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Conformational heterogeneity of biological macromolecules is a challenge in

single-particle averaging (SPA). Current standard practice is to employ classi-

fication and filtering methods that may allow a discrete number of conforma-

tional states to be reconstructed. However, the conformation space accessible to

these molecules is continuous and, therefore, explored incompletely by a small

number of discrete classes. Recently developed heterogeneous reconstruction

algorithms (HRAs) to analyse continuous heterogeneity rely on machine-

learning methods that employ low-dimensional latent space representations.

The non-linear nature of many of these methods poses a challenge to their

validation and interpretation and to identifying functionally relevant confor-

mational trajectories. These methods would benefit from in-depth bench-

marking using high-quality synthetic data and concomitant ground truth

information. We present a framework for the simulation and subsequent

analysis with respect to the ground truth of cryo-EM micrographs containing

particles whose conformational heterogeneity is sourced from molecular

dynamics simulations. These synthetic data can be processed as if they were

experimental data, allowing aspects of standard SPA workflows as well as

heterogeneous reconstruction methods to be compared with known ground

truth using available utilities. The simulation and analysis of several such

datasets are demonstrated and an initial investigation into HRAs is presented.

1. Introduction

Cryogenic sample electron microscopy (cryo-EM) has become

an established method to determine 3D structures of biolo-

gical macromolecules at resolutions where atomic interpreta-

tion becomes possible (Kühlbrandt, 2014; Egelman, 2016). The

success of the field has largely been attributed to direct elec-

tron detectors, improved stability of electron optical compo-

nents as well as advanced image processing software (Nogales,

2016; Cheng, 2015). One of the remaining challenges in the

field is to improve methods for extracting the structural

heterogeneity inherent in cryo-EM data to provide mean-

ingful functional insights.

In single-particle averaging (SPA), samples consist of a

suspension of biological macromolecules in solution which is

then vitrified by flash-freezing in liquid ethane. As a result, we

presume each particle has a different orientation and confor-

mation. Although the vitrification of the sample is not

instantaneous, leaving time for molecules to anneal into a

lower-energy state, recent work suggests that a sizeable

portion of the conformational states of the protein at room
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temperature is still populated in the vitrified state (Bock &

Grubmüller, 2022).

The final result of an SPA workflow is often a single-

consensus 3D reconstruction representing the macromolecule

of interest. In such a consensus map, the conformational states

of the particle are averaged, which causes the density, parti-

cularly in flexible regions, to be blurred and effectively reduces

local resolution. It is therefore standard practice to employ

strategies to reduce the heterogeneity in the data by means of

discrete 3D classification into structurally homogeneous

particle subsets (Scheres, 2016). In cases where the hetero-

geneity is limited to a discrete set of distinctly different

conformations, this strategy can be used to obtain structures of

these complexes in their different structural states (Nguyen et

al., 2016; Zhou et al., 2020).

However, subdivision of the cryo-EM data into a discrete

number of subsets is not well suited for the description of

continuous types of molecular motion, for which an infinite

number of subsets would, in principle, be needed. In recent

years, methods have been developed that aim to more

comprehensively explore the conformational heterogeneity

present in cryo-EM data. Various strategies have been used to

accomplish this goal, which we collectively call heterogeneous

reconstruction algorithms (HRAs). Review articles discussing

these approaches are available (Sorzano et al., 2019; Toader et

al., 2023; Serna, 2019; Tang et al., 2023; Sorzano, 2024), so here

we discuss a selection of methods.

One approach is to use principal component analysis (PCA)

to determine which transformations maximize the statistical

variance in the data. One such technique, multi-body refine-

ment (Nakane et al., 2018), builds on the assumption that

large-scale conformational changes of a complex can be

described by a discrete number of independently moving rigid

bodies that themselves are identical across the particle images.

After alignment of the individual bodies using signal

subtraction and focused refinement, PCA on the relative

orientations of all bodies for every experimental image is used

to characterize the most dominant motions in the complex.

This method is limited by requiring the user to define rigid

bodies sizeable enough for refinement within the structure of

interest. The estimated conformational heterogeneity is also

limited to large domain motion.

Normal mode analysis can also be used to provide a linear

interpretation of the heterogeneity present. HEMNMA (Jin et

al., 2014) is one such example which performs an iterative 3D

(reference map) to 2D (projected particle image) elastic and

rigid body alignment to find the conformation, orientation and

translation quasi-simultaneously. Extensions to this method

include the use of neural networks for increasing the speed of

processing (Hamitouche & Jonic, 2022), combination with

molecular dynamics (MD) (Vuillemot et al., 2022) and further

combination with PCA (Vuillemot et al., 2023).

Another approach is 3D variability analysis (Punjani &

Fleet, 2021), which uses a form of PCA to decompose the

conformational heterogeneity in a set of particle images into

principal modes of motion and a per-particle latent vector. The

latent vector is a weighting of all modes of motion present in

the particle image. This method offers a way to represent

continuous conformational heterogeneity as a continuous

manifold, similar to ManifoldEM approaches (Dashti et al.,

2014; Frank & Ourmazd, 2016; Dashti et al., 2020).

Numerous other approaches also aim to embed all 2D

projected particle images into a low-dimensional latent space

that encodes the heterogeneity in the data by utilizing varia-

tional autoencoders (VAEs). CryoDRGN (Zhong et al., 2021)

is an example of such a method, where the encoder and

decoder are both implemented as convolutional neural

networks and the decoder directly outputs a 3D volume

density representation. Although for most of these methods

the encoder model is similar, there are different choices for

the implementation of the decoder model. 3DFlex (Punjani &

Fleet, 2023) outputs a deformation field that specifies the way

a consensus volume should be deformed to reach a specific

state according to the sampled location in the latent space.

DynaMight and EMAN2’s e2gmm program opt to model the

density as a Gaussian mixture model (Chen & Ludtke, 2021;

Schwab et al., 2023). The parameters of the mixture model are

then the result of passing a latent variable through the

decoder.

In many cases these methods are used as a replacement for

3D classification or to filter the particles such that one or more

homogeneous datasets remain (Leesch et al., 2023; Huang et

al., 2022; Serna et al., 2022; Schoppe et al., 2021) and the full

potential of HRAs to explore conformational heterogeneity in

cryo-EM data is not always utilized. It can be challenging and

time-consuming to optimize the model and interpret and

validate results obtained with deep-learning-based methods.

As with any algorithm, the performance of HRAs depends on

the hyperparameters used and these may require tuning to

achieve the best results. The latent space embedding requires

further analysis by clustering or dimensionality-reduction

methods to arrive at biologically interpretable results.

We believe HRA development will benefit from thorough

benchmarking with known ground truth data. This will allow

the assessment of conformation sampling for both complete-

ness of conformation space and relative populations. It will

also allow exploration of the effect of hyperparameter opti-

mization and aid in the interpretation of results.

