintilie, G., Zhang, K., Su, Z., Li, S., Schmid, M. F. & Chiu, W. (2020).
Nat. Methods, 17, 328–334.

Prisant, M. G., Williams, C. J., Chen, V. B., Richardson, J. S. &
Richardson, D. C. (2020). Protein Sci. 29, 315–329.

Reggiano, G., Lugmayr, W., Farrell, D., Marlovits, T. C. & DiMaio, F.
(2023). Structure, 31, 860–869.

Richardson, J. S., Getzoff, E. D. & Richardson, D. C. (1978). Proc.
Natl Acad. Sci. USA, 75, 2574–2578.

Sali, A., Berman, H. M., Schwede, T., Trewhella, J., Kleywegt, G.,
Burley, S. K., Markley, J., Nakamura, H., Adams, P., Bonvin,
A. M. J. J., Chiu, W., Peraro, M. D., Di Maio, F., Ferrin, T. E.,
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