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We report the use of streaming data interfaces to perform fully online data

processing for serial crystallography experiments, without storing intermediate

data on disk. The system produces Bragg reflection intensity measurements

suitable for scaling and merging, with a latency of less than 1 s per frame. Our

system uses the CrystFEL software in combination with the ASAP::O data

framework. In a series of user experiments at PETRA III, frames from a

16 megapixel Dectris EIGER2 X detector were searched for peaks, indexed and

integrated at the maximum full-frame readout speed of 133 frames per second.

The computational resources required depend on various factors, most signifi-

cantly the fraction of non-blank frames (‘hits’). The average single-thread

processing time per frame was 242 ms for blank frames and 455 ms for hits,

meaning that a single 96-core computing node was sufficient to keep up with the

data, with ample headroom for unexpected throughput reductions. Further

significant improvements are expected, for example by binning pixel intensities

together to reduce the pixel count. We discuss the implications of real-time data

processing on the ‘data deluge’ problem from recent and future photon-science

experiments, in particular on calibration requirements, computing access

patterns and the need for the preservation of raw data.

1. Introduction

Serial crystallography experiments are well known for gener-

ating large amounts of data (Maia & Hajdu, 2016). These data

sets consist of many thousands of images, each one being a

single diffraction snapshot from an individual crystal. The

usual processing pipeline for this type of data treats each

frame on its own, and involves analysing the image to detect

Bragg peaks followed by determining the orientation of the

crystal based on the peak locations. This step is known as

indexing the diffraction pattern. If it is successful, the next step

is to calculate the expected locations of Bragg reflections

based on the crystal orientation, and finally to measure the

intensities of the Bragg reflections at their expected locations

(including reflections which were too weak to be detected by

the initial peak search). The intensity measurements are later

combined into a single merged data set from which an

electron-density map or other structural information can be

derived.
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Rapid feedback during the experiment is essential to enable

the optimization of experimental parameters and to make

the best use of limited beamtime. Online data processing has

been available since the early years of serial crystallography

(Foucar et al., 2012; Foucar, 2016), and is now considered to be

indispensable for a successful experiment. Online feedback

systems analyse a sample of the data as it passes through the

computer system. To date, they have been limited to simple

diagnostics corresponding to the first stages of the crystallo-

graphic processing pipeline, for example finding Bragg peaks

and reporting the fraction of frames which contain plausibly

useful diffraction patterns (the ‘hit rate’). Recently, GPU and

FPGA hardware has been used to increase the speed of these

systems, which allows a greater fraction of the data to be

inspected and therefore raises the precision of the real-

time information. However, online monitoring systems

still concentrate on the peak-search and hit-finding stages

(Leonarski et al., 2023). Extending the online system to cover

the complete processing pipeline, from detector readout

images up to indexed Bragg intensity measurements, would

open up many new possibilities. To do so requires increasing

the speed of computationally intensive parts such as indexing,

refinement and integration. Previous work in this area used

supercomputing resources to attack the problem through

massive parallelism (Blaschke et al., 2021), but suitable

supercomputing resources are not available close to all X-ray

light-source facilities.

Processing the data in real time would allow electron-

density maps to be made available during the experiment. This

would be particularly beneficial for sensitive time-resolved

pump–probe experiments, where the signal being studied is

often a very small difference electron density. For a successful

experiment, more feedback is needed than just hit rates: the

clarity of the electron-density map needs to be inspected, and

corrections possibly made to parameters such as the pump-

laser alignment (spatial and temporal) or power. Without this

feedback, problems which destroy the pump–probe signal

altogether may not be detected until after the experiment.

Worse still, the only avenues for ‘improvement’ of the signal

will be changing the data-processing parameters, regardless of

which aspects of the experiment truly needed improvement.

Repeated reprocessing of data in search of a weak signal,

when combined with publication bias, may raise questions

about the reliability of the final results. For example, if a

particular data set is repeatedly processed with different

parameters, the electron-density map from each new proces-

sing run may contain different features at low significance, due

simply to random noise. It could be very misleading to select

(by stopping the reprocessing at that point) the result where

the artefacts most resemble some expected pattern.

The next generation of free-electron laser sources are based

on superconducting linear accelerators, which can produce

more than a million pulses per second. Faster detector systems

are also becoming available at synchrotron facilities, in

particular at fourth-generation synchrotrons, such as the

JUNGFRAU system, which can sustain a rate of 1000 frames

per second including all of the required calibration steps

(Leonarski et al., 2023). The data rate is also increasing due to

improvements in the efficient use of measurement time, for

instance more reliable sample-delivery methods which allow

data acquisition to continue without breaks (Oberthuer et al.,

2017) or crystal targeting systems which avoid the acquisition

of blank frames (Oghbaey et al., 2016). While the number of

diffraction patterns for one structure may not increase, these

improvements increase the total amount of data acquired,

and almost invariably stored, by the facility as a whole. X-ray

facililties are already beginning to impose severe restrictions

on the amount of data allowed per experiment. In the context

of these struggles, an even more dramatic and ambitious

possibility enabled by full real-time data processing is that the

intermediate data storage could be dispensed with altogether.

This suggestion raises many questions about the underlying

motivation for storing data, which will need to be addressed.

In this paper, we report a highly automated system for real-

time data processing at the P11 beamline of the PETRA III

synchrotron at DESY in Hamburg, Germany. The serial

crystallography data-processing pipeline was made sufficiently

fast to keep up with the data rate of a Dectris EIGER2 X

16 megapixel detector in real time, even with only a single

computing node. Our data-processing system is based on the

ASAP::O platform, described in Section 2, combined with the

CrystFEL software for serial crystallography (White et al.,

2012). The key developments to improve the speed of

CrystFEL are described in Sections 3 and 4. In Section 5, we

describe the experiences from running this system over a

series of user beamtimes between 2021 and 2023, including

performance measurements which show that the system is

likely to be scalable up to thousands of frames per second.

Finally, we consider the possibilities, risks and implications of

real-time data reduction, with a view to starting a discussion

within the wider community.

2. The ASAP::O data system

ASAP::O (https://asapo.pages.desy.de/asapo) is a cutting-edge,

high-performance distributed data-streaming platform that

has been developed to meet the demands of both online and

offline analysis for photon-science experiments at DESY. The

ideas behind ASAP::O are quite similar to those of Apache

Kafka (https://kafka.apache.org/) and similar streaming

solutions, but ASAP::O has been developed and tuned for

scientific use cases with their specific workflows and where the

size of the messages is much larger: megabytes or gigabytes,

compared with kilobytes in a traditional system.

The key capabilities of ASAP::O are as follows.

(i) High-performance and fault-tolerant delivery of data

from an experimental data source (for example an X-ray

detector) into a data-storage system.

(ii) Enabling different modes of data consumption,

including random access, low-latency streaming and parallel

access by multiple consumers.

(iii) Creation of computational pipelines by applying

transformations to existing data streams.
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To provide these capabilities, ASAP::O has three main

components: a Producer API to send data into the system, a

Consumer API to retrieve data from the system and a set of

ASAP::O core services that run in the background on a single

node or a cluster, depending on performance requirements.

User programs do not need to be aware of the details of

the core services, but rather use Consumer/Producer APIs in

Python, C or C++.

Data within ASAP::O follow a structured hierarchy:

(i) Beamtime. The highest level, encompassing all data from

a particular synchrotron experiment. Each beamtime is iden-

tified by a unique name which is ultimately generated by the

proposal submission system.

(ii) Data source. Within each beamtime, various sources

produce data, such as detectors or user applications. Each data

source also has a name, unique within the beamtime, for

identification.

(iii) Data stream. Each data source can generate multiple

data streams, each with a unique name within that specific data

source, which can be used to represent a ‘run’ of data acqui-

sition.

(iv) Message. Data streams consist of flexible entities called

messages, which contain metadata and binary data such as a

detector image in a suitable data format such as HDF5.

ASAP::O treats data as an opaque binary ‘blob’ and is not

concerned with the format of the contents.

This scheme is quite flexible and allows for adaptations to

the specific needs of experiments. In the work described in this

article, we have only one data source – the area detector for

X-ray diffraction; however, other data sources could exist in

parallel. We use ASAP::O streams to represent user-initiated

data-acquisition runs, each around 20 min, forming convenient

units for record-taking. Each ASAP::O message within a

stream contains the data for one image frame.

After defining a data scheme, a set of user programs has to

be created to process data. Producer clients are responsible for

creating data streams (i.e. for ingesting data into the system).

Consumer clients are responsible for processing streams of

data that were created by producers. A program that imple-

ments one step of a processing pipeline will read a data

stream, process the data and send the results into another data

stream, and so will simultaneously be both a consumer and a

producer.

To apply CrystFEL to the data handled by ASAP::O, we

implemented an ASAP::O consumer interface within the

CrystFEL indexamajig tool (White et al., 2012). Instead

of providing a list of files to be processed, we provide the

ASAP::O endpoint address, data-source name, stream name

and security token as command-line arguments. Indexamajig

performs a peak search, indexes and integrates the frames,

writing its output to disk as usual.

Our real-time data-processing system does not rely on

storing data files, but we considered it important to enable

a gradual migration from the current disk-based way of

working. We therefore created a tool which stores the data in

NeXus format (Könnecke et al., 2015). This tool is written in

Python, and creates a separate set of files for each ASAP::O

stream. The frames are grouped together in batches of 1000

to produce a manageable number of reasonably sized files. A

top-level ‘master’ file is also created, which uses the HDF5

virtual data-set functionality to link the batch data files toge-

ther and add metadata such as the X-ray wavelength. This

allows the entire data for one run to be accessed as if it were

contained in one single file. Division into files also allows

multiple slices of data to be written simultaneously, without an

extra level of synchronization, which is not normally possible

with HDF5,1 although parallelization was not found to be

necessary in our case. Our chosen message format (see Section

5) meant that the ASAP::O data can be directly written to the

HDF5 file without decompression and recompression, further

increasing performance.

ASAP::O offers a level of fault tolerance. Data passing

through the system are stored in a volatile memory cache,

limited only by the available RAM of the ASAP::O servers. In

the current deployment, in use as described later in this article,

about 20 min of data could be stored. If, for example, the

NeXus writer task were to crash, we would have 20 min to

notice the problem and restart the writer, and perhaps pause

data acquisition to allow it to catch up. A catch-up period

might not be necessary in practice, since the file writing usually

runs at a higher rate than the data acquisition. ASAP::O can

additionally be configured to store the messages internally in a

filesystem (which could consist of fast solid-state flash drives),

which would give an even higher level of reliability, but the

RAM cache combined with the NeXus writer program was

found to be sufficiently reliable for this work.

Comparable systems for real-time data handling at other

X-ray light-source facilities are often based on the message-

queue system ZeroMQ. This is simple to get started with, but

quickly becomes difficult as the pipeline grows more complex

and important features are missed and need to be reimple-

mented. One such feature is that ASAP::O can automatically

divide data between multiple consumers within a so-called

‘consumer group’ while allowing consumers to join and leave

without losing data. This means that no extra code is needed

in the analysis program to spread the computation between

threads, processes or even separate computers. It is sufficient

for them to simply request data from the same stream while

declaring themselves all to be members of the same ASAP::O

consumer group. This feature allows the computing resources

to be dynamically scaled: if a program falls behind with its

processing, additional instances of the program can be started

on the fly. If too many instances are running, wasting

computing resources, instances can easily be stopped and the

work will be shared between the remaining instances. This

setup can also be created using ZeroMQ; however, ASAP::O

also allows multiple separate consumer groups to operate in

parallel, with different access patterns, and without the groups

and their access patterns being known in advance. For

example, one consumer group could consist of multiple
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instances of an analysis process, while another consists of a

single data-archiving process, and yet another consists of a live

viewer which accesses only the most recent data. This type of

pipeline structure closely matches our requirements, but is not

directly supported by ZeroMQ.

The overall flow of data through our system is shown in

Fig. 1. To illustrate the possibilities, the diagram also includes

two foreseen improvements: a binning tool and the option for

CrystFEL to create a new ASAP::O stream containing only

the ‘hit’ frames. These components are still under develop-

ment, and their potential future importance is discussed in

Sections 6 and 7.

3. Performance improvements within CrystFEL

Processing serial crystallography data sets has so far been

thought of as a computationally demanding task. However,

many speed improvements have been made in CrystFEL since

version 0.10.0, which have combined to make real-time

processing practical. Some of these improvements are changes

to the code, and others are changes in the way that CrystFEL

is used. We performed rounds of profiling (see Section 5) to

find performance problems and fix or work around them. The

most significant speed improvements are described in this

section.

Firstly, the processing parameters for CrystFEL were

selected to avoid excessive work per frame. CrystFEL was

configured to use only one indexing algorithm, rather than a

succession of alternative methods, and not to retry indexing if

the initial attempt failed. The usual behaviour is to retry up

to five times, each time deleting the weakest few peaks from

the peak-search results. This improves the success rate, but

obviously takes much more time. Many indexing algorithms

are available within CrystFEL, and we performed a brief

preliminary experiment to compare indexing success rates and

average processing times, based on processing a sample of

data from the previously deposited data set CXIDB-21 (Liu et

al., 2013; White, Barty et al., 2016). We found that the asdf

indexing algorithm gave the best overall trade-off between

speed and success rate. Despite having been available for

many years, the asdf algorithm has not been described

previously in the literature, and therefore is described here in

Section 4.

In addition to the run-time parameters for CrystFEL, it was

important to ensure that the correct compile-time parameters

had been chosen. For example, we realized that compiler

optimizations had not been enabled for some data-compression

components (the HDF5 ‘External filter plugins’ package), and

enabling them approximately halved the time taken to read

and decompress the image data from 122 to 59 ms for a

16 megapixel frame read from an HDF5 file on disk.2

We noticed a speed problem due to the method used for

masking regions of the detector, such as the region shadowed

by the beam stop. In CrystFEL, it is possible to define masked

regions in several ways. In one of these ways, a rectangular

region of pixels is defined with reference to the data axes of

the image arrays, which would be appropriate for masking an

area of noisy or otherwise defective pixels. Another option in

CrystFEL is to define the region using coordinates in the

laboratory frame, which would be appropriate for masking the

pixels shadowed by a beam stop. However, this means that the

range of pixels masked will change if the detector is moved.

When masking pixels in this way, CrystFEL checks the

laboratory-frame coordinates of all pixels on the detector to

see if they fall within the masked area. For a 16 megapixel

detector, this was found to take about a third of the total

processing time, and the speed was improved by converting

the expression of the masked regions to use pixel ranges

instead of laboratory coordinates. A more efficient algorithm

for selecting the masked pixels from laboratory-coordinate

ranges is possible, using geometrical intersections, but has not

yet been implemented.

We next turned our attention to the peak-search and

indexing algorithms. The peakfinder8 algorithm (Barty et al.,

2014) works by calculating the statistics of pixel intensities in

thin annular regions, to account for the much larger variation

of background intensities in the radial direction compared

with the circumferential direction. The assignment of pixels to

annular regions usually does not vary between frames, so we

modified the CrystFEL implementation of the peakfinder8

algorithm to pre-calculate the assignments once for all frames.

We measured the average time saved by this as 376 ms per

frame, under the conditions described above. This is only
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Figure 1
Overall flow of data through the software components of the system.

2 This speed measurement was performed in a single thread on a desktop
computer equipped with an eight-core Intel Xeon W-2225 processor at
4.1 GHz clock frequency and 16 Gb of memory.



possible if the detector geometry is completely known in

advance; the alternative, which is possible with CrystFEL, is to

use per-frame metadata for values such as the beam centre or

camera length. This grants additional flexibility, but means

that the true detector geometry cannot be assumed to be

constant between frames and is not completely known until

each image has been loaded. We were therefore careful to

ensure that the CrystFEL geometry file did not contain any

such references.

To further increase the speed of the peak search, we

reduced the number of pixels considered when calculating the

mean and variance of the pixels within each annular region.

The previous behaviour was to calculate the mean and

variance of the pixel intensities from all pixels in the region.

For a 16 megapixel detector, this is an excessively large

number of pixels, and we found that adequately precise values

could be obtained from only 100 randomly chosen pixels in

each region. Measured again as described above, this reduced

the total peak-search time from 178 to 75 ms per frame. We

compared the results for a selection of images using the

CrystFEL graphical user interface, and did not find any

significant differences in the ability of the algorithm to find

real peaks. However, since this change may slightly change the

results of the peak search, we made the new behaviour optional

and added a new command-line option (--peakfinder8

-fast) to enable it.

Another inefficiency was found in the CrystFEL routine for

calculating scattering vectors for reflections. In the old version,

the matrix of unit-cell basis vectors was inverted on every call

to the routine and the scattering vector calculated using

trigonometric functions. In the new version, the result of the

inversion is stored, and the vector is calculated by a matrix

multiplication using the reciprocal Cartesian representation of

the unit cell. This avoids both the repeated inversion and the

computationally expensive use of trigonometric functions;

however, it required some modification in the code because

the program’s representation of a unit cell could no longer be

considered as an immutable data structure (which is otherwise

preferable for clean and memory-safe software design).

Finally, we discovered that the time taken per frame often

increased by approximately 50% after processing a few tens of

thousands of frames under the conditions described in Section

5. We do not yet have a complete explanation for this, and

have already checked carefully to exclude a simple memory

leak. We suspect that the slowdown is due to the behaviour of

the operating-system kernel when allocating fresh memory

many times across multiple processes. The previous behaviour

of CrystFEL was to free all of the memory that it needed to

process one frame immediately before starting work on the

next frame, and reallocating approximately the same amount

of memory. We modified CrystFEL such that each worker

process used the same memory arrays for the image data and

bad pixel masks for all the frames that it processed, which

appeared to resolve this problem.

None of the improvements described in this section are

specific to online data systems, because the adaptations made

to allow CrystFEL to receive data via ASAP::O affected only

the parts of the program which ingest data. Therefore, all of

the efficiency gains will also increase the speed of traditional

file-based processing.

4. The asdf indexing algorithm

Many indexing algorithms have been devised for the specific

attributes of serial crystallography data (Ginn et al., 2016;

Gevorkov et al., 2019, 2020; Beyerlein et al., 2017; Brewster

et al., 2015; Li et al., 2019). To date, the primary aim of these

developments has been to obtain the highest success rate, and

the time taken by the indexing algorithm has been a secondary

concern. The applicable trade-offs are different for a real-time

processing system: speed is of the highest importance, and a

slightly lower success rate is acceptable if the algorithm

completes several times faster. Many indexing algorithms are

implemented within CrystFEL, and the current state-of-the-

art algorithm, at least according to success rate, is Xgandalf

(Gevorkov et al., 2019). This algorithm typically completes in

under 3 s, but this is too slow for real-time processing. The

success rate of indexing depends on many factors, such as the

unit-cell axis lengths: various cutoff values inside an algorithm

might be tuned for larger unit cells, and not be optimal for

smaller unit cells. The speed of indexing can also depend on

these factors, for similar reasons: one algorithm may ‘give up’

on a certain pattern earlier than another, based on a cutoff

value.

For this work, we found that the best compromise between

indexing success rate and speed was the asdf algorithm, which

completes in under half a second but still with a high success

rate. The asdf algorithm was added to CrystFEL many years

ago in version 0.6.1 (released in August 2015), but has not yet

been described in the scholarly literature. It is essentially a

reimplementation of the DirAx algorithm (Duisenberg, 1992),

but using a fast Fourier transform for the one-dimensional

periodicity search at the core of the algorithm. It additionally

includes a unit-cell volume constraint, which filters out bad

indexing solutions early, based on the known unit-cell para-

meters. Since asdf is implemented directly within CrystFEL,

there is no need to create temporary files, run a separate

program or parse output, as is the case when using external

programs such as MOSFLM (Powell, 1999), DirAx (Duisen-

berg, 1992) or XDS (Kabsch, 1988) as the indexing engine.

Briefly, the asdf algorithm operates as follows.

(1) Calculate the three-dimensional reciprocal-space coor-

dinates corresponding to all spots found by the peak search,

based on the Ewald sphere construction using the nominal

radiation wavelength and ignoring any wavelength spread.

(2) Assemble the reciprocal-space points into groups of

three (triplets). If the number of triplets is very large, randomly

select 20 000 triplets based on the first 2000 reciprocal-space

points. Otherwise, generate all of the possible triplets.

(3) For each triplet, perform the following steps.

(a) Calculate the normal to the plane containing the three

points. Project all reflection positions onto a line through the

origin in this direction to produce a set of distances from the

origin.
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(b) Create a one-dimensional array of 1024 real-valued

elements, containing zeroes. The first element of the array will

correspond to the most negative distance determined in the

previous step, whereas the last element will correspond to the

most positive distance. The elements in between will corre-

spond linearly to the distances in between the two. For each

of the distances, add 1 to the corresponding element of the

array.

(c) Perform a Fourier transform of the array. This produces

a new one-dimensional array with complex-valued elements,

each of which corresponds to a separation length between the

reflection positions.

(d) Find the element of the transformed array with the

largest magnitude. Calculate the length that the index of this

element corresponds to. Note that the reciprocal of this length,

in the direction of the normal vector for this triplet, is a

candidate for one of the direct-space lattice vectors.

(e) Determine which of the distances from step (a) are close

to integer multiples of this length. Using these distances,

perform a least-squares fit to estimate the repeat length more

accurately.

( f) After the least-squares fit, if more than six points are

close to integer multiples of the estimated distance, accept the

candidate lattice vector. Otherwise, disregard it from further

processing.

(4) Determine the three shortest linearly independent

vectors with sufficient fits, and construct a unit cell from them.

If prior information is available about the lattice parameters,

require that the volume of the cell produced here matches the

volume of the reference unit cell.

(5) Return the unit cell for the prediction, integration and

output stages of the pipeline (White, Mariani et al., 2016).

During the course of this work, further speed improvements

have been made to asdf. We added the limit on the number of

triplets in step (2) after noticing the excessive amount of

calculation from our profiling data described in Section 5. We

later reduced the limit on the number of triplets from 20 000 to

10 000 and the number of reflections considered from 2000 to

120. We tested this change on a sample of 1000 EIGER 16M

frames in a NeXus file on disk, using an eight-core Intel Xeon

W-2225 processor at 4.1 GHz clock frequency and 16 Gb of

memory, with indexamajig running as a single thread. The data

files came from one of the experimental runs described in

Section 5. Restricting the triplet search parameters increased

the average speed of the asdf algorithm from 318 � 219 ms to

106� 49 ms. In this test, there was no decrease in the indexing

success rate (144 indexed frames out of 576 ‘hits’ within the

1000 test frames), but since the reduction may theoretically

change the results, we made this change optional by adding a

new option to indexamajig (--asdf-fast) to preserve the

compatibility with previous results.

5. Beamtime experiences and performance evaluation

We have extensively tested the real-time data-processing

system at the macromolecular crystallography beamline P11 at

PETRA III, DESY, Hamburg, in multiple experiments since

September 2021. For these tests, we used the standard detector

at the beamline, which is a Dectris EIGER 2X detector with

16 megapixels. The experiments were carried out using the

CFEL tape-drive system for crystal delivery (Zielinski et al.,

2022).

To connect the EIGER detector at P11 with ASAP::O, we

wrote a Python program which connects to the EIGER

detector’s ZeroMQ streaming interface and passes the data

into ASAP::O. We initially used HDF5 for the data format.3

However, the flexible data model of HDF5 is superfluous for

our purposes, and it is sufficient to transfer a single data array,

provided that some basic information is included about the

array dimensions and data type. The EIGER streaming

interface already provides data compressed with LZ4

+Bitshuffle, which we used directly as the payload of the

ASAP::O messages. We wrote a new serialization library,

called Seedee, to abstract the data format and compression

algorithm details within CrystFEL and other tools using the

system. The EIGER–ASAP::O connector program runs

continuously, starting a new ASAP::O stream whenever the

detector reports a new run number. The run number itself is

generated by the beamline control software, and is sent to the

EIGER detector control unit using its HTTP ‘Simplon’

interface for inclusion in the message headers.

To evaluate the performance of the system, we acquired

data from lysozyme crystals using the JINXED crystallization

method (Henkel et al., 2023). Since these crystals are a well

known standard, they allowed us to control the hit rate. We

processed the unbinned full-frame readout from the detector,

running at its maximum possible speed of 133 frames per

second. The experimental conditions were monitored using

OnDA Monitor (Mariani et al., 2016) connected to the HTTP

monitoring interface of the EIGER detector, completely

separate to the ZeroMQ interface used for the real-time

processing. We held the hit rate close to 100%, meaning that

the number of blank frames was low compared with a ‘real’

sample. Since blank frames can be skipped over soon after the

peak search, this provided a more severe test of the perfor-

mance of the indexing and integration.

As usual for serial crystallography experiments, measure-

ments were made in ‘runs’ containing between 10 000 and

400 000 frames, or between 1.25 and 50 min at 133 frames per

second. For the first experiments, we configured CrystFEL to

automatically move between acquisition runs, producing one

large output file. However, we quickly found it better to

preserve the separation into runs for the online system, which

makes it easier to spot differences in behaviour of the sample

or the processing system. To this end, a new CrystFEL process

was started for each run, writing to a new output file and

producing separate log files. A web-based database system

stored the processing parameters, monitored the output and

presented the results, as well as providing an interface for

merging the data and calculating electron-density maps.4
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4 The web-based database system, called ‘Amarcord’, has much larger scope
and will be described in detail in a future publication.



We modified the CrystFEL indexamajig tool to measure the

time taken by various steps of processing. This was performed

by adding instrumentation code which measured the time

elapsed between the start and end of various segments of code.

The ‘wall clock’ time was used, rather than the cumulative

amount of run time allocated to the program by the operating

system, in order to explicitly include periods such as when the

operating system suspended execution of the program while

waiting for network data. One record was written for each

iteration of the main processing loop inside indexamajig —

requesting an image frame, processing it and writing the

results — regardless of whether the full processing arc was

completed or broken off early. Each record consisted of a

hierarchical tree structure, where each node was linked to

lower-level nodes which account for the time taken by

instrumented code segments encountered while the ‘parent’

segment was still active. For example, subtasks for loading the

image data include allocating memory, decompressing the data

and setting up certain metadata structures. The total time

taken to process the image (which was labelled as root),

always forms the ‘trunk’ of the tree. Initially, the instru-

mentation was added at the level of the main processing tasks,

such as loading data, peak search or indexing. Lower-level

segments were instrumented once we ascertained which parts

consumed the most time. This performance profiling system

has already been used independently by another group and

has been described by them (Gasparotto et al., 2024).

To plot the profiling results, we created a visualization

package in the Julia programming language. We first averaged

the times in groups (of 50 or 133 records, as noted in the figure

captions), taken in order of the completion time for each

iteration of the processing loop. For each batch of records, we

took the ten largest times, and grouped the remaining times

into a single other group. The groupings were then plotted

as a stacked area plot [Figs. 2(a) and 2(b)]. The colour key is

shown in Fig. 2(c), which includes all timing records not

grouped into the other category in either graph. To fully

understand the meanings of the timing definitions requires

inspection of the CrystFEL code, because they depend on the

implementation details of the algorithms. However, they can

be briefly explained as follows.

asapo-get-next. Requesting the next frame from the

ASAP::O system.

malloc-copy. Allocating a memory block for inter-

mediate storage of the ASAP::O data.

asapo-fetch. Catch-all group for any remaining time

taken during retrieval of the data from ASAP::O.

seedee-deserialize. Decompressing the image data.

seedee-panel. Converting the image data to a standard

format (IEEE 754 single-precision floating point) while

copying the data into image-panel data locations.

load-image-data. Catch-all group for any remaining

time taken during loading of image data into CrystFEL data

structures.

flag-values. Marking bad pixels according to their

values in the image data. In this case, any pixel with a value of

65 535 is considered masked.

pf8-mask. Preparing internal data structures for the

peakfinder8 algorithm.

pf8-rstats. Calculating the mean and variance of the

pixel values in annular regions, part of the peakfinder8 algo-

rithm.

pf8-search. Comparing the pixel values with the mean

and variance, and calculating the peak locations, within the

peakfinder8 algorithm.

peak-search. Catch-all group for any remaining time

spent in the peak-search algorithm.

asdf-triplets. Generating the reciprocal-space

triplets; part of the asdf indexing algorithm.
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Figure 2
Performance profiling results during a run with a high hit rate. (a) The
first 20 000 profiling records, averaged in blocks of 133 records. A longer
wait period is visible for the very first frames, after which the average
processing time (including wait time) closely matches the available time
per frame (722 ms). (b) Expanded view of records 5000–15 000, during
which the hit rate dropped to zero for a short period. The wait time has
been removed to more clearly show the true processing time per frame.
Records were averaged in batches of 50. (c) Colour key.



asdf-findcell. Attempting to assemble a unit cell out

of combinations of the potential basis vectors within the asdf

algorithm.

asdf-search. Catch-all group for any remaining time

spent in the search phase of the asdf algorithm. This includes

the time taken for the 1D Fourier transforms of the projected

spot positions.

prerefine-cell-check. Comparing the unit cell

produced by the indexing algorithm against the reference cell

parameters.

integration. Calculating (‘predicting’) the reflection

positions based on the indexing solution, and measurement of

the intensities from the image.

zero-mask. Initializing the bad pixel mask to zero (see

the note at the end of Section 3).

process-image. Catch-all group for any remaining time

spent working on an image (not the time spent between

processing images).

root. Catch-all group for any remaining time not covered

by the groups above (and also not falling into the other

category; see above).

Fig. 2(a) shows timing data from a run with an overall

average hit rate of 54%. The processing was run with 96

worker processes on a single 96-core compute node (192

virtual processors when including simultaneous multi-

threading). Note that not all categories are clearly visible in

the plots: malloc-copy is visible as a very thin strip at the

bottom of Fig. 2(b), whereas asapo-fetch, process-

image and root are not visible at all. Their descriptions are

nevertheless given for completeness, and the near-invisibility

of the smallest times gives confidence that all relevant time has

been visualized. The near-invisibility of the root category

also supports this confidence.

The most time-consuming step is apparently asapo-get-

next, in which CrystFEL requests the ASAP::O system to

provide the next frame. However, this actually indicates that

too many indexing workers were running for the situation,

therefore the workers spent most of their time waiting for

data. With 96 worker processes, on average 722 ms are avail-

able for processing each image (96 � 1/133). If the processing

time for one frame is less than this, the program will have to

wait for the next frame to become available. The average

processing time across the whole run, including this waiting

time, was 731 ms, in agreement with the expected value.

At the very start of the run, much longer waiting times are

seen. These reflect the timeout-based behaviour of ASAP::O:

if no data is available, the API call to get the next frame will

return after a user-definable timeout, which was set to 3 s in

this work. After the initial period, the next frames are

processed with very little waiting time, while the system

catches up with the cached data before the steady state

establishes itself. The behaviour shown in the graph persisted

for the entire duration of even the longest runs (400 000

frames, lasting 50 min), which corresponds to more data than

can fit in the ASAP::O memory cache. This demonstrates that

the processing system is stable under steady-state situations,

not just under ‘burst’ conditions.

Excluding the asapo-get-next time from the graph

reveals the true time taken by the processing, and how it

strongly depends on the hit rate [Fig. 2(b)]. The average

processing times for hits and non-hits in the entire run were

455 and 242 ms, respectively, and the overall average proces-

sing time was 378 ms. The most time-consuming step overall is

seen to be the peak search, which is expected because of the

large number of pixels and because the peak search must look

at every pixel of every frame. For hit frames, the processing

time is approximately doubled because of the long search for

lattice vectors.

It is somewhat remarkable that the time for comparing

unit-cell parameters (prerefine-cell-check) appears

prominently enough to be seen on the graphs. This task

appears trivial, but is complicated by the fact that the unit cell

produced by the indexing algorithm can be an alternative

representation of the correct unit cell. For example, a primi-

tive representation might be produced for a centred unit cell.

In general, there are an infinite number of possible repre-

sentations for any lattice. Lattice representation and

comparison is, even today, an active area of research

(Andrews & Bernstein, 2023). CrystFEL is currently using an

algorithm based on comparison of Niggli-reduced cells in the

G6 space (Andrews & Bernstein, 1988), but recently described

alternative algorithms, specific to the requirements of serial

crystallography, may be faster (Andrews et al., 2023).

Our experiments with the real-time system revealed the

importance of understanding the interaction between

elements of the high-performance computing environment in

which it runs. In our first experiments, before implementing

many of the optimizations described in Section 3, we had to

split the CrystFEL processing across multiple compute nodes.

After the speed improvements, a single node was found to be

sufficient, even when sharing the computer with other tasks

such as the OnDA Monitor. However, this meant that all of

the data needed to flow over one network link to one

computer, and the bandwidth of the link was not sufficient.

It can, therefore, be better to spread the computing over

multiple smaller computers, rather than to use a single very

powerful one. This bottleneck led us in turn to detect a soft-

ware library misconfiguration which caused data to flow over

10 gigabit per second ethernet links within the data centre,

instead of 100 gigabit per second Infiniband links as intended.

With the compressed size of each frame from the EIGER

detector being about 7 megabytes, the total data rate is

approximately 8.5 gigabits per second, and the 10 gigabit

connection is not quite sufficient when including the co-

existing OnDA Monitor as well as network overheads. This

misconfiguration was fixed for later experiments.

To complete the validation of the pipeline, we report a

protein structure solved using data from the real-time pipe-

line. We took a single run of 200 000 diffraction patterns from

JINXED lysozyme crystals as described above, from which

14 322 lattices could be indexed and integrated by the pipe-

line. The indexamajig output from this run was merged using

partialator. Partiality modelling was not used (the ‘unity’

model was selected in partialator). This resulted in a data set
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with useful resolution out to 1.8 Å, judged by the point where

CC* fell below 0.5, with the entire resolution range to the

corner of the detector divided into 20 shells. The correct space

group was assigned and Rfree flags were generated using the

program phenix.reflection_file_editor. A previously deposited

JINXED lysozyme model processed using the traditional

offline analysis pipeline (PDB entry 8b3l) was used as a

starting model for refinement after the removal of alternate

conformers, waters and all nonprotein residues apart from one

Na+ ion and two Cl� ions. The unit-cell parameters from this

structure, which were used as reference parameters for the

indexing pipeline, were also used for refinement. Refinement

was carried out using phenix.refine (Afonine et al., 2012) and

the results of each round of refinement were inspected using

Coot (Emsley et al., 2010), but we omitted all manual

rebuilding steps. This was followed by a final automated

refinement and rebuilding step using PDB-REDO (Joosten et

al., 2014), resulting in a model refined against data out to 1.8 Å

resolution (R and Rfree of 0.19 and 0.22, respectively; Fig. 3).

The isotropic B factors are slightly higher than would usually

be expected (34.62 Å2 compared with 25.04 Å2 for the

previous JINXED model), which could be attributed to

shortcomings in geometry optimization of the real-time

pipeline and needs to be investigated further. Otherwise, no

pathologies could be detected in the model. Data-processing

and model statistics are shown in Table 1, and the resulting

model was deposited in the PDB with accession code 8rpm.

6. Discussion

We begin this section by acknowledging the importance of

preserving raw data. Important reasons for data preservation

include the principles of basic scientific integrity and repro-

ducibility, as well as the hope for future improved data-

processing methods. In the past, the cost of data archiving has

been negligible compared with the cost of repeating the

experiment, taking into account the cost of protein expression,

purification and crystallization, the costs of researcher travel

to the X-ray facility, and the cost of operating the facility itself.

However, the costs of large-scale data storage are huge, and

now can be much greater than the other costs of the experi-

ment. At current prices, the marginal cost of storing four

petabytes of data for five years, on reliable enterprise-grade

storage systems, is around 200 000 Euros. The European

XFEL beamlines easily produce around a petabyte of data per

day during operation. Some of the other experimental costs

are decreasing: for example, travel is less necessary in view of

improved systems for remote facility access and ‘mail-in’

samples. The data-storage costs are increasing, in contrast, and

will make up a larger fraction of the overall costs.

Previously, storage of data on disk was an integral part of

the processing pipeline: data files on disk formed the

‘connection’ between the data-acquisition and data-processing

stages of an experiment. Our real-time system instead makes

this connection using network links and in-memory systems.

Data can be persisted on disk, but this function is optional and

occurs at the end of the pipeline, not in the middle (see Fig. 1).

We are therefore free to choose the manner of data storage

appropriate to the scientific goals. Several scenarios can be

envisaged, depending on the requirements of the experiment

and the need for consideration for future improvements to the

data processing. Possible considerations include reproduci-

bility, requiring us to store only the frames which were

successfully indexed and integrated (i.e. which contributed

directly to the final merged data), but in raw format with
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Figure 3
Overall structure (cartoon plot, orange) of lysozyme obtained after
automated refinement and model building against data produced by the
real-time processing system. Residues ranging from Leu56 to Ser60 are
displayed as sticks and overlaid with a 2Fo � Fc map (blue, sigma of 1.0
and cutoff radius of 1.6 Å) and Fo � Fc maps (green, sigma of +3.0; red,
sigma of � 3.0; cutoff radius around the residues of 2 Å). This figure was
created with BioRender.com.

Table 1
Data and structure-solution statistics for the lysozyme structure.

Values in parentheses are for the outer shell.

PDB code 8rpm

Data-collection temperature (K) 295
No. of collected frames 200000
No. of hits 60317 [30.2% of frames]
Indexable frames 14322 [23.7% of hits]
Indexed lattices 14322
Space group P43212

a, b, c (Å) 79.200, 79.200, 38.000
�, �, � (�) 90, 90, 90
Resolution (Å) 56.00–1.80 (1.864–1.800)
Unique reflections 11716 (1118)
hI/�(I)i 5.292 (0.94)
Completeness (%) 100 (100)
Multiplicity 373.9 (248.5)

Rsplit 0.117 (1.115)
CC1/2 0.98 (0.446)
Wilson B factor (Å2) 37.95
Resolution range used in refinement (Å) 56.00–1.80 (1.847–1.800)
Reflections used in refinement 10264 (586)
Reflections used for Rfree 637 (38)

Rwork/Rfree 0.185/0.222 (0.381/0.441)
R.m.s.d., bond lengths (Å) 0.005
R.m.s.d., angles (�) 1.433
Ramachandran favoured (%) 98.4
Ramachandran allowed (%) 1.6
Ramachandran outliers (%) 0
Average B factor (Å2) 34.619



no lossy compression or binning. Another consideration is

‘improvability’, which would require us to additionally store

frames that could not be successfully processed, in the hope

that they might become usable with future developments in

analysis methods. Yet another consideration is integrity, for

which we could store a much smaller sample of frames as

proof that the results were not fabricated. In the event that a

bug was found in the analysis software at a later date, a small

data sample could allow us to check whether the experiment

was affected and validate the conclusions.

Abandoning storage of all raw data will reduce the costs,

but has obvious risks. Accurate calibration information is

required for the detector geometry and its intensity response,

and many data-processing problems in serial crystallography

are attributable to inaccurate calibration. In this work, we

used an EIGER detector, which has excellent properties in

this regard: it requires no regular recalibration of gains, has a

stable set of bad pixels and consists (from the software point of

view) of a single large panel. Segmented detectors with

adaptive gain switching, such as the AGIPD (Allahgoli et al.,

2015), ePix (van Driel et al., 2020), CSPAD (Carini et al., 2013)

or LPD (Veale et al., 2017), present much larger calibration

challenges, which will need to be reliably and preferably

automatically solved. Other possible risks are that the crystal

lattice parameters do not match the reference parameters

(which would prevent any diffraction patterns from being

indexed), or that the peak-search parameters were set too

conservatively (which, in an extreme case, could lead to hit

frames being wrongly classified as blanks). Real-time feedback

tools, using data from the real-time processing results, could be

added in the future to mitigate these risks. Changes might be

needed to the workflow of an experiment, such as taking time

to carry out a short preliminary experiment to determine the

lattice parameters if they are initially unknown.

At one extreme, a problem with the data processing could

mean that the entire experiment would need to be repeated,

including purifying and crystallizing the protein sample. The

core question is whether the risk of this situation is acceptable,

balanced against the cost of storing large amounts of data as a

type of ‘insurance’. The acceptable level of risk will depend on

the type of experiment. For example, an experiment probing

very valuable crystals of a large unit-cell membrane protein

complex will value the raw data much more highly than a

pharmaceutical ligand-screening experiment probing thou-

sands of very similar samples.

We would like to draw attention to the distinction between

real-time processing, the main focus of this paper, and real-

time monitoring. For the best user experience, the real-time

processing system described here can be complemented by a

monitoring system based on OnDA Monitor (Mariani et al.,

2016) in which the instantaneous hit rates and indexing rates

are graphed continuously, independent of any partitions into

runs. The monitoring system indexes patterns with no prior

information and reports the observed lattice parameters,

which allows any contaminants or alternative crystal forms

to be quickly spotted. The real-time processing system, in

contrast, indexes the patterns using prior information about

the crystal lattice parameters, in order to ensure that the

patterns are all indexed consistently and can be merged. Our

real-time monitoring system can operate independently,

taking data from the monitoring interface of the EIGER

detector (which provides a low-speed stream with a small

sample of the data), or via ASAP::O. We found it helpful to

make this distinction during our experiments, rather than to

combine both aspects into one system. The monitoring system

will be described in a future publication.

Real-time data processing changes the usage pattern of

high-performance computing resources. When data processing

is considered to be a separate step, a researcher might submit a

large array of jobs at the end of one day, and expect to see the

results the next morning. The researcher need not be

concerned with exactly when the computing cluster runs the

analysis jobs, and the cluster’s load-management software is

free to schedule the jobs in the most convenient way. Serial

crystallography data-processing jobs can additionally be

broken down into smaller independent jobs, say of around

1000 frames each, which makes the scheduling even easier:

many small jobs can fill the available time amongst other jobs

which require larger numbers of CPUs to be available simul-

taneously. With real-time processing during the experiment,

sufficient resources must be available at the time of data

acquisition. In principle, this appears to mean that dedicated

nodes must be permanently allocated to each beamline.

However, other modes of operation might be considered, such

as sharing resources between beamlines and cooperatively

scheduling the start times and lengths of acquisition runs to

avoid contention.

7. Conclusion and outlook

We have reported a system for real-time processing of serial

crystallography data. The system has been extensively tested

at PETRA III, and has already become an indispensable part

of the setup for serial crystallography at P11.

In future work, we plan to interpose a binning worker to

reduce the 4148 � 4362 pixel size of the EIGER detector to

2074� 2181, 1382� 1454 or 1037� 1090 pixels, by combining

pixel readout values in squares with side lengths of two, three

or four pixels, respectively. Here, we have tested with the full

16 megapixel detector resolution, but this is excessive for all

but the largest unit-cell sizes. The binning worker has been

implemented, but not yet thoroughly tested, and is shown in

Fig. 1. It operates by reading the image data stream from

ASAP::O and writing a new stream with the binned data. The

performance profiling results show that most of the processor

time is spent on per-pixel operations, so reducing the number

of pixels is likely to produce a proportional increase in the

speed.

We intend to test the system at the European XFEL, using

either the AGIPD or LPD detectors. Compared with the

reference experiment described in this paper, these detectors

have 1/16 the number of pixels (one million compared with 16

million), a higher frame rate (3520 frames compared with 133

frames per second), more complicated geometry (16 and 64
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panels, respectively, compared with one panel) and additional

complications due to adaptive gain switching. We expect that

real-time processing will be computationally feasible under

these conditions, but the extension to segmented detectors will

increase the need for rapid refinement of detector geometry.

We therefore plan to additionally implement a system for

continuous geometry refinement, which can be combined with

the real-time processing system such that a refined geometry

description is always available, with little to no user effort

required.

We are also currently implementing and testing the option

to store only the hits or the indexed frames. One option for

this, shown in Fig. 1, is to create a separate ASAP::O stream

from within CrystFEL and configure the NeXus writer tool to

take its input from that, instead of from the stream written by

the EIGER connector. This will be an important step towards

realizing the full potential of real-time data processing.

Finally, we invite and look forward to discussion within the

wider crystallography community about the most appropriate

way to reduce the large data-storage costs, while simulta-

neously satisfying our standards for reproducibility.

8. Software and data availability

CrystFEL is free and open-source software available from

https://www.desy.de/~twhite/crystfel/. The ASAP::O interface

for CrystFEL has been included since version 0.10.2, and the

asdf indexing algorithm was first included in version 0.6.1.

These, as well as other relevant features, are being continu-

ously developed, and the very latest versions are available

from the version-control repository accessible via the website.

We have collected recommendations for streaming and

high-speed data processing within the CrystFEL source-

code repository itself, as https://gitlab.desy.de/thomas.white/

crystfel/-/blob/master/doc/articles/online.rst and https://

gitlab.desy.de/thomas.white/crystfel/-/blob/master/doc/articles/

speed.rst, respectively. The programs for analysing and

plotting the CrystFEL performance profiling data, written in

Julia, are available from https://gitlab.desy.de/thomas.white/

profileanalysis.jl.

The ASAP::O framework is currently only deployed at

DESY, but information is available from https://asapo.pages.

desy.de/asapo/ and source code from https://gitlab.desy.de/

asapo/asapo. The Seedee serialization library can be down-

loaded at https://gitlab.desy.de/fs-sc/seedee, and is also avail-

able via PyPI (https://pypi.org/project/seedee/). The EIGER–

ASAP::O Connector and ASAP::O NeXus writer tools will be

made publicly available soon. The complete system is avail-

able for use at P11, supported by the Scientific Computing

group at DESY Photon Science.

The lysozyme structure has been deposited in the Protein

Data Bank with accession code 8rpm.
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