Simulated data have previously been used in demonstrating

various heterogeneous reconstruction methods such as

CryoDRGN and e2gmm. In these cases, a simple linear motion

of a structure was simulated. Projection images of the struc-

tures were then generated, and Gaussian noise was added.

Our new approach allows more complex heterogeneity to be

modelled by utilizing the conformational states sampled from

MD simulations. We use Parakeet (Parkhurst et al., 2021)

software to simulate our datasets. Parakeet employs a multi-

slice approach to propagate an electron wave through a thin

amorphous ice layer in which scattering molecules are placed

in random orientations. As these micrographs are suitable for

processing using conventional 3D reconstruction workflows, it

is possible to gain an increased understanding of how the

application of each step in the reconstruction workflow,

including particle picking and classification, contributes to the
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final result. We called this simulation and analysis toolkit

Roodmus.

In this paper, we first expand on how the Roodmus toolkit is

designed and how it can be utilized to perform the case studies

which are subsequently reported. We then demonstrate the

effect of including conformational heterogeneity in a synthetic

dataset on a conventional SPA reconstruction workflow. We

probe the current limitations of the simulation approach

through an investigation into how fluence and a radiation

damage model affect the consensus reconstructions. Subse-

quently, we investigate 3D classification of synthetic data with

discrete heterogeneity and explore how conformational

heterogeneity is expressed in embeddings of the latent

representations provided by two prominent VAE based

approaches: CryoDRGN and 3DFlex.

2. Results

2.1. Roodmus workflow

The goal of the Roodmus toolkit is to generate realistic

datasets of synthetic electron micrographs and allow the

ground truth information, including particle positions, particle

orientations, particle conformations and electron optical

parameters, to be stored and later mapped to particles in the

conventional SPA or HRA workflow metadata files.

The first step (MD sampling, see Fig. 1) serves to acquire a

source of structural heterogeneity and to sample atomic

coordinate models from it. We suggest sourcing a motion

trajectory of a biomolecular complex or another structure of

interest. Atomistic MD simulations sampled over a sufficiently

long time provide the most detailed observable conforma-

tional changes, although sampling large domain motion may

be too computationally demanding. In these cases, various

forms of enhanced sampling can be considered as well, such as

steered MD, meta-dynamics or replica-exchange MD (Yang et

al., 2019). In this work, we showcase applications using both

atomistic MD trajectories of up to 500 ms as well as steered

MD trajectories that force a large conformational change to

occur within time frames of 100 and 200 ps. The left-most

panel of Fig. 1 shows an example of a conformational

ensemble sampled from a 10 ms MD trajectory of the SARS-

CoV-2 spike protein (Shaw, 2020). Large trajectories that are

finely sampled can be downsampled to k conformations by

selecting equidistant time points using a Roodmus utility.

Next, we configure the Parakeet simulation package to

create synthetic micrographs. A random selection is made out

of the available conformations to build a sample. The positions

and orientations of each molecule can be specified at this time

or they can be randomly generated by Parakeet, sampling the

orientation of each particle uniformly from the SO(3) rotation
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Figure 1
Overview of a four-step workflow that makes use of the Roodmus framework. Nodes highlighted in yellow are performed using software external to the
Roodmus framework; steps in blue use Roodmus utilities. (1) A user-provided MD simulation is used as the input to the data generation. (2) Time points
from the trajectory may be sampled via Roodmus, which subsequently simulates micrographs using the Parakeet simulation package in which the
conformation of each particle is sampled from these time points. (3) These synthetic micrographs can be processed using 3D reconstruction software,
including HRAs. (4) Every step of the resulting reconstruction pipelines can then be analysed using Roodmus utilities to compare reconstruction outputs
to ground truth information. Roodmus currently supports metadata from CryoSPARC and RELION pipelines as well as CryoDRGN and 3DFlex
metadata.



group. Each particle has a bounding box and cannot overlap

with other particles. The sample thickness can also be specified

and can cause particles to overlap in projection when the

thickness allows for multiple particles to be placed along the

projection axis. Other imaging parameters including fluence,

acceleration voltage, defocus and electron optical aberrations

can be specified. In our investigations, unless otherwise stated,

all datasets created were simulated with a total fluence of

45 e� Å� 2, acceleration voltage of 300 kV and the Gaussian

Random Field ice model (Parkhurst et al., 2024) with an ice

thickness of 50 nm. In addition, the defocus used in image

simulation is sampled from one or more normal distributions,

each with an adjustable mean and variance. This is done to

reproduce typical experimental defocus distributions resulting

from variations in grid planarity and commonly applied

focusing protocols during low-dose imaging. Parakeet then

propagates the electron wave through the virtual sample and

applies the contrast transfer function (CTF) and simulated

detector effects to produce a micrograph or dose-fractionated

movie.

The synthetic dataset can then be processed using common

SPA workflows or HRAs. Ground truth information is saved

during simulation, including particle positions, orientations

and defocus values. This information can subsequently be

compared with the metadata output at any stage of processing.

Additionally, this information can be compared with the

outputs from HRAs. For example, a latent space representa-

tion of heterogeneity can be labelled with the time at which

that conformation occurs in the MD simulation, as is shown in

panel 4 of Fig. 1.

In the next sections, we demonstrate the usefulness of

applying synthetic data to all aspects of cryo-EM SPA work-

flows and show the effects of sample heterogeneity on 3D

reconstruction. We will conclude with the application of

CryoDRGN and 3DFlex to our synthetically generated data-

sets and compare the results with the known conformational

heterogeneity from the simulations.

2.2. Effect of increasing heterogeneity in simulated single-

particle data

To investigate the impact of heterogeneity on consensus

reconstructions, we generated two datasets from a 10 ms MD

simulation of the SARS-CoV-2 spike glycoprotein in the

partially open conformation (labelled DESRES-ANTON-

11021571) (Shaw, 2020). The trajectory consists of 8334 time

points with a 1.2 ns interval. For the first dataset, a single

conformation was extracted from this trajectory and used to

generate 34 micrographs, containing 10 200 particles in total.

The second dataset utilized all conformations from the MD

trajectory and consisted of 900 synthetic micrographs

containing 270 000 particles in total. We increased the amount

of data generated to ensure that the sampled viewing direc-

tions for each conformation are sufficient for later analysis.

Fig. 2(a) shows the atomic model that was used during

simulation of the first dataset. We processed this synthetic data

in RELION (version 4.0; Kimanius et al., 2021) and randomly

sampled 8000 of the particles, from which we reconstructed a

2.3 Å resolution map. Except for the lack of motion correc-

tion, a standard reconstruction workflow as detailed in Section

4.3 was implemented. Local resolution estimation showed

little variation except for the expected gradient towards the

particle periphery [Fig. 2(a)], consistent with a single confor-

mation and constant atomic displacement factor of the atomic

model used for micrograph simulation. The Fourier shell

correlation (FSC) curves of the final density map show the

expected behaviour with a smooth fall-off to zero. The 3D

density appears connected with expected features of side-

chains and backbone atoms visible in the structure (see Fig.

