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2D template matching (2DTM) can be used to detect molecules and their

assemblies in cellular cryo-EM images with high positional and orientational

accuracy. While 2DTM successfully detects spherical targets such as large

ribosomal subunits, challenges remain in detecting smaller and more aspherical

targets in various environments. In this work, a novel 2DTM metric, referred to

as the 2DTM p-value, is developed to extend the 2DTM framework to more

complex applications. The 2DTM p-value combines information from two

previously used 2DTM metrics, namely the 2DTM signal-to-noise ratio (SNR)

and z-score, which are derived from the cross-correlation coefficient between

the target and the template. The 2DTM p-value demonstrates robust detection

accuracies under various imaging and sample conditions and outperforms the

2DTM SNR and z-score alone. Specifically, the 2DTM p-value improves the

detection of aspherical targets such as a modified artificial tubulin patch particle

(500 kDa) and a much smaller clathrin monomer (193 kDa) in simulated data. It

also accurately recovers mature 60S ribosomes in yeast lamellae samples, even

under conditions of increased Gaussian noise. The new metric will enable the

detection of a wider variety of targets in both purified and cellular samples

through 2DTM.

1. Introduction

Accurately placing macromolecular assemblies in the cellular

context is important in understanding their mechanistic role

inside the cell. Previously, we developed a 2D template-

matching (2DTM) approach (Rickgauer et al., 2017; Lucas

et al., 2021) in cisTEM (Grant et al., 2018) to detect targets in

cellular cryo-EM images with high positional and orienta-

tional accuracy. 2DTM not only detects targets such as ribo-

somes in cryo-EM images but also provides data that enable

the in situ classification and high-resolution reconstruction of

these targets (Lucas et al., 2022, 2023; Elferich et al., 2022).

Building on these successes, this work aims to improve the

2DTM framework to detect more challenging targets in

various environments.

A 2DTM search yields a signal-to-noise ratio (SNR) for

every location in the cryo-EM image that depends on the

cross-correlation between the template and the image (Rick-

gauer et al., 2017). A target is detected when the SNR value

exceeds a statistically defined threshold that limits the average

false positives to one per image, based on the assumption that

the cryo-EM image is dominated by noise and cellular back-

ground and that the cross-correlation values observed across

the image after whitening the noise/background follow a
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Gaussian distribution. The 2DTM SNR can be further

normalized by subtracting the mean and dividing by the

standard deviation of cross-correlations calculated across all

sampled orientations at each location in the image (Rickgauer

et al., 2017). This step is often referred to as ‘z-score’

normalization (Spiegel & Stephens, 1999). Using the z-score

instead of the SNR improves the detection of capsomers in

rotavirus double-layered particles (DLPs; Rickgauer et al.,

2017) and ribosomes in a crowded cellular environment

(Lucas et al., 2022). In the following, we will refer to the

outputs of 2DTM as the 2DTM SNR and 2DTM z-score,

respectively.

Previous applications of 2DTM have shown that the 2DTM

SNR and z-score function differently depending on the char-

acteristics of the sample and target. For example, when low-

resolution features were suppressed by using a near-focus

image setting (70 nm), the 2DTM SNR map showed a flat

background with sharp peaks indicating the locations of

apoferritins, even in a dense protein (bovine serum albumin)

background (Rickgauer et al., 2017). On the other hand, low-

resolution features from the target itself when strongly defo-

cused (>2000 nm), or from the background structural noise,

can result in broader peaks or an uneven background in the

SNR map, complicating target detection (Rickgauer et al.,

2017; Lucas et al., 2022). The misleading low-resolution

background can be suppressed by calculating the 2DTM

z-score (Rickgauer et al., 2017), which removes spurious

correlations between the template and the structural noise in

the image, thereby flattening the background and improving

the detectability of targets in cellular environments (Rick-

gauer et al., 2020; Lucas et al., 2022). In Fig. 1(a), a segment of

a previously published micrograph of a yeast lamella near the

nucleus is presented (Lucas et al., 2022). This image section

contains various cellular compartments located from left to

right, including the vacuole, cytoplasm and nucleus. Using the

mature 60S as a search template, 2DTM outputs a 2DTM SNR

map and a 2DTM z-score map [Figs. 1(b) and 1(c)]. The bright

spots in the 2DTM SNR map are locations with high corre-

lation values, indicating 60S ribosomes. However, the peaks

are surrounded by halos of increased SNR values extending

to other low-resolution features in the image, such as

membranes. The z-score map removes these halos and spur-

ious matches of high-contrast features, thereby reducing the

number of false detections (membranes or partial overlap with

ribosomes) while preserving locations with high-resolution

matches from the ribosomes.

Despite its success, the current 2DTM workflow faces

several challenges. Originally, the goal of 2DTM was the

detection and localization of unlabeled molecules in the

cellular context (Rickgauer et al., 2017), but more recent work

has expanded its scope to other applications (Lucas et al.,

2023; Lucas & Grigorieff, 2023). The question of detectability

depends, therefore, on the target to be searched and the

imaging conditions. Firstly, in images of a purified sample the

likelihood that a low-resolution feature in the image is a valid

target is high, making low-resolution contrast a reliable indi-

cator of a true positive. However, this useful information is

downweighted in the z-score. Secondly, detecting smaller

targets remains difficult since the cross-correlation value

depends on the size of the target. Although the detection limit

of 2DTM was estimated to be 150 kDa for purified samples

(no molecular background) and 300 kDa for cellular samples

(Rickgauer et al., 2017), no studies have systematically

explored the detection of targets smaller than 200 kDa

without incorporating prior information about their locations.

Thirdly, the shape of the targets plays a critical role in their

detectability. Previous research has primarily focused on

spherical targets, but, as we demonstrate below, nonspherical

shapes present additional challenges that have not been fully

addressed. Finally, the detection threshold is based on the

2DTM SNR and images lacking strong low-resolution

contrast. It remains unclear whether this threshold applies to

other types of images or the 2DTM z-score. These factors

highlight the need for further refinement of the 2DTM

workflow to improve its applicability to a broader range of

targets.

In this work, we investigate the performance of 2DTM

applied to smaller and aspherical targets. We develop a novel

metric, the 2DTM p-value, which combines information from

the 2DTM SNR and z-score. We show that the 2DTM p-value
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Figure 1
Comparison between the 2DTM SNR and the 2DTM z-score. (a) Micrograph of an FIB-milled yeast lamella showing different compartments of the cell.
(b) The 2DTM SNR map corresponding to the rectangle in (a), searched with a mature 60S template. (c) The 2DTM z-score map corresponding to the
rectangle in (a). The pixel values were cropped to a narrower range (labeled on the color bars) for better visualization. The original data range is labeled
below. All of the figures in this work were styled using the Python library niceplots (Gray et al., 2024).



has a more robust performance under varying imaging and

sample conditions compared with using the 2DTM SNR or

z-score alone. In particular, we demonstrate that the 2DTM

p-value improves the detection of clathrin, a previously

unexplored target due to its small size and aspherical shape, in

simulated images under varying imaging conditions. We also

show that the 2DTM p-value accurately recovers mature 60S

ribosomes in yeast lamellae samples, even with increased

levels of Gaussian noise.

2. Theory

Our current implementation of 2DTM outputs two scores: the

2DTM SNR and z-score. The novel 2DTM p-value integrates

these two features into a new ‘metafeature’. The 2DTM

p-value is designed to improve the detection of smaller and

distinctly aspherical targets by utilizing correlations between

the template and target across the entire resolution spectrum.