S10). Fig. 2(a) also shows a plot of inverse resolution versus

the logarithm of the number of particles (commonly referred

to as a Rosenthal–Henderson or ResLog plot (Rosenthal &

Henderson, 2003; Stagg et al., 2014) for this dataset where we

obtained a B factor of 17.8 Å2 from the slope of a linear fit.

Since the sample is perfectly homogeneous and no B factor is

applied during simulation of these images, this overall B factor

can be solely attributed to errors in processing such as

suboptimal alignment.

The second dataset of synthetic micrographs was then pre-

processed using the same workflow as the single-conformation

dataset. To compare a consensus reconstruction of this dataset

with a consensus reconstruction of the previous single-

conformation dataset, we similarly selected 8000 particles

randomly before refinement. The resulting density map is

shown in Fig. 2(b). We now observe a lower global resolution

of 3.2 Å as well as larger differences in local resolution

compared with the single-conformation dataset. In the single-

conformation dataset, we measured a mean local resolution of

2.2 Å with a variance of 0.61 Å2, while the conformationally

heterogeneous dataset had a mean of 3.0 Å with a variance of

1.1 Å2. The largest difference in resolution is observed in the

flexible receptor binding domain (RBD), which is in a partially

open conformation in this MD trajectory. Performing a

ResLog analysis shows the overall B factor has increased to

41.1 Å2.

We further investigated the relation between heterogeneity

present in the dataset and the global resolution of a recon-

structed density map. To this end we created 7 subsets of 4000

particles from the multiple-conformation dataset. Each subset

only includes particles from the first k time points of the MD

trajectory with k 2 (125, 250, 500, 1000, 2000, 4000, 8000). Fig.

2(c) shows the global resolution and 3D refinement-estimated

B factor as a function of k. As expected, the global resolution

decreases and the B factor increases as the conformational

heterogeneity contained in a subset increases. The overall

resolution was lower compared with the consensus recon-

structions of the single- and multiple-conformation datasets

(possibly caused by the omission of the CTF refinement). The

B factor data also show unexplained outliers which might

result from the low number of particles used in refinement and

the stochastic nature of the refinement.

As ground truth particle positions, orientations and CTF

parameters are known, we next investigated how well the

corresponding estimates from the 3D reconstruction workflow
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agreed with the ground truth. Fig. S1(a) of the supporting

information plots the estimated defocus values against the

ground truth defocus for each micrograph, from which we

computed a correlation coefficient of 1.0 to 6 significant digits.

We also compared ground truth particle orientations with

estimated orientations during 3D refinement with distribu-

tions of elevation and azimuthal angles shown in Figs. S1(b)

and S1(c). The ground truth distribution of viewing directions

is uniform, whereas the estimated orientations show a peak

which may indicate misalignment for some particles.

To analyse particle picking, we matched each picked

particle with the closest truth particle within a radius of 50 Å.

We define true positive picks as those picked particles which

were successfully matched to a truth particle and false posi-

tives (FPs) as those which were not. From these definitions we

can compute particle picking precision and recall for a set of

picked and ground truth particles. Precision and recall for

various steps of processing of the heterogeneous dataset are

plotted in Fig. 2(d) on a per-micrograph basis. Particle picking

is nearly perfect; a trained Topaz (Bepler et al., 2019) model

can pick 88.8% of all particles with 99.5% precision. As we

will discuss in Section 2.4, we also simulated a steered MD

trajectory of only a monomer of the SARS-CoV-2 spike

protein. Compared with the trimer, particle picking was found

to be more difficult for this smaller structure. Fig. S1(e) shows

particle picking precision and recall for the smaller structure

and here Topaz finds 92.3% of all particles with a precision of

82.6%. The plot also shows that, in general, the recall is higher

in micrographs with a larger defocus, while the precision is

lower for both the blob picker and the subsequent Topaz

picking.

2.3. Radiation damage and fluence

One problem with the data simulation is the lack of

frequency-dependent attenuation of the signal, which would
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Figure 2
Analysis of reconstructions of single-conformation and conformationally heterogeneous datasets. (a) Single-conformation dataset. Atomic model (far
left), 2D classes (left), 3D reconstruction (middle), FSC curve (right) and ResLog analysis (far right). For 2D classes, the ‘class score’ from automatic
class ranking in RELION is shown in yellow and the percentage of particles in the class in white text. The density map is coloured by local resolution. The
arrow indicates the RBD. (b) Conformationally heterogeneous dataset. Order of panels as in (a); the atomic models show an ensemble of structures from
conformational sampling. (c) Resolution (blue, left side axis) and global B factor (orange, right side axis) versus number of included conformations in the
dataset. The number of particles is constant for each dataset. (d) Precision and recall for various steps of the image-processing workflow for the
conformationally heterogeneous dataset.
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be expected for experimental data because of beam-induced

motion, radiation damage and detector response. Parakeet

offers the option to model the detector response using a

detective quantum efficiency (DQE) model which attenuates

amplitudes in a frequency-dependent manner according to

tabulated values based on a Falcon4 detector at 300 keV. The

DQE also depends on the electron flux density; in our still

image simulation, we used 5 e� Å� 2 s� 1. In addition, to

account for the effect of radiation damage on the Coulomb

potential of the sample, a beam damage model is implemented

as a Fourier filter, which effectively convolves the electrostatic

potential with a Gaussian function whose variance is propor-

tional to a B factor. This B factor B = 8�2DESE depends

linearly on the fluence DE and a sample-dependent sensitivity

coefficient SE with units Å4/e� (Parkhurst et al., 2021). In our

application, the B-factor model serves to progressively blur

the atomic potential for each subsequent frame during simu-

lation of a dose-fractionated movie to recapitulate empirical

observations of progressive beam damage in which the first

few frames of a dose-fractionated movie are least affected by

radiation damage and the later frames progressively lose high-

frequency information (Grant & Grigorieff, 2015).

To illustrate the effect of the radiation damage (RD) model,

in Fig. 3(a) we compare exemplary power spectra from two

simulated datasets. The first is from the heterogeneous

SARS-CoV-2 trimer dataset introduced in Section 2.2 which

contains non-fractionated micrographs without RD (� RD).

The second is computed from the sum of a 30-frame dose-

fractionated movie with RD enabled (+RD). In both cases, the

DQE model was enabled and the total fluence was 45 e� Å� 2.

Micrographs corresponding to the power spectra are shown

in Figs. S2(a) and S2(b). To comparatively evaluate the

effect of the radiation damage model on the 3D reconstruc-

tion, we once again computed a consensus reconstruction

using 8000 randomly selected particles from the SARS-CoV-2

spike glycoprotein simulated with radiation damage, yielding

a reconstruction with a global resolution of 3.6 Å as

shown in Fig. S2(c). The FSC curve is plotted along with

the corresponding FSC curve of an analogous reconstruction

without the RD model [Fig. 3(b); see also Fig. 2(b)].

The ResLog analysis, shown in Fig. 3(c), resulted in a

B factor of 54.1 Å2, compared with 45.9 Å2 without RD,

suggesting that RD has a relatively minor effect under the

conditions used in our simulations. We note that no beam-
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Figure 3
RD and fluence. (a) Power spectra of two micrographs simulated without (left) and with (right) RD. (b) FSC curves of reconstructions obtained with
8000 particles from datasets without (blue) and with (orange) RD. (c) ResLog analysis of datasets simulated without (blue) and with (orange) RD; the B
factor from linear regression are shown. (d) 2D class averages from eight datasets with fluence ranging between 5 and 45 e� Å� 2. The four best classes
are shown along with their RELION class ranker score in yellow and the percentage of particles in each class in white. (e) Number of particles (left axis,
solid line) and 2D classes which pass the threshold (right axis, dashed line) of 0.3 (black) or 0.5 (red) for the predicted class scores from RELION. ( f )
Resolution versus fluence plots using either 30 000 (red) or 8000 (blue) particles.



induced motion model is currently applied in either of the

datasets.

In addition to RD, we also investigated the effect of fluence

on various steps of the reconstruction process. We simulated a

series of eight datasets with fluences of 45, 35, 25, 15, 12, 10, 8

and 5 e� Å� 2, each consisting of 100 micrographs containing

30 000 particles of the SARS-CoV-2 spike protein in total.

We picked particles from the micrographs in each dataset

using the Laplacian of Gaussian (LoG) picker in RELION,

followed by 2D classification with the relion class

ranker (Kimanius et al., 2021). We found that the quality

score of the classes decreased with lower fluence. Fig. 3(d)

plots the four highest scoring classes for each dataset. Visually,

classes obtained from datasets with lower fluence also appear

more blurred, or poorly centred. Fig. 3(e) plots the number of

2D classes and constituent particles retained after 2D class

selection using the automated class ranker with threshold

values of 0.3 or 0.5. The plot indicates that for low signal-to-

noise ratio (SNR) data the main bottleneck in the recon-

struction of these simulated images becomes the alignment

and 2D classification. To further illustrate this, we used the

ground truth particle positions to compute the average

distance between each picked particle and its nearest ground

truth particle location. The distribution of these distances is

plotted in Fig. S2( f), which shows that the accuracy of the

picked particle locations decreases with decreasing fluence.

This may contribute to the 2D classification failing to centre

the classes for low-fluence datasets.

We obtained reconstructions of each dataset using ground

truth coordinates of the particles and the same reference

density. The resolution of these density maps is plotted in Fig.

3( f) as a function of fluence. We found that the resolution

remains roughly constant until the fluence drops below

10 e� Å� 2. In the absence of RD the high-frequency infor-

mation in the images is over-represented compared with

experimental data, causing the resolution to remain constant

until the alignment fails. In all subsequent case studies, we

opted to use 45 e� Å� 2.

2.4. Discrete classification of simulated dataset with multiple

conformations

Next, we applied our pipeline to analyse 3D classification of

a synthetic dataset comprised of both discrete and continuous

heterogeneity. For this purpose we created a dataset with two

discrete structural states by mixing conformations from the

previously used DESRES-ANTON-11021571 trajectory, in

which the spike glycoprotein is in a partially open conforma-

tion (single RBD up), with conformations from the DESRES-

ANTON-11021566 trajectory (Shaw, 2020), in which the

protein is in the closed conformation (all RBDs down). We

simulated 400 micrographs containing 60 081 particles from

the open-state trajectory and 59 919 particles from the closed-

state trajectory and processed them to obtain an initial

consensus density map. From there we performed 3D classi-

fication and analysed the distribution of particles in the open

and closed conformations in each 3D class. Fig. 4(a) shows this

distribution for the case of two classes (I), three classes (II)

and ten classes (III). We observed that using two classes did

not result in a clean split between the trajectories, as 78.2% of

particles in class two originated from the closed-state confor-

mation and 21.8% from the open state compared with 2.1%

closed state and 97.9% open state for class 1. In the case of

three classes, classes 1 and 3 neatly distinguished between the

open and the closed states, respectively, but class 2 was a mix

of both the closed and open states (62.2% closed state, 37.8%

open state). In the case of ten classes, we found that all classes

contained mostly particles from one of the trajectories, with

class five being the least uniform (88.3% of particles origi-

nated from the closed state).

We found that FP particles tend to accumulate in one or two

classes during classification, which is also typically the class

with the most particles and the most equal contribution from

both trajectories. This is illustrated by Fig. 4(b), which shows

the precision of the particle set for each 3D class, whereas Fig.

4(c) shows the distribution of the total number of particles

over the classes. From refinement of each class of the three-

class classification example, we found the resolutions to be 2.5,

2.8 and 2.6 Å, respectively. Class 2, despite containing more

particles, resulted in a lower-resolution density map.

We then measured the real-space map-to-model correlation

using the density map reconstructed from each class after

refinement and the backbone atoms of atomic models from 50

evenly spaced time points from the MD trajectories of the

closed and open states. Fig. 4(d) shows a heat map of the

normalized correlation between each pair of atomic models

and density maps. When using two classes, we found that each

class has the highest correlation with atomic models from the

trajectory comprising the majority of its constituent particles.

When using three classes, we found that this was also true for

class 1 (98.5% of particles originated from the open state and

the density map correlates more strongly with atomic models

of the open state) and for class 3 (95.1% of particles originated

from the closed state and the density map correlates slightly

better on average with atomic models in the closed state).

Class 2, containing particles from both the open and the closed

states, correlates strongly with atomic models in the closed

state. In the case of ten classes, we again find that each class

correlates strongly with atomic models from the trajectory

comprising the majority of its constituent particles. Unnor-

malized versions of these correlation heat maps [Fig. S3(a)]

also show that there is a large difference between classes.

Visual inspection of the density maps for these 3 classes,

shown in Fig. 4( f), shows that class 1 resembles the open state

as showed by the RBD (see arrow) being in the up confor-

mation. Although class 2 and class 3 do not show clear

evidence for the RBD in the up conformation even at low-

density thresholds, false discovery rate (FDR)-controlled

confidence maps (Beckers et al., 2019) computed for all

reconstructions reveal a detectable signal for the RBD in the

up conformation in classes 1 and 2, but not class 3, consistent

with the class distributions determined in Fig. 4(a).

In addition to the synthetic dataset created by mixing the

10 ms trajectories of the molecule in the closed and partially
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open states, we performed a short steered MD simulation

interpolating between the closed and partially open states. To

reduce computational complexity we selected only one

monomer of the complex out of PDB models 6xm4 (open

state, RBD up) and 6xm5 (closed state, RBD down) (Zhou et

al., 2020). We then used harmonic restraints to drive the

molecule from the open conformation to the closed confor-

mation using openMM (Eastman et al., 2017). Out of the

resulting 100 ps trajectory we sampled 10 000 conformations,

which were used to create 800 micrographs comprising a total

of 200 000 particles. As discussed in Section 2.2, the smaller

size of the particles meant preprocessing was more difficult

and more particles were needed. Ab initio model building with

4 classes was done in CryoSPARC using 213 486 picked

particles, of which 168 556 were true positives. Similarly to the

SARS-CoV-2 spike glycoprotein trimer, we again observed 3D

classes distinguishing between the open and closed confor-

mations of the molecule. The distribution of the particles in

each class over the steered MD trajectory is shown in Fig.

S3(b). Classes 2 and 3 had substantially lower precision (0.61

and 0.62 compared with 0.99 and 0.97 for classes 0 and 1) and

failed to produce initial models that resembled the spike

monomer. These classes also contained particles from the

entire trajectory, in contrast to classes 0 and 1 which contained

mostly particles from the last 60 ps and the first 40 ps of the

trajectory, respectively. All 3D classes, refined density maps

and their comparison with atomic models are shown in Figs.

S3(d) to S3( f).

2.5. Continuous heterogeneity in the latent space is well

preserved

Synthetic data simulated with Roodmus are, by design, well

suited for heterogeneous reconstruction methods that aim to

derive a latent representation of the images. In this section, we

showcase the application of two such methods: CryoDRGN
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Figure 4
Discrete classification of conformationally heterogeneous synthetic data. (a) Distribution of particles in each class over the 10 ms trajectories of the spike
protein in closed and open states in the case of 2 classes (I), 3 classes (II) and 10 classes (III). (b) Precision of each 3D class. (c) Fraction of particles in
each class. (d) Correlation heat map where each class (x axis) is correlated against snapshots taken from the MD trajectories of the closed and open states
(y axis). The value plotted is the real-space correlation between class and MD time point, normalized per column. (e) Single conformation from the
closed and open states of the protein. ( f ) Three classes resulting from classification II; transparent contours outline confidence maps thresholded at 5%
FDR. The arrow highlights the RBD.



(Zhong et al., 2021) and 3DFlex (Punjani & Fleet, 2023). We

apply the former to a synthetic dataset of the SARS-CoV-2

spike trimer glycoprotein in its partially open conformation as

well as the SARS-CoV-2 replication transcription complex

(RTC) and the latter to steered MD simulations of the

SARS-CoV-2 spike glycoprotein (monomer) and the protein

complement C3, a component of the human complement

system. These datasets differ in molecular mass, dimensions

and number of particles, the magnitude of the conformational

change, the timescale simulated and the coarseness with which

states are sampled.

The open-state SARS-CoV-2 dataset is the same as the

conformationally heterogeneous dataset used for the

consensus reconstructions in Section 2.2. The final cleaned

data consist of 236 079 particles taken after performing a 3D

refinement in RELION. The default 8-dimensional latent

space was used for CryoDRGN training. In Fig. 5(a) we show a

2D embedding of the latent space using PCA for dimension-

ality reduction. FP particle picks, which make up 0.03% of the

dataset, are coloured red and are spread throughout the latent

space. Fig. S4(a) shows a density plot that visualizes how the

latent space embeddings do not form distinct clusters. We then

use ground truth information to colour each particle according

to the time point of the MD trajectory from which it origi-

nated, as shown in Fig. 5(b). Conformations that are close

together in time were also found to cluster together in the

latent space embedding. We grouped the MD trajectory into

50 batches of conformations, each representing a contiguous

2% of the total number of time points sampled in the ground

truth MD trajectory. By calculating the mean latent coordi-

nates of particles in the latent space which originated from

each batch, the average path of the MD trajectory through the

latent space embedding was traced. The generated path

progresses continuously through the latent space embedding.

We then used the trained decoder to evaluate these selected

latent coordinates and produce their corresponding 3D

density maps.

To evaluate the decoding of the latent space into density

maps, we compared the 50 generated maps with 50 atomic

models at equidistant time intervals in the MD trajectory by

real-space map-to-model correlation and plotted those in a 2D

heat map shown in Fig. 5(c). The heat map features a strong

diagonal, indicating that the sampled volumes are most similar

to the conformation of the molecule in the particles around

the selected latent coordinate. We highlight a few sampled

density maps together with the atomic model which has the

highest correlation to the map in Fig. 5(d). A more detailed

map-to-model fit is shown in Fig. 5(e) where volume 46 is

shown with a close-up of the best and worst fitting atomic

models. We further validated the map-to-model fit by calcu-

lating the average Q-scores (Pintilie et al., 2020) for both

models and found a Q-score of 0.54 for the best fitting model
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Figure 5
Analysis of heterogeneous reconstruction of the SARS-CoV-2 spike trimer. (a) Plot of the latent space after applying PCA. Red points indicate the FP
particles in the latent space. (b) Each particle embedding is coloured according to the frame of the MD trajectory the particle originated from. Black dots
show a trajectory traced through the latent space. (c) Real-space correlation between 50 volumes generated by sampling the latent space (x axis) and
frames in the MD trajectory (y axis). (d) Example volumes sampled from the latent space with the frame of the trajectory for which it showed the highest
correlation. (e) Zoom of the density map of volume 46 with the best and worst atomic models out of the 50 sampled states from the MD trajectory
displayed. Atomic models are coloured by backbone Q-scores.



compared with a score of 0.10 for the worst fitting model.

Atomic structures are coloured according to backbone per-

residue Q-score. Entire atomic models coloured by the

backbone per-residue Q-score are shown in Figs. S4(b) and

S4(c).

In addition, we trained CryoDRGN on a similar dataset

where RD was enabled, as described in Section 2.3. The latent

space is plotted in Fig. S5. We again found that CryoDRGN

was able to organize the particles according to their time point

in the MD trajectory, despite the decreased SNR of the high-

frequency information and the comparatively small number of

particles (15 846) used to train CryoDRGN in this case.

Next, we repeated the same steps for a second dataset based

on the SARS-CoV-2 RTC. The MD simulation that was used

as a source of heterogeneity for this synthetic dataset is much

longer (500 ms compared with 10 ms for the spike protein) and

sampled with a time interval of 4.8 ns (Shaw, 2020). From this

trajectory, 10 000 frames were sampled and 167 micrographs

were simulated with a total of 50 100 particles. Fig. 6(a) shows

the consensus reconstruction obtained with 41 146 particles,

which reached 3.11 Å global resolution. Despite the much

longer simulation, CryoDRGN again was able to organize the

latent space coherently with time points in the MD trajectory

from which the particles were sampled, as exemplified in Figs.

6(b) and 6(c). We used the same approach as for the open-

state SARS-CoV-2 dataset to compute a real-space correla-

tion matrix, which is shown in Fig. 6(d). Good agreement was

found between the time points in the MD trajectory and the

generated volumes, although towards the later time points in

the trajectory we see broader correlations with the volumes

generated. This may indicate that conformations become less

distinguishable. This conclusion is supported by the averaged

path through the latent space in Fig. 6(c), and the lack of

separation in the latent space between later time points in the

MD simulation is easily observed in the high-density region in

Fig. S4(d). Finally, we show two examples of a small section of

the atomic model in a flexible region of the complex in Fig.

6(e); the best and worst fit according to real-space map-to-

model correlation. The entire atomic model coloured by

backbone Q-scores is shown in Figs. S4(e) and S4( f).

As discussed in Section 2.2 we also performed a steered MD

simulation of the SARS-CoV-2 spike protein. We reduced the

complex to a single monomer and forced a conformational

change between an open and closed state of the RBD using

harmonic restraints. We then trained CryoSPARC’s 3DFlex

model using 1D and 2D latent spaces. The latent spaces of

both trained models are shown in Figs. S6(a)–S6(d) (for the

1D latent space we show the distribution of latent coordi-

nates). In the case of a 1D latent space we find that there is

some correlation between the estimated latent encoding and

the time point in the MD trajectory, whereas in the 2D latent

space we find that the latent space is not organized in a

continuous manner. Unlike our previous examples, there is no

path through the cluster that can reconstruct the MD trajec-

tory in chronological order. Correlation between the time

points in the MD trajectory and the sampled volumes, shown

in Figs. S6(e) and S6( f), show a strong relation between

conformations in the MD trajectory and the sampled volumes

in the case of a 1D latent space, but not for a 2D latent space.

We tested 3DFlex with another synthetic dataset based on a

steered MD simulation of the complement system protein C3,

based on a morph trajectory interpolating between PDB entry
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Figure 6
Analysis of heterogeneous reconstruction of the SARS-CoV-2 RTC. (a) Consensus reconstruction of the RTC, coloured by local resolution. (b) Plot of
the latent space after applying PCA. (c) Same latent space, coloured according to the frame of the MD trajectory the particle originated from. (d) Real-
space correlation between 50 volumes generated by sampling the latent space (x axis) and frames in the MD trajectory (y axis). (e) Best and worst atomic
models shown in the density map of volume 43.



2a73 (Janssen et al., 2005) and PDB entry 2i07 (Janssen et al.,

2006). C3 undergoes a major conformational change when

transitioning from its inactive state C3 to the active C3b that

exposes a reactive thioester for opsonization of target surfaces

(Janssen et al., 2006). A visualization of the ensemble of states

generated during the steered MD simulation is shown in Fig.

S7(a) and a consensus reconstruction from 96 169 particles

with 2.55 Å global resolution in Fig. S7(b). We then trained a

3DFlex model with a 2D latent space on these data and

obtained a latent space where different sections of the MD

trajectory were clustered together. Due to the magnitude of

the conformational change, we ran the steered MD simulation

in four iterations with the target state first set to a confor-

mation a third of the way between the initial and final states,

then being changed to a state two-thirds of the way and then

being changed to the final state for the last two iterations. As a

result, we expected that the latent space might be split into

three discrete clusters that resemble the target states. We

observe three regions in the latent embedding corresponding

to the first 45 ps, the next 45–90 ps and the last 110 ps time

points. However, there is not a continuous path through the

latent space following the chronological order of the trajectory

and these regions are not well separated.

3. Discussion

Many biomolecules have evolved to perform specific tasks

through a concerted sequence of conformational motions. The

current trend in SPA is to address conformational hetero-

geneity with machine-learning algorithms in order to identify

and sort a continuum of structural states into a continuous

representation of heterogeneity which may be correlated to

functional motion. Here we have demonstrated a new toolkit

for the simulation of single-particle cryo-EM micrographs that

contain conformational heterogeneity, investigated the effect

of this heterogeneity on consensus reconstructions and

explored the ability of two established machine-learning-

based HRAs to quantitatively recover the ground truth

conformational heterogeneity from a collection of single-

particle snapshots.

We found that training both CryoDRGN and 3DFlex

resulted in models for which particles with conformations that

were temporally close in the MD trajectory were also clus-

tered closely together in the latent space. Using CryoDRGN

to process the SARS-CoV-2 spike glycoprotein and RTC

synthetic datasets we found that it was possible to generate a

path through the latent space such that the reconstructed

volumes correlated strongly with evenly spaced time points of

the MD trajectory.

The ultimate goal would be to decode the chronological

order of states underlying functionally relevant conforma-

tional trajectories. However, at present we focus on structures

that are conformationally similar during traversal through

latent space despite the non-linear embedding. One area of

future study could be devoted to developing and evaluating

methods to interpret these learned latent spaces. One such

example is CryoDRGN conformational landscape analysis

(Zhong, 2022) which, through analysis in volume space, both

clusters a small number of discrete conformational states and

allows inference of continuous reaction coordinates. With the

presence of ground truth information, investigating the opti-

mization of dimensionality reduction and clustering methods

applied to both MD trajectories and latent spaces may provide

insights on the interpretation of both.

Our analysis also highlights that more work is needed to

understand the requirements on data quality for HRAs to

recover physically relevant conformational trajectories. In this

paper, we limited our investigation to a coarse analysis of the

effects of RD and fluence on conventional reconstructions, but

it is possible to conduct systematic studies into the behaviour

of HRAs in the limit of poor data quality.

Other aspects of cryo-EM image processing workflows can

also be investigated using this approach. We have demon-

strated this for particle picking using the ground truth particle

positions to compute precision and recall for a set of picked

particles. As this aspect of the pipeline often involves para-

meter optimization as well, it may be beneficial to investigate

the behaviour of particle pickers, 2D/3D classification algo-

rithms and refinement algorithms in the limit of strong

conformational or compositional heterogeneity, very poor

SNR, unevenly sampled particle orientations or poor anno-

tations of training data. It is also possible to simulate experi-

mental pathologies such as orientation bias and to investigate

the effect this has on conventional 3D reconstruction work-

flows or HRAs. Preliminary analysis with the SARS-CoV-2

spike trimer suggests that the effect of orientation bias on the

ability of HRAs to sort the latent space according to the

ground truth trajectory is complex and that in such cases latent

spaces need to be interpreted with caution. Further in-depth

studies, including the consequences of point-group symmetry,

are warranted to thoroughly evaluate the effect of orientation

bias on the performance of HRAs. Conversely, Roodmus also

makes it possible to study the effects which future develop-

ments in instrumentation and algorithms may have on the

ability to reconstruct heterogeneity.

Roodmus sources conformational heterogeneity from MD

simulations. This presents a major advantage over previous

related methods where the conformational heterogeneity was

generated by interpolating between two or more discrete

structural states. Atomistic ensembles from MD simulations

allow evaluation of HRAs in more physically realistic settings

but come with the disadvantage that large-scale domain

motion is computationally expensive to simulate at the

atomistic level. Coarse-grained MD or enhanced sampling

strategies may be a solution that could allow for more in-depth

exploration of the behaviour of both conventional recon-

struction workflows and HRAs in the case of large-scale

motion, or in cases where intermediate states are less densely

populated.

Image simulation with accurate modelling of experimental

image contrast and optical aberrations is essential to evaluate

HRA performance on realistic cryo-EM datasets with inde-

pendent ground truth information. The multislice forward
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model of the Parakeet software offers improved cryo-EM

image simulation methods compared with alternative ways of

generating synthetic data. An electron wave is propagated

through a virtual sample, as opposed to a simple linear

projection through the volume. This more accurately simulates

the projection of the specimen’s electrostatic potential.

Parakeet included models for detector response, contrast

modulation by the CTF and a sophisticated model for struc-

tural noise contributions from an amorphous ice layer. We

found no qualitative effect of Parakeet’s RD model on the

training of CryoDRGN and we still obtained consensus

reconstructions with unusually low B factors compared with

the experimental data. This suggests refinement of the model

is required to more accurately reflect the structural damage

inflicted on the specimen during electron exposure, which

represents one of the main limiting factors of cryo-EM

imaging (Hayward & Glaeser, 1979). An additional missing

element in Parakeet simulations is that of beam-induced

motion. Since such motion can only be imperfectly corrected

for, including these effects would likely yield overall B factors

and concomitant attenuation of high-frequency signal more

similar to those observed in experimental data. Synthetic

datasets that feature these properties may be more realistic

starting points for investigating the data quality requirements

of HRAs.

As current HRA methods evolve and improve, periodic

community evaluation of these methods against ground truth

data using the Roodmus toolkit would help quantify the

performance of these methods and encourage wider usage in

the field. Progress is being made in this area, with HRA

benchmarking studies by Dsouza et al. (2023) and more

recently by Jeon et al. (2024). Further comparisons could also

be made to orthogonal experimental data for the same (or

similar) biological systems. Comparison of simulated and

experimental datasets may help us to understand the degree to

which MD trajectories underestimate experimental disorder

given their simulation time.

Roodmus (Greer et al., 2024) is available as open-source

software (https://github.com/ccpem/roodmus) and from PyPI

(https://pypi.org/project/roodmus). The Roodmus toolkit

provides the necessary modular utilities to generate synthetic

SPA datasets and explore the performance of processing

algorithms on them. It is important to be aware that Roodmus

can only be used to explore heterogeneity within the bounds

of the MD simulation data provided to it, and that there are

avenues for improvement in the simulation protocol; however,

we believe that Roodmus facilitates the undertaking of a range

of studies for elucidation of conformational heterogeneity

investigation techniques. We have reported findings from

studies utilizing both discrete and continuous approaches to

explore heterogeneity on a number of synthetic datasets but

there is ample opportunity for further work to better under-

stand conventional reconstruction pipelines, the data quality

requirements of HRAs, and the traversal and clustering of

latent encodings of heterogeneity. There is also scope to

investigate the relation between synthetic and experimental

SPA datasets, methods for improvement of synthetic micro-

graph generation and the extension of Roodmus to tomo-

graphy.

4. Methods

4.1. MD trajectories

Publicly available MD trajectories of the SARS-CoV-2 RTC

and the spike glycoprotein in closed and partially open states

were performed by Shaw (2020) and downloaded from

https://www.deshawresearch.com. Specific trajectories were

DESRES-ANTON-13795965 for the RTC, and DESRES-

ANTON-[11021566,11021571] for the spike protein in the

closed and partially open states, respectively.

Additional steered MD trajectories were produced using

the openMM (Eastman et al., 2017) Python library. PDB

models 6xm4 and 6xm5 (Zhou et al., 2020) were used as

starting and target conformations, respectively. Chain B was

isolated from both models and prepared for simulation using

the pdbfixer library provided by openMM. Harmonic

restraints were added between each pair of C� atoms in the

starting and target models. The system was calibrated at 0 K

for 50 ps and then annealed to 300 K for another 50 ps. The

force constant for all restraints was annealed between 100 and

400 ps from 0 to 10 kJ nm� 1 mol� 1. The integration time step

was 2 fs, and the time interval between saving frames was 10 fs.

After completion of the simulation, the trajectory was down-

sampled to 10 000 contiguous frames between 100 and 200 ps

in which the molecule underwent the conformational change.

A steered MD simulation was performed on human

complement component C3 (PDB entry 2a73) as it undergoes

a conformational transition into a state termed C3b (PDB

entry 2i07) after proteolytic activation (Janssen et al., 2006). A

morphing trajectory interpolating between both states was

kindly provided by F. Forneris (University of Pavia). Starting

from frame 1 of the morph and taking frame 31 as a target,

similar harmonic restraints as described above were added

between each pair of C� atoms in the structures. An inte-

gration time step of 2 fs was again used with a time interval

between saved frames of 100 fs. The system was initialized at

300 K with a force constant of 5 kJ nm� 1 mol� 1, which was

annealed to 15 kJ nm� 1 mol� 1 over 200 ps. After 200 ps,

the target structure was replaced with frame 61 of the

morph and the force constant was annealed again from 5 to

15 kJ nm� 1 mol� 1 over 200 ps. Another 400 ps were simulated

with frame 91 as the target state, first 200 ps with a force

constant increasing from 10 to 60 kJ nm� 1 mol� 1, then

another 200 ps with a force constant increasing from 60 to

120 kJ nm� 1 mol� 1.

4.2. Synthetic micrograph and movie simulation

Image simulation was performed using the Parakeet soft-

ware git commit 17a0c864f6cfd84b5fd56b60fa446f7b021d338c

available from https://github.com/rosalindfranklininstitute/

parakeet. The Roodmus conformations sampling

utility was used to sample a number of conformations from

each MD trajectory, as indicated in Table 1. The Roodmus
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run parakeet utility was used to configure and run Para-

keet to produce micrographs containing 300 particles (SARS-

CoV-2 spike trimer and RTC) or 250 particles (steered MD

datasets).

The RTC dataset was generated as movies with three

frames with no particle motion between frames and no RD

simulation. The movies with beam damage enabled, based on

MD trajectory DESRES-ANTON-11021571 introduced in

Section 2.3, were generated with 30 frames and a total fluence

of 45 e� Å� 2, allowing a sensible use of the Parakeet RD

model (Parkhurst et al., 2021).

All datasets except those noted in Section 2.3 were simu-

lated at 45 e� Å� 2, with a pixel size of 1.0 Å and an ice

thickness of 50 nm which are typical for many single-particle

datasets (Noble et al., 2018). For lower-fluence datasets, 100

micrographs were simulated with 30 000 total particles per

condition. Fluence parameters were varied between 45 and

5 e� Å� 2. Simulation of datasets was benchmarked utilizing

an Intel Xeon Gold 5218 processor with 75 GB of RAM and

an Nvidia Tesla V100 (32 GB) GPU. Generating a single non-

fractionated micrograph following the simulation parameters

used for the spike trimer (open) dataset took 5 min. Gener-

ating a single 30-frame fractionated movie with RD took

22 min. We note that the simulation time depends on a

number of simulation parameters, including the number of

particles, fractionation level, sample size and the physical

effects being simulated.

4.3. Cryo-EM processing in RELION

The datasets created from the DESRES-ANTON-13795965

and DESRES-ANTON-[11021566,11021571] MD simulations

were reconstructed using RELION (version 4.0). Altogether

these constitute the single-micrograph datasets for DESRES-

ANTON-[11021566,11021571], the DESRES-ANTON-11021571

dataset utilizing a single conformation, the 30-frame

fractionated movie dataset for DESRES-ANTON-11021571,

the 3-frame movie dataset for DESRES-ANTON-13795965

and the DESRES-ANTON-[11021566,11021571] mixed data-

set. The workflows for consensus reconstructions of these are

illustrated in Figs. S8, S9, S10 and S11 along with visualizations

of several stages of the processing. Depicted micrographs were

normalized with the ccpem-pipeliner available at https://

gitlab.com/ccpem/ccpem-pipeliner.

Before CTF estimation using CTFFIND4 (Rohou &

Grigorieff, 2015), the movie datasets were motion-corrected –

an unnecessary step for the single-micrograph datasets. Topaz

(Bepler et al., 2019) was trained on a manually picked subset

of particles and used for autopicking. A total of 100 2D classes

were generated and those with a RELION class ranker score

greater than 0.25 were kept. After initial model building, four

3D classes were deduced, and poor classes were removed after

manual inspection. Those remaining were 3D refined to

produce a single consensus map suitable as the input for a

‘PostProcess’ job (to determine the global resolution after

applying a mask) and for local resolution determination via a

‘LocalRes’ job. The number of particles kept at each stage of

reconstruction is reported in Figs. S8 to S11.

4.4. Cryo-EM processing in CryoSPARC

The SARS-CoV-2 spike monomer steered MD dataset and

the C3–C3b steered monomer datasets were reconstructed

using CryoSPARC (version 4.2.1). For the monomeric SARS-

CoV-2 spike dataset 800 micrographs were imported. CTF

estimation was performed using CTFFIND4, followed by

automatic particle picking with the blob picker algorithm, with

minimum and maximum diameters of 50 and 200 Å, resulting

in 1 968 039 picked particle locations. Picked particles were

filtered based on the local power, extracted and 2D classified

into 50 classes. A selection of 19 classes (93 574 particles) was

then used for Topaz training, resulting in 368 967 particle

picks. These picked particles were again filtered, extracted and

2D classified into 50 classes. All classes (213 486 particles)

were selected for ab initio model building with 4 classes. The

first class was selected as a reference for homogeneous

refinement with all 213 486 particles. This consensus recon-

struction was then used to train 3DFlex as described in Section

4.6. The workflows for consensus reconstruction of these

datasets are illustrated in Figs. S12 and S13 along with visua-

lization of several stages of the processing.

For the C3–C3b steered MD dataset 800 micrographs were

imported. CTF estimation was performed using the Patch CTF

estimation job, followed by manual picking of 267 particles in
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Table 1
Specification of simulated datasets and refinement statistics.

SARS-CoV-2 spike
trimer (closed)

SARS-CoV-2 spike
trimer (open)

SARS-CoV-2 spike
trimer (mixed)

SARS-CoV-2
RTC

SARS-CoV-2 spike
monomer C3-C3b

Trajectories DESRES-ANTON-
11021566

DESRES-ANTON-
11021571

DESRES-ANTON-
[11021566,11021571]

DESRES-ANTON-
13795965

6xm4–6xm5
steered

2a73-2i07
steered

No. of conformations 8334 8334 8334 (�2) 10000 10000 2000
No. of particles 270000 270000 120000 50100 200000 200000
Acceleration voltage (kV) 300 300 300 300 300 300
Fluence (e� Å� 2) 45 45 45 45 45 45
Flux density

(e� pixel� 1 s� 1)

5 5 5 5 5 5

Pixel size (Å) 1.0 1.0 1.0 1.0 1.0 1.0
Defocus range (mm) 0.5–3.5 0.5–3.5 0.5–2.5 0.5–3.5 0.5–2.5 0.5–2.5
Refinement software RELION

(version 4.0)
RELION

(version 4.0)
RELION

(version 4.0)
RELION

(version 4.0)
CryoSPARC

(version 4.2.1)
CryoSPARC

(version 4.2.1)

https://gitlab.com/ccpem/ccpem-pipeliner
https://gitlab.com/ccpem/ccpem-pipeliner


4 micrographs. These picked particles were used to train

Topaz, resulting in 183 092 picked particle locations. The

picked particle locations were filtered, extracted and 2D

classified into 50 classes. All particles were kept, resulting in

96 169 particles used for ab initio model building with 4 classes.

The second class was used as a reference for homogeneous

refinement with all particles. This consensus reconstruction

was then used to train 3DFlex as described in Section 4.6.

4.5. Training CryoDRGN

Pose and CTF information obtained from the consensus

reconstruction in RELION were extracted using CryoDRGN

(version 3.0.0b0) according to the CryoDRGN tutorial

(https://ez-lab.gitbook.io/cryodrgn). The model was then

trained for 25 epochs with default residual MLP architecture

for both the encoder and the decoder using particle images of

320 � 320 pixels (1.0 Å pixel size). The dimensionality of the

latent space was 8 in all cases. The number of particles used for

training was 41 146 for the SARS-CoV-2 RTC dataset

(DESRES-ANTON-13795965), 236 079 for the SARS-CoV-2

spike glycoprotein dataset (DESRES-ANTON-11021571) and

15 846 for the dose-fractionated dataset.

4.6. Training 3DFlex

Training the 3DFlex model was done according to the

tutorial provided by CryoSPARC. Particles taken from the

homogeneous refinement were used for a ‘3D Flex Data Prep’

job with a training box size of 128 pixels. A mesh was created

with a base number of tetrahedral cells of 30. The model was

trained with a latent dimensionality of 2, 64 hidden units in the

flow generator network for 24 epochs. Custom trajectories

through the latent space were created with the CryoSPARC-

tools Python library.
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