2.1. Previously developed metrics: 2DTM SNR and z-score

During a 2DTM search, we generate 2D projections from a

3D density map (V) of the molecule of interest (3D template)

across over a million orientations (�) within SO(3) space and

multiply them by the contrast-transfer function (CTF). A 2D

projection is denoted as

tðx; y; �Þ ¼ F � 1 CTFðkÞ � F
R1

� 1

Vðx; y; z; �Þ dz

� �� �

: ð1Þ

CTF parameters, such as defocus, can be estimated using

the CTFFIND software package (Rohou & Grigorieff, 2015;

Elferich et al., 2024) and subsequently included in the search.

We whiten the image to be searched, apply the same whitening

filter to each 2D projection and then pad the 2D projection to

the same size as the image. The whitened image Y and padded,

whitened 2D projection t0(x, y; �) are then normalized to zero

mean and unity variance by

~Yðx; yÞ ¼
Yðx; yÞ � �Y

�Y

; ð2Þ

and

~tðx; y; �Þ ¼
t0ðx; y; �Þ � �t0 ð�Þ

�t0 ð�Þ
; ð3Þ

where �Y, �Y are the mean and standard deviation of Y and

�t0 ð�Þ; �t0 ð�Þ are those of t0(x, y; �). We then calculate the cross-

correlation for each 2D projection-image pair,

rði; j; �Þ ¼
P

x;y

~Yðxþ i; yþ jÞ~tðx; y; �Þ; ð4Þ

evaluated at all i, j locations in the image (Sigworth, 2004;

Rickgauer et al., 2017). For each i, j location, we record the

maximum cross-correlation

rði; jÞ ¼ max
�

rði; j; �Þ; ð5Þ

along with the best-aligned orientation

�ði; jÞ ¼ argmax�rði; j; �Þ: ð6Þ

Additionally, the mean cross-correlation �rði; jÞ and the stan-

dard deviation of correlations �(i, j) at each i, j location are

calculated over sampled orientations as

�rði; jÞ ¼
P

�

w�rði; j; �Þ; ð7Þ

and

�2
r ði; jÞ ¼

P

�

w�½rði; j; �Þ � �rði; jÞ�
2
; ð8Þ

where w� is the quadrature weight to approximate integration

in SO(3) space where
P

� w� ¼ 1.

The 2DTM SNR at location i, j in the image is then defined

as the ratio of r(i, j) to the standard deviation of the cross-

correlation values when only noise is present,

2DTM SNRði; jÞ :¼
rði; jÞ

�n

: ð9Þ

Assuming that the signal from detectable targets generates

only a small amount of the variance of the entire image, we

can estimate �n using the standard deviation of correlation

values from the entire image,

�n ¼
P

�

w�

P

i;j

1

Np

½rði; j; �Þ � �r�
2
; ð10Þ

where Np is the number of pixels in the image and �r is the

average of all the correlation values calculated in the search,

�r ¼
P

�

w�

P

i;j

1

Np

rði; j; �Þ: ð11Þ

Given the normalizations of image and projection given in

equations (2) and (3), previous work (Grigorieff, 2000)

showed that

�n �
1

Np

� �1=2
: ð12Þ

The 2DTM z-score at each i, j location is calculated by

subtracting the average correlation from the maximum

correlation and dividing by the standard deviation of the

correlation values over the entire orientational space,

2DTM z-scoreði; jÞ :¼
rði; jÞ � �rði; jÞ

�rði; jÞ
: ð13Þ

The 2DTM targets are generated by identifying local

maxima in the 2DTM z-score map using a user-defined

exclusion radius (typically 10 pixels). To allow one false

positive on average per search, the 2DTM z-score threshold m

should have the property

erfc
m

�n21=2

� �

¼
2

Nc

; ð14Þ

where erfc is the complementary error function and Nc is the

total number of correlations calculated during one search.

While factors such as symmetry in the template (as in the case

of apoferritin) reduce the number of independent searches,

leading to a z-score threshold that may be too high, we will

show later that our new metric is unaffected by symmetry.
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2.2. The 2DTM z-score removes the correlations from the

rotationally invariant components of the template

We first write r(i, j, �) as the sum of correlations from a

rotationally invariant component rconst(i, j) and a variant

component rvary(i, j, �) of the template. We can minimize the

norm of the rotationally variant component rvary(i, j, �) by

setting the �-average of rvary(i, j, �) to zero,
P

�

w�rvaryði; j; �Þ ¼ 0; ð15Þ

so that �rði; jÞ ¼ rconstði; jÞ. This implies that by constructing

the z-score, the rotationally invariant components will be

removed in equation (13). The rotationally invariant correla-

tion components originate primarily from the low-resolution

signal that is due to background structural noise that shares a

similar size with the template. Previous studies have shown

that Zernike polynomials can be used to decompose cryo-EM

maps and analyze the continuous heterogeneity of biological

macromolecules (Herreros et al., 2021, 2023). We show in

Appendix B that calculating the Zernike moments and

Zernike invariants of a 3D template allows us to quantify the

relative weight of the rotationally invariant and variant

components, thereby measuring the asphericity of a template.

While this provides a useful descriptive analysis of template

shape, it does not directly influence the metrics or other

calculations in our workflow.

2.3. The 2DTM z-score is related to the Fisher information on

a particle’s alignment

We next demonstrate that the 2DTM z-score is related to

the Fisher information. The Fisher information quantifies how

tightly peaked the likelihood is at r[i, j, �(i, j)] with respect to

the orientation �. This, in turn, reflects the level of confidence

in the angular assignment of a target and, consequently, the

certainty of the target being a true detection. The Fisher

information, defined as the expectation of the negative second

derivative of the log-likelihood, is given by

Ið�Þ ¼ � E
@2

@�2
log PðYji; j; �Þ

� �

: ð16Þ

In previous work, the Fisher information was applied to

study how well a 3D potential map can be estimated from

noisy, randomly rotated 2D projections under different noise

levels (Fan et al., 2023, 2024). Here, we consider the Fisher

information with respect to perturbations in � instead. We first

note that the l2-norm of the difference between the shifted

image Y(x, y; i, j) and padded projection t0(x, y; �) can be

written as

log PðYji; j; �Þ / �
1

2
Yðx; y; i; jÞ � t0ðx; y; �Þ
�
�

�
�2

¼ �
1

2

�
��Y

eYðx; y; i; jÞ þ �Y

� ½�t0 ð�Þ~tðx; y; �Þ þ �t0 ð�Þ�
�
�2

¼ �Y�t0 ð�Þ
� �

� rði; j; �Þ

�
1

2
Np �

2
Y þ �

2
t0 ð�Þ þ ½�Y � �t0 ð�Þ�

2
� �

: ð17Þ

Assuming that each point-spread function has the same inte-

gral and the particle is not too aspherical, we have �t0 ð�Þ ¼ �t0

and �t0 ð�Þ ¼ �t0 . If we further assume that the image is

generated by taking the ‘true’ signal and adding independent

identically distributed (i.i.d.) pixel noise, we see that r(i, j, �) is

an affine transformation of the logarithm of the probability

P(Y|i, j, �) of observing the image Y given a single particle at

location i, j and orientation �,

log PðYji; j; �Þ ¼ a� rði; j; �Þ þ b; ð18Þ

where a ¼ �Y�t0 and b ¼ � 1
2

Np �
2
Y þ �

2
t0 þ ð�Y � �t0 Þ

2
� �

. We

see that the Fisher information I(�) is proportional to the

second �-derivative of r(i, j, �),

Ið�Þ /
@2rði; j; �Þ

@�2
: ð19Þ

We consider the simple case of one-dimensional r( ), where  

is in domain �. r( ) can be roughly modeled as a Gaussian

profile with a single peak,

rð Þ � R�
1

ð2�Þ
1=2
�

exp½�  2=ð2�2Þ�; ð20Þ

with zero mean, standard deviation � and a scaling factor R.

If we assume that the ‘size’ of the space |�| is relatively large

compared with �, then we can calculate the following

maximum (rupb), average (ravg) and variance (r2
std) of r( )

regarding  as

rupb ¼ R�
1

ð2�Þ
1=2
�

ð21Þ

ravg � R�
1

j�j
; ð22Þ

r2
std �

R2

j�j

1

ð�Þ
1=2

2�
�

1

j�j

� �

ð23Þ

The 2DTM z-score, z, based on its definition, is

z ¼
rupb � ravg

rstd

¼ ðj�jÞ
1=2
�

1

ð2�Þ
1=2
�
�

1

j�j

1

ð�Þ
1=2

2�
�

1

j�j

� �1=2
: ð24Þ

� ðj�jÞ
1=2
�

1

�1=4ð�Þ
1=2
: ð25Þ

Meanwhile, the Fisher information at r[i, j, �(i, j)] with respect

to perturbations in  , based on its definition in equation (19),

is

rfis ¼
1

�2
� rupb ¼

1

�2
�

R

ð2�Þ
1=2
�
¼ R�

1

ð2�Þ
1=2
�3
; ð26Þ

from which we could see that the z-score is related to the

Fisher information by

logðrfisÞ ¼ constþ 6 � logðzÞ: ð27Þ

In Appendix A, we extend our discussion to � 2 SO(3) and

demonstrate that, while the 2DTM SNR and z-score are

related, they are not entirely redundant and can effectively

complement each other. Specifically, peaks in the SNR map
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roughly correspond to local maxima in the log-likelihood of

observing the data given that a true particle is being imaged

(equation 18), whereas peaks in the z-score map correspond

to locations and orientations with high Fisher information

(equation 27). Given these differences, we aim to develop a

method that integrates the 2DTM SNR and 2DTM z-score.

2.4. Quantile normalization

We now propose a general strategy for designing a ‘meta-

feature’ that integrates the 2DTM SNR and z-score, esti-

mating the probability of target detection without relying on a

fixed z-score threshold. To combine features with varying

scales, we first identify the local maxima in the 2DTM z-score

map, extracting their corresponding 2DTM SNR and z-score

values. Next, we independently apply a probit function to both

the z-scores and the SNRs (Amaratunga & Cabrera, 2001).

The probit function transforms the marginal distributions of

both features into the standard Gaussian distribution,Nð0; 1Þ,

with zero mean and unit variance. This method can easily be

extended to more than two features and applied to data sets

with even greater scale differences. The resulting quantile-

normalized data is referred to as

X ¼

x1

x2

..

.

xn

0

B
B
B
@

1

C
C
C
A
¼

x11 x12

x21 x22

..

. ..
.

xn1 xn2

0

B
B
B
@

1

C
C
C
A
; ð28Þ

where xk 2 R
2 is a 2D vector encoding the quantile-normalized

features for a particular data point. For example, for the kth

data point xk, xk1 represents the transformed 2DTM z-score

and xk2 represents the transformed 2DTM SNR.

2.5. Fit with a 2D anisotropic Gaussian

To derive our new statistic, we fit a 2D anisotropic Gaussian

to the transformed data matrix X. This fit involves the

empirical covariance matrix C� 1 of X, or equivalently the

precision matrix C. We perform the eigenvalue decomposition

of C� 1 as

C� 1 ¼ U � 1 � diagð�2
1; �

2
2Þ � U

� >; ð29Þ

where diagð�2
1; �

2
2Þ is the diagonal matrix formed from eigen-

values �2
1; �

2
2 and the unitary matrix U� 1 = [u, u?]. This results

in an anisotropic Gaussian distribution fit to X with elliptical

contours with major axis u of length �1 and minor axis u? of

length �2. Our assumption below is that the joint distribution

of X is well approximated by

�ðxÞ ¼
1

2�

1

�1�2

exp �
1

2
x> � C � x

� �

: ð30Þ

2.6. Calculation of the 2DTM p-value

Given a particle data point xk, we can define pk, the prob-

ability of finding a sample from � in the first quadrant with a

lower probability density than �(xk), as

pk ¼
R

x2�k

�ðxÞ dx; ð31Þ

where the ‘first-quadrant’ domain �k (Fig. 2) is defined as

�k ¼ fxjx1 > 0; x2 > 0; �ðxÞ<�ðxkÞg: ð32Þ

Describing the direction of the major axis (or equivalently,

the eigenvector) u using angle ! such that u = [cos(!),

sin(!)]>, pk can be calculated by transforming the anisotropic

Gaussian into a standard Gaussian and then integrating this

standard Gaussian within the wedge corresponding to the

(now transformed) first quadrant. The relevant angle asso-

ciated with this wedge is

� ¼ arccot½0:5 sinð2!Þð�2=�1 � �1=�2Þ�; ð33Þ

and pk can then be written as

pk ¼
�

2�
exp �

1

2
jdiagð1=�1; 1=�2Þ � U

� > � xkj
2

� �

: ð34Þ
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Figure 2
Computing the 2DTM p-value from the 2DTM SNR and z-score. (a) 2D histogram of the 2DTM SNRs versus z-scores for one of the clathrin montages
[shown in Fig. 8(a)]. (b) 2D histogram of the quantile-transformed features in (a). Both (a) and (b) are colored using a log scale. (c) Schematic plot for
calculating the 2DTM p-value. A data point x(k) = (xk1, xk2), denoted by the diamond symbol, represents the quantile-normalized data vector. The
p-value is defined as the probability of finding a sample from the estimated anisotropic Gaussian that is rarer than xk. �k is the domain of samples to be
considered that satisfies (i) both transformed features should be larger than 0 and (ii) the sample point should be rarer than xk.



3. Results

3.1. Detection of simulated targets of distinct shapes in ice

To understand how molecular shape affects target detection

by 2DTM, we simulated images of two molecules with similar

molecular weights but distinct shapes and performed 2DTM

searches on these images. The first target, apoferritin [Fig.

3(a)], is a spherical-shaped protein complex with octahedral

symmetry that has frequently been used as a model system for

benchmarking cryo-EM methods. In our study, we used the

recently determined 1.27 Å resolution structure (PDB entry

7rrp) with a molecular weight of 498 kDa (Zhang et al., 2020).

The second target is an artificial tubulin patch [different views

are shown in Figs. 3(b) and 3(c)] derived from the single-

particle model of deacetylated microtubules (PDB entry 6o2s;

Eshun-Wilson et al., 2019). This rod-shaped particle consists of

six �-tubulin subunits, four �-tubulin subunits and one addi-

tional modified �-tubulin subunit, with a total molecular

weight of 500 kDa.

The simulated particle images at different orientations were

generated using the simulator program in cisTEM (Himes &

Grigorieff, 2021), with an underfocus of 500 nm and a uniform

B-factor of 30 Å2 (Fig. 3, second column). The simulations

were performed with a pixel size of 1.0 Å and a total exposure

of 30 e� Å� 2 in 100 nm ice. Segments of the 2DTM SNR

and z-score maps of the three simulated particle images are

shown in the third and fourth columns, respectively. Targets

exceeding the cisTEM z-score threshold were labeled as either

true positives (orange) or false positives (blue). Similar to the

60S ribosome (Fig. 1), the z-score map of the apoferritin

particle features a sharp peak with a clean background [Fig.

3(a)]. In contrast, the z-score map of the tubulin patch particle

is either noisier [Fig. 3(b)] or contains a false positive [Fig.

3(c)].

We then simulated cryo-EM images of 100 apoferritin

particles and 100 tubulin patch particles, each with defocus

values of 70 and 2000 nm (Rickgauer et al., 2017), in random

orientations. We arranged the 100 particle images into a

pseudo cryo-EM image in a 10 � 10 montage. A segment of

the montage containing four tubulin patch particles (arranged

2 � 2) at 2000 nm defocus is shown in Fig. 4(a). We searched

the montages by 2DTM using an angular search grid with an

in-plane step of 1.5� and an out-of-plane step of 2.5�. The

defocus was searched in a range of �10 nm and a step size of

2 nm (Lucas et al., 2021). 2DTM targets were identified as

local maxima within a 10-pixel radius in the z-score map and

were labeled according to their angular and translational

errors relative to the expected values from the simulation,

research papers

6 of 22 Kexin Zhang et al. � Robust target detection in cryo-EM IUCrJ (2025). 12

Figure 3
Local 2DTM SNR and z-score maps of an apoferritin particle (a) and two tubulin patch particles (b, c). Each row shows the 3D template generated from
the cisTEM program simulate (with similar views as the particles), the simulated particle at an underfocus of 500 nm, the 2DTM matched template, the
SNR map and the z-score map centered on the particle. Targets that survived the cisTEM z-score threshold are circled. True positives (orange) are
located near the center of the particles. Templates in rows (b) and (c) represent the tubulin patch viewed edge-on and from the side.



taking into account the octahedral symmetry of apoferritin.

The angular error was calculated based on the average l2

distances between points in the two (unit vector) templates

after angular transformation. The translational error (dxy) was

defined as the distance between the target and the grid center

of the closest simulated particle. The distribution of errors for

one of the tubulin patch montages at 2000 nm is shown in

Fig. 5. We used a cutoff of 7 pixels for dxy and 0.4 for angular

error for labeling the targets. True targets (orange) were

accurately located near the centers of the particle grid cells,

whereas false targets (blue), which resulted from partial

overlaps with tubulin patches or matches with background

noise, were not necessarily near the centers [Fig. 4(b)].

Comparing the 2DTM SNRs with the z-scores for targets

identified in the simulated montage [Fig. 4(c)], we found that

using either feature individually led to a higher number of
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Figure 4
Calculation of the 2DTM p-value and evaluation of three 2DTM metrics for a simulated tubulin patch montage. (a) An example of a tubulin patch
montage segment with four particles arranged in a 2� 2 grid. (b) Local maxima identified in the 2DTM z-score map of the montage segment in (a) using
a 10-pixel radius. (c) A scatter plot of 2DTM SNR versus z-score, with true targets labeled in orange based on their expected location and orientation. 99
of the 100 targets in the example montage were recovered as local maxima in the z-score map. (d) The quantile-normalized data, color-coded by their
2DTM p-values [� log(p-value)]. Data points not in the first quadrant are labeled in gray, as they are excluded from the p-value calculation. True targets
are circled in orange. (e) A zoomed-in version of (d) showing the transformed z-score threshold. ( f ) ROC curves of the three 2DTM metrics, with shaded
areas indicating the confidence intervals calculated from 300 simulated particles.

Figure 5
Error distribution for the example tubulin patch montage in Fig. 4(a). The angular error was calculated based on the average l2 distances between
corresponding points in the two (unit vector) templates after angular transformation. The translational error (dxy) was defined as the distance between
the target and the grid center of the closest simulated particle. The cutoffs used for labeling were 7 pixels for dxy and 0.4 for angular error. (a) Angular
error distribution between the 2DTM z-score-derived targets and the ground truth. A total of 26 783 local maxima were identified in the z-score map
using a local radius of 10 pixels and a threshold of 0. In this example, 99 of 100 simulated particles were recovered as local maxima. (b, c) Distribution of
dxy of the 2DTM SNR or z-score-derived targets. True positives are indicated by circles.



false positives or false negatives compared with using both

features together. We applied quantile normalization to the

2DTM SNRs and z-scores of the targets and calculated the

2DTM p-values for data points located exclusively in the first

quadrant after transformation [Fig. 4(d)], as a true target is

expected to exhibit both high SNR and high z-score. The

zoomed-in scatter plot [Fig. 4(e)] shows the transformed

threshold corresponding to a cisTEM z-score threshold of

7.77. Several true targets fell below this threshold, indicating

false negatives, while several false positives were observed

near the threshold. We combined the results from 300 simu-

lated particles and evaluated the accuracies by calculating

their receiver operating characteristic (ROC) curves [Fig.

4( f)]. To better understand the classification accuracy when

a low false-positive rate (FPR) is desired, we focused on a

specific FPR range with fewer than 25 false positives. Our

results show that the 2DTM p-value successfully recovered

more true targets than the other two metrics.

Next, we compared the detection of apoferritin and tubulin

patches at different defocus. In the 70 nm montages [Figs. 6(a)

and 6(g)] particles were barely visible, whereas in the 2000 nm

montages [Figs. 6(d) and 6(j)] there was strong low-resolution

contrast from the particles. Analyzing the scatter plots of

2DTM SNRs versus z-score and the ROC plots, we made the

following observations. Firstly, at low defocus the SNR values

of the true targets showed strong correlations with the

z-scores, in contrast to the correlations observed at higher

defocus. Specifically, the Pearson correlations observed at

70 nm defocus were 0.92 for apoferritin [Fig. 6(b)] and 0.85 for

tubulin patches [Fig. 6(h)]. However, at 2000 nm defocus,

these correlations decreased to 0.47 [Fig. 6(e)] and � 0.19 [Fig.

6(k)], respectively. This is because, at low defocus, low-

resolution contrast was suppressed, causing the 2DTM SNR

to contain mostly high-resolution information, similar to the

z-score. Secondly, for tubulin patches, the SNRs and z-scores

of the true targets were less correlated compared with

apoferritin, suggesting that the two metrics may provide

complementary information for aspherical targets. This

finding highlights the need to design a ‘metafeature’ that

integrates both metrics, which our new metric, the 2DTM

p-value, achieves. Finally, we found that for apoferritin, all

three metrics showed comparable target detection accuracies

at both defocus values, although the z-score exhibited slightly

lower accuracies at low FPR ranges [Figs. 6(c) and 6( f)]. In

contrast, for aspherical particles, the p-value proved to be

the optimal metric, with its performance improving as the

low-resolution contrast from the particles increased, outper-

forming the z-score [Figs. 6(i) and 6(l)]. Unlike the z-score

threshold, the p-value is unaffected by template symmetry

because it uses the statistics at the optimal orientation once it

is found.

3.2. Detection of simulated clathrin monomers in isolation

We next focused on the more difficult task of detecting both

small and aspherical targets. Clathrin is a protein that is crucial

for endocytosis, facilitating the cellular uptake of substrates

from the extracellular environment (Kaksonen & Roux,

2018). It forms a three-dimensional lattice known as a clathrin

coat, which transports vesicles with cargo to be endocytosed.

The clathrin triskelion consists of three heavy chains that

interact at their C-termini, with each heavy chain tightly

bound to a nearby light chain (Fotin et al., 2004). The high-

resolution structure of the invariant hub, determined using

single-particle cryo-EM (PDB entry 6sct), exhibits C3

symmetry (Morris et al., 2019). The template that we used is

the clathrin monomer, consisting of three heavy chains and

two light chains, with a molecular weight of 193 kDa (orange

part in Fig. 7). Although the clathrin monomer slightly exceeds

the previously reported detection limit of 2DTM (150 kDa for

particles embedded in 100 nm ice; Rickgauer et al., 2017), it is

the smallest target studied by 2DTM so far. Its relatively small

molecular weight and highly aspherical shape provided an

excellent test case for exploring the limits of 2DTM.

We simulated cryo-EM images of clathrin monomer parti-

cles in 100 nm ice in random orientations using the B-factor

from the PDB entry, at a pixel size of 1.06 Å, arranged them

into a pseudo cryo-EM image [a segment is shown in Fig. 8(a)]

and performed the 2DTM searches. Due to the smaller weight

of the monomer, we increased the total dose to 45 e� Å� 2 and

used a defocus of 500 nm in simulation. A defocus search was

performed on all images with a step size of 20 nm in a total

range of 240 nm (�120 nm). 2DTM targets were identified as

local maxima in the z-score map and labeled based on whether

they were true (orange) or false (blue) [Fig. 8(b)]. Out of the

100 simulated particles, 92 were recovered as local maxima.

The overlap between the true and false-positive populations

[Fig. 8(c)] made it challenging to classify the targets by a

binary threshold based solely on the z-score or the SNR.

Compared with apoferritin and tubulin patch, detecting

clathrin monomers using the cisTEM z-score threshold

resulted in more false negatives [Fig. 8(e)], due to their smaller

size. We repeated this analysis for 2000 simulated clathrin

monomers and reported the performance of the three 2DTM

metrics [Fig. 8( f)]. Using the SNR instead of the z-score

recovered more true positives at higher FPR levels, owing to

its incorporation of low-resolution signal. In the FPR range

with fewer than 25 false positives, the 2DTM p-value consis-

tently outperformed the SNR and z-score, as it recovered

more true positives for a given FPR, even under conditions

where no false positives were allowed.

3.3. Detection of simulated clathrin monomers with

increasing solvent background

Next, we examined how increasing solvent thickness, and

consequently the solvent noise, affects the detection accuracy

of the 2DTM p-value, particularly for smaller and more

aspherical targets. The 2DTM SNR theoretically increases

with the molecular weight of the template, limiting current

2DTM detection to around 150 kDa in ice and 300 kDa in

100 nm thick samples with protein background (Rickgauer et

al., 2017, 2020). To study targets in their native state, focused

ion beam (FIB) milling is used to cut sections (lamellae) of

frozen-hydrated biological specimens. Typical lamella thick-
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nesses range from 85 to 250 nm (Lam & Villa, 2021). However,

increased sample thickness leads to the loss of electrons due to

inelastic and multiple scattering, reducing the image signal,

particularly at higher resolution (Peet et al., 2019; Dickerson et

al., 2022). Previous studies have demonstrated the importance

of correctly modeling the hydration layer in cryo-EM images

(Shang & Sigworth, 2012; Himes & Grigorieff, 2021) and

revealed an exponential decay in the 2DTM z-score with an

increase in solvent thickness, particularly for detecting large

ribosomal subunits (Rickgauer et al., 2020; Lucas & Grigorieff,

2023). However, the relationship between 2DTM detection

accuracy and solvent thickness remains unexplored for targets
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Figure 6
Comparison of 2DTM searches for apoferritin (a–f ) and tubulin patch (g–l) at 70 nm and 2000 nm defocus. Each row shows a segment of the 10 � 10
montage, an example scatter plot of 2DTM SNR versus z-score and the ROC curves of the three metrics calculated from 300 simulated particles.



less spherical than large ribosomal subunits. Therefore, we

conducted simulations of clathrin monomers, systematically

varying the solvent thickness within a range consistent with

typical FIB-milled lamellae.

We examined three ice-thickness values: 120, 150 and

200 nm. For each thickness level, we simulated 1000 clathrin

monomers in random orientations and created ten 10 � 10

montages (example montages are shown in Fig. 9). The
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Figure 8
Calculation of the 2DTM p-value and evaluation of three 2DTM metrics for a simulated clathrin montage. (a) An example of a clathrin montage segment
with four particles arranged in a 2� 2 grid. (b) Local maxima identified in the 2DTM z-score map of the montage segment in (a) using a 10-pixel radius.
(c) A scatter plot of 2DTM SNR versus z-score, with true targets labeled in orange based on their expected location and orientation. In total, 92 of the
100 targets in the example montage were recovered as local maxima in the z-score map. (d) The quantile-normalized data, color-coded by their 2DTM
p-values [� log(p-value)]. Data points not in the first quadrant are labeled in gray, as they are excluded from the p-value calculation. True targets are
circled in orange. (e) A zoomed-in version of (d) showing the transformed z-score threshold. ( f ) ROC curves of the three 2DTM metrics, with shaded
areas indicating the confidence intervals calculated from 2000 simulated particles.

Figure 7
Structure of the clathrin monomer used as the template for 2DTM searches. Shown are different views of the complete clathrin invariant hub (blue),
determined from single-particle cryo-EM, and the clathrin monomer (orange) used as the template in our experiments. The monomer consists of three
heavy chains and two light chains, with a molecular weight of 193 kDa.



accuracy of all three 2DTM metrics declined with increasing

solvent thickness due to the loss of high-resolution signal.

Notably, the 2DTM p-value consistently outperformed the

other metrics across diverse solvent conditions, although its

performance converged with the SNR as the solvent thickness

approached 200 nm.

As previously discussed, the z-score depends heavily on the

correlations between the image and the rotationally variant

components of the template. The rotationally variant

components tend to represent higher resolution than the

invariant parts. In contrast, the SNR relies on both high- and

low-resolution signal from the template. High-resolution

signal decays faster than lower-resolution signal when ice is

thick; therefore, the detection mainly depends on the low-

resolution features.

3.4. Detection of clathrin monomers in simulated protein

mixture images

Previous work has pointed out that the 2DTM SNR is more

affected by the presence of proteins or structural features in

the cell that share a similar size and shape with the target,

making accurate detection more difficult (Rickgauer et al.,

2017; Lucas et al., 2022). Since the 2DTM p-value is derived

from the SNR, we explored in this section whether the 2DTM

p-value can correctly detect clathrin monomers in images

containing other proteins.

research papers

IUCrJ (2025). 12 Kexin Zhang et al. � Robust target detection in cryo-EM 11 of 22

Figure 9
Performance of 2DTM metrics under different solvent thicknesses: (a) 120 nm, (b) 150 nm and (c) 200 nm. For each thickness, the figures show (from left
to right) a simulated montage containing 100 clathrin monomers, a scatter plot comparing 2DTM SNR and z-score, and ROC curves of the three metrics
for 1000 simulated particles.



To simulate images with protein mixtures, we prepared

montages, each containing 50 clathrin monomers and 50

proteasome particles (PDB entry 7ls6; Schnell et al., 2021;

408.62 kDa) in random orientations. The clathrin monomer

was used as the template in the 2DTM search. We simulated

ten protein-mixture montages [an example is shown in Fig.

10(a)] and compared the 2DTM SNRs of the targets against

z-scores. The 2DTM p-value recovered more true positives

compared with the 2DTM SNR and z-score, consistent with

the results observed in images containing only clathrins. The

z-score performed better than the SNR as it relies less on low-

resolution signal that may come from incorrect particles.

Target detection based solely on the 2DTM SNR led to false

positives located near proteasome particles due to their

stronger low-resolution contrast [Fig. 11(a)].

As a further test, we present an extreme scenario where we

simulated ten protein mixture montages [an example is shown

in Fig. 10(b)] containing clathrin monomers and mature 60S

ribosomal subunits (PDB entry 6q8y; Tesina et al., 2019;

1.72 MDa) and searched using the clathrin monomer as the

template. Due to the much stronger low-resolution signal of

the 60S subunits, the 2DTM SNR was significantly higher at

these locations, leading to incorrect detections. For the same

FPR, the 2DTM SNR recovered significantly fewer true

targets than the 2DTM z-score. Most locations with high SNR

values were near the mature 60S particles [Fig. 11(b)]. Inter-

estingly, the 2DTM p-value still recovered as many or more

clathrins compared with the z-score. This example confirms

that even if the 2DTM SNR is unreliable in the presence of

high background noise or other proteins, the performance of

the p-value is similar to, if not better than, using the z-score

alone. This highlights the potential of using the 2DTM p-value

to study densely populated cellular images.
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Figure 10
Performance of 2DTM metrics when searching a mixed-particle montage using the clathrin monomer as the template. For each row, the figures show
(from left to right) an example mixture montage containing 50 clathrin monomers and 50 proteasomes (a) or 50 mature 60S ribosomes (b), a scatter plot
comparing 2DTM SNR and z-score, and ROC curves of the three metrics for ten 10� 10 mixture montages [which correspond to 500 simulated clathrin
particles mixed with 500 proteasome particles (or 60S particles)].

Figure 11
High 2DTM SNR values identify locations that overlap with protein
particles. Shown are locations in two example mixed-particle montages
where the 2DTM SNR is greater than 8.0: (a) a clathrin and proteasome
mixture and (b) a clathrin and mature 60S mixture. This demonstrates
that the 2DTM SNR can function as a blob detector.



3.5. Detection of mature 60S in experimental images with

added Gaussian noise

Next, we evaluated whether the 2DTM p-value maintained

its superior performance in a setting where the z-score also

performs well. Furthermore, we wanted to investigate the

performance of the 2DTM p-value for target detection in

experimental cryo-EM images of cellular lamellae. Given the

lack of ground-truth labels for experimental data, we intro-

duced i.i.d. Gaussian noise to each pixel in the image with

increasing variances to previously analyzed yeast lamellae

(Lucas et al., 2022). We performed 2DTM searches using the

mature 60S template and compared the detection results

based on the 2DTM z-score, SNR and p-value with those from

images without additional noise. We systematically varied the

ratio of added noise variance relative to the image variance,

ranging from 0.1 to 2.5. Under each noise condition, we

generated nine images featuring random Gaussian noise.

These images were selected because they contained a

significant number of matches with high 2DTM z-scores,

indicating high confidence in the identities of these locations.

The small differences in the estimated defocus values between

the noisy images and the corresponding Gaussian-noise-free

images were within the 2DTM defocus search step and could,

therefore, be ignored here. Comparing the images pre- and

post-noise addition (Figs. 12, 13 and 14), we observed that the

high-resolution signal was gradually lost as the level of noise

increased.

We next explain the manual labeling process using the pre-

noise micrograph in Fig. 15(a) as an example. The thickness of

this image was estimated to be 98 nm, and the average defocus

was around 366 nm (Lucas et al., 2022). The relatively lower

defocus suppressed low-resolution noise from the cellular

background and improved the detection of the mature 60S

using the 2DTM z-score. We calculated a threshold in the

z-score histogram [Fig. 15(b)] that established a clear

separation between tail scores (considered to be true posi-

tives) and bulk scores (considered to be true negatives),

minimizing the overlap between the two. For locations in the

image that do not contain mature 60S signal, their 2DTM

z-score values should follow a generalized extreme value

(GEV) distribution (Haan & Ferreira, 2006) as explained in

Appendix C. The GEV distribution was superimposed on the

histogram [dashed blue curve in Fig. 15(b)] and fitted using

z-scores smaller than the cisTEM z-score threshold (7.85).

While the bulk z-scores were well modeled by the GEV

distribution, the tail z-scores were not. The fitted distribution

approached zero rapidly at around 8.0, while the tail of the

histogram extended to 15.1 [inset in Fig. 15(b)], indicating

strong correlations with the mature 60S template. Using the

fitted GEV distribution as the null hypothesis, we calculated

the 2DTM z-score corresponding to a given FPR. In this

experiment, we set the FPR to 10� 6, resulting in a z-score

threshold of 8.212, consistent with a visual separation of the

tail from the bulk. Targets were restricted from being detected

within 10 nm to the edge of the image to avoid the detection

of partial particles. 149 targets with z-scores exceeding 8.212

were labeled as true targets and plotted onto the micrograph

based on their 2DTM-derived locations and orientations [Fig.

15(a)]. Using the same strategy, we labeled two other images

from yeast lamellae and found 176 and 336 true targets,

respectively (Figs. 16 and 17).

We calculated the detection accuracies of the 2DTM SNR,

z-score and p-value for the three lamellae upon adding

varying levels of Gaussian noise (Figs. 18, 19 and 20). In cases

where minimal noise was introduced, particularly when the
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Figure 12
Original yeast lamella image (148_Mar12_12.23.52_161_0.mrc)
and images with varying levels of added Gaussian noise. The ratio of
added noise variance to the original image variance ranges from 0.1 to 2.5.
The image segment within the white box is shown below.



ratio of the added noise to the image noise was less than or

equal to 0.5 [(Var(n)/Var(I) � 0.5)], the performance of the

2DTM p-value generally aligned with that of the z-score and

was better than that of the SNR. Since the control targets were

labeled using the z-score, the z-score was expected to exhibit

optimal accuracy under conditions of minimal Gaussian noise

addition. For these three lamellae, when the noise ratio was

0.5, the 2DTM p-value started to outperform the z-score

across most of the relevant FPR ranges.

As the variance of the Gaussian noise was further increased

[Var(n)/Var(I) � 1.0], the accuracies of the 2DTM z-score

decreased more rapidly than the other two metrics. The

performance of the 2DTM p-value closely mirrored or slightly

exceeded that of the SNR at low FPR ranges. In this case, the

high levels of Gaussian noise blurred the high-resolution features,

forcing detection to primarily rely on the remaining low-reso-

lution signal. The performance of the 2DTM p-value and SNR

converged when the noise level was 2.5 [Var(n)/Var(I) = 2.5].
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Figure 14
Original yeast lamella image (151_Mar12_12.31.16_167_0.mrc)
and images with varying levels of added Gaussian noise. The ratio of
added noise variance to the original image variance ranges from 0.1 to 2.5.
The image segment within the white box is shown below.

Figure 13
Original yeast lamella image (150_Mar12_12.28.45_165_0.mrc)
and images with varying levels of added Gaussian noise. The ratio of
added noise variance to the original image variance ranges from 0.1 to 2.5.
The image segment within the white box is shown below.



In this test, we imposed an additional constraint during the

p-value computation, requiring that both quantile-normalized

features exceed 0.5 (x1 > 0.5 and x2 > 0.5 in equation 32). This

criterion ensures that both SNR and z-score must be high for a

true target. An interesting observation is that the features

from contamination [dark regions in Fig. 15(a)], which could

potentially lead to false positives when using a blob detector

solely based on low-resolution signal, were correctly excluded

by the 2DTM p-value despite its sensitivity to low-resolution

signal.

In summary, introducing Gaussian noise to experimental

images from yeast cells, coupled with the curation of control

data sets based on the distribution of 2DTM z-scores, enables

the evaluation of the 2DTM p-value across varying noise

levels. Our findings show that while the z-score performs well

for targets such as ribosomes, the p-value is robust under

conditions of increased noise.

4. Discussion

Detecting biological molecules and complexes in low-contrast

cryo-EM images is an important step in determining their

molecular structures in situ and understanding the mechan-

isms of biological processes. Previous work has demonstrated

that accurate determination of target locations and orienta-

tions can be achieved using 2DTM, with high-resolution

structures as templates and sampling of poses on a tight grid.

2DTM offers a way to study macromolecular assemblies in the

broader context of a cell, taking advantage of the increasing

number of high-resolution structures available for templates.

Building on the success of 2DTM in locating and distin-

guishing larger molecular species in cells, our goal in this paper

is to improve 2DTM to detect more challenging targets,

especially those that are smaller and aspherical. We show that

the outputs of 2DTM, namely the 2DTM SNR and 2DTM

z-score, offer complementary information for target detection.

By integrating data from both metrics, we introduce a novel

2DTM metric, the 2DTM p-value, which improves the detec-

tion of previously unexplored targets, such as clathrin mono-

mers. Our results show that the performance of the 2DTM

p-value is robust across diverse imaging conditions. Further-

more, we have established a general framework for combining

multiple metrics of varying scales into a new ‘metafeature’ and

developed a probabilistic model for target detection in both
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Figure 16
Labeling 60S targets in yeast lamella. (a) Image 148_Mar12_
12.23.52_161_0.mrc from previous work (the thickness was esti-
mated to be 73 nm; Lucas et al., 2022). Control peaks are selected based
on the threshold determined in (b). Particles are plotted with their
2DTM-derived alignment parameters. (b) Distribution of z-scores across
all locations in the image using mature 60S as the template. The dashed
blue curve represents the fitted GEV distribution. The threshold that best
separates false matches (bulk) from true matches (tail) is labeled.

Figure 15
Labeling 60S targets in yeast lamella. (a) Image 150_Mar12_
12.28.45_165_0.mrc from previous work (the thickness was esti-
mated to be 98 nm; Lucas et al., 2022). Control peaks are selected based
on the threshold determined in (b). Particles are plotted with their
2DTM-derived alignment parameters. (b) Distribution of z-scores across
all locations in the image using mature 60S as the template. The dashed
blue curve represents the fitted GEV distribution. The threshold that best
separates false matches (bulk) from true matches (tail) is labeled.



purified and cellular cryo-EM images using 2DTM. The

approach used to construct the 2DTM p-value is not limited to

applications in 2DTM; it can easily be extended to applica-

tions in cryo-electron tomography (cryo-ET), including the

development of a detection likelihood model that utilizes

multiple metrics derived from 3D template matching (3DTM;

Xue et al., 2022; Cruz-Leon et al., 2023; Maurer et al., 2024).

Tests on experimental images of purified targets of 50 kDa and

smaller may further establish the superior performance of the

2DTM p-value. Additionally, we expect the p-value to increase

our ability to reliably detect rare targets that might require a

higher detection threshold to lower the chances of false

positives.

4.1. Determining a 2DTM p-value threshold for target

detection

In situations where labeled data are unavailable, deter-

mining an appropriate threshold for target detection based on

the 2DTM p-value is crucial. One approach is to calculate

the adjusted p-values for multiple comparisons using the

Benjamini–Hochberg procedure (Benjamini & Hochberg,

1995). Subsequently, the quantile of the adjusted p-values

corresponding to an estimated number of true positives can be

identified. This quantile then serves as the classification

threshold. Unlike the 2DTM z-score, which relies on a

uniform threshold calculated from the number of search

locations, the p-value learns from the signal and noise distri-

bution unique to each 2DTM search. We provide an example

of using this method to calculate the 2DTM p-value for a noisy

image from the yeast lamella data set (Fig. 21), where Var(n)/

Var(I) = 0.5. In this example, we identified 166 out of 176

targets.

4.2. Molecular weight and shape jointly affect target

detection

Our results in Section 3.1 and 3.2 demonstrate that

detecting small and aspherical targets using either 2DTM SNR

or z-score alone is particularly challenging due to the signifi-

cant overlap between true and false targets in both metrics.

The effectiveness of the 2DTM SNR is heavily influenced

by the molecular weight of the target and the projected

density distribution of the target across the image. Specifically,

when the targets are small or have a dispersed projected

density, the 2DTM SNR tends to be low, making accurate
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Figure 18
Performance of 2DTM metrics when searching for 60S in yeast lamella
(image 150_Mar12_12.28.45_165_0.mrc) with additional Gaus-
sian noise. For each noise level, nine images were generated with random
Gaussian noise.

Figure 17
Labeling 60S targets in yeast lamella. (a) Image 151_Mar12_
12.31.16_167_0.mrc from previous work (the thickness was esti-
mated to be 114 nm; Lucas et al., 2022). Control peaks are selected based
on the threshold determined in (b). Particles are plotted with their
2DTM-derived alignment parameters. (b) Distribution of z-scores across
all locations in the image using mature 60S as the template. The dashed
blue curve represents the fitted GEV distribution. The threshold that best
separates false matches (bulk) from true matches (tail) is labeled.



detection more difficult. Conversely, for targets viewed edge-

on with a high projected density the SNR is higher, but this

also increases the risk of misalignment.

The 2DTM z-score works well for detecting spherical

targets, where the correlation peak is relatively sharp due to

the effective subtraction of rotationally invariant components.

This characteristic is a result of the z-score transformation,

which was introduced as an ‘a posteriori’ correction of camera

characteristics in large imaging data sets (Afanasyev et al.,

2015) and was previously applied in 2DTM to successfully

normalize the spurious correlations generated from low-

resolution matches (Rickgauer et al., 2017, 2020). However, it

is less reliable for aspherical targets. In these cases, the z-score

map tends to have a less clean background and may lead to

false positives or false negatives, as in the tubulin patch

example.

When combining these factors, particularly in the context of

small and aspherical particles, the overlap between false and

true populations poses a significant challenge for accurately

detecting targets. However, more true targets can be recov-

ered by utilizing a ‘metafeature’ such as the 2DTM p-value

that integrates information from the 2DTM SNR and z-score.

4.3. The 2DTM p-value is robust regardless of image and

target characteristics

The 2DTM p-value combines information from the SNR

and z-score, providing a more robust metric than either alone.

It ensures optimal target detection regardless of the signal

characteristics in the image, whether dominated by low- or

high-resolution features. In many applications of 2DTM

(Rickgauer et al., 2017; Lucas et al., 2021), suppressing low-

resolution signal from the background improves the overall

precision. However, theoretically, the low-resolution signal of

the target itself should aid in target detection. The challenge

lies in developing a method that accurately leverages the low-

resolution signal of the target without losing the ability to

distinguish true and false positives when the image contains

strong low-resolution contrast.

While the 2DTM p-value incorporates correlations from

the rotationally invariant or lower resolution components

between template and targets, it largely avoids incorrect low-

resolution features that may be present in cellular cryo-EM

images. Our findings in Section 3.4 show that even in images

where incorrect low-resolution features can strongly bias the

2DTM SNR, the 2DTM p-value still outperforms the z-score.
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Figure 20
Performance of 2DTM metrics when searching for 60S in yeast lamella
(image 151_Mar12_12.31.16_167_0.mrc) with additional Gaus-
sian noise. For each noise level, nine images were generated with random
Gaussian noise.

Figure 19
Performance of 2DTM metrics when searching for 60S in yeast lamella
(image 148_Mar12_12.23.52_161_0.mrc) with additional Gaus-
sian noise. For each noise level, nine images were generated with random
Gaussian noise.



This highlights the potential of using the 2DTM p-value for

target detection in native cells, even in the presence of cellular

background noise, such as membranes and other molecules.

In this work, we present extensions of 2DTM applications

specifically targeting aspherical targets, demonstrating the

versatility of the 2DTM p-value in diverse experimental

scenarios. Using examples of tubulin patches and clathrin

monomers, we demonstrate the advantage of using the 2DTM

p-value when the 2DTM SNR and z-score may fall short.

4.4. Future improvement

4.4.1. A better whitening filter

In 2DTM, we apply a global whitening filter based on the

power spectrum of the entire image to whiten the noise

spectrum and ensure the accurate matching of signal in the

image by the template, both in real and reciprocal space.

However, the global whitening filter may not uniformly whiten

local areas within the image (Lucas et al., 2023). A better

whitening strategy that addresses local contrast variations

(Roseman, 2003, 2004) could enhance the calculation of the

z-score, thereby improving the resulting p-value. Another

approach to suppress low-resolution structural noise in

cellular images is to utilize the phase-only correlation (Horner

& Gianino, 1984; Ahmed & Jafri, 2008). However, excluding

amplitude information may weaken the overall signal corre-

lation and require multiple passes of template matching.

4.4.2. Conformational heterogeneity discrimination

So far, 2DTM metrics have primarily been used to identify

one or a few 3D templates (Lucas et al., 2022). However, due

to thermal fluctuations, it is expected that an ensemble of

conformations will be present within the sample. Additionally,

crowded in situ environments may result in interactions

between the biomolecule and binding partners, potentially

causing subtle structural modifications of the target. Conse-

quently, further research is needed to evaluate the discrimi-

natory power of the 2DTM p-value in detecting small

structural changes, such as those on the order of a few

ångströms due to thermal fluctuations. Utilizing a library of

structures generated through molecular-dynamics simulations

as templates (Giraldo-Barreto et al., 2021; Tang, Zhong et al.,

2023; Tang, Silva-Sánchez et al., 2023) would enable a more

comprehensive exploration of the conformational landscape

of the molecules present in the image. Deep-learning methods

that amortize template matching (Dingeldein et al., 2024) may

be necessary to overcome the challenges of dealing with

large structural ensembles, where the computational cost of

matching all templates to each image becomes prohibitively

high. Additionally, efficient image-alignment techniques, such

as those using polar coordinates and Fourier–Bessel trans-

formations or SVD-based compression (Rangan et al., 2020;

Rangan, 2022), can further accelerate the 2DTM angular

search.

4.4.3. Statistical limitations of the 2DTM p-value

The 2DTM p-value calculation has two caveats. (i) It

assumes that both the 2DTM SNR and z-score are Gaussian

distributed by transforming their marginalized distribution

using a probit function. However, as discussed earlier, the

2DTM z-scores of locations without target signal should

follow a GEV distribution with an extended tail compared

with a standard Gaussian. False positives might be avoided if

we use a GEV distribution to model the z-scores of the false

targets instead of the Gaussian distribution. (ii) Quantile

normalization preserves the data ranking but does not

preserve the distances between points. Future work could

incorporate recent developments in computer vision, such as

using quantile–quantile embedding (Ghojogh et al., 2021),

to allow data transformation while maintaining the local

distances among nearby data points.

4.4.4. Correlations of correlations

Finally, in our exploration to optimize the use of low-

resolution signal, we calculated another correlation value: the

correlation between the auto-correlation of a 2D projection

and the cross-correlation of the image with that projection.

This metric, referred to as the ‘correlation of correlations’

(CoC), was devised to capture additional information beyond

the normalized cross-correlation coefficient, particularly in

assessing the similarity of the correlation maps (Chen &

Grigorieff, 2007). We found that the CoC can be interpreted

as the distance between an implicitly chosen latent variable

associated with the 3D structure of the template and the image

(data not shown). Although a similar p-value combining the

CoC and z-score was computed, its performance was found to

be lower than the combination of the 2DTM SNR and z-score.

We hypothesize that the CoC could be particularly useful in

images containing predominantly low-resolution signal, where

noise is usually associated with high-resolution signal. Our

previous study showed that the product of the CoC and the

cross-correlation can serve as a better particle picker in single-
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Figure 21
Calculating the 2DTM p-value threshold using multiple hypothesis
testing. In this example, we calculated the 2DTM p-values for a noisy
image from the yeast lamella data set (148_Mar12_12.23.52_
161_0.mrc) with a noise variance ratio of 0.5. We estimated 200
particles and calculated the adjusted p-values using the Benjamini–
Hochberg procedure to control the false-discovery rate (FDR) at an �
value of 0.05. Using this method, we identified 166 of 176 targets.



particle data sets (Chen & Grigorieff, 2007). However, addi-

tional research is required to determine the appropriate

weighting and integration of the CoC for template matching in

more crowded environments.

4.5. Code availability

In cisTEM, the implementation of the method described

in this paper is provided by the program calculate_template_

pvalue.

APPENDIX A

Differences between 2DTM SNR and z-score

In the main text, we have shown that r(i, j, �) is often close to

an affine transformation of the logarithm of the probability

P(Y|i, j, �) of observing the image Y, given a single particle at

location i, j and orientation �,

log PðYji; j; �Þ ¼ a� rði; j; �Þ þ b; ð35Þ

where a ¼ �Y�t0 and b ¼ � 1
2

Np½�
2
Y þ �

2
t0 þ ð�Y � �t0 Þ

2�.

Similarly, the SNR r(i, j) is, up to the same affine transfor-

mation, the maximum log-likelihood log P(Y|i, j, �), optimized

over �. For these reasons, we expect the SNR to highlight

locations and orientations that correspond to peaks in the

posterior likelihood of observing the data, given the position

i, j and orientation �.

By contrast, the z-score is designed to highlight only those

locations where the maximum-likelihood orientation is

significantly more likely than other orientations for that

location. In practice, the z-score z(i, j) often approximates a

measurement of the ‘Fisher information’ at that location: i.e. a

measurement of how tightly the likelihood is peaked around

the maximum r(i, j, �) as a function of orientation.

To understand why this might be the case, let us assume

that r(i, j, �) adopts a roughly Gaussian profile around its

maximum value,

rð�Þ � R
1

L det �
exp

1

2
�> ��� 2 � �

� �

; ð36Þ

with L = (2�)(3/2). Assuming that |�| is relatively large

compared with det �, we see that

rupb ¼ R�
1

L det �
; ð37Þ

ravg � R�
1

j�j
; ð38Þ

r2
std �

R2

j�j

1

L� det½ð2Þ
1=2

��
�

1

j�j

� �

: ð39Þ

According to the definition of the z-score, we have

z � ðj�jÞ
1=2
�

1

�3=4ðdet �Þ
1=2
: ð40Þ

The Fisher information regarding perturbations in � is

rfis ¼ Trð�� 2Þ � rupb; which; if rupb � 1;must be � Trð�� 2Þ:

ð41Þ

If r is roughly isotropic, the eigenvalues of � will be close to

one another and the Fisher information will once again be

close to a (fixed) power of the z-score.

In summary, we expect that peaks in the SNR map should

roughly correspond to locations (and orientations) that are

local peaks in the log-likelihood of observing the data, given

that a true particle is being imaged. Note that the SNR does

not require any particular orientation to be more likely than

any other and will pick out locations that have broad peaks

with respect to orientation. Conversely, we expect that peaks

in the z-score should roughly correspond to locations (and

orientations) that have high amounts of Fisher information

regarding orientation; that is, locations where a particle can

be unambiguously aligned to the image. In practice, these

two measurements are not entirely redundant and can even

complement one another; as we have shown in Section 3, the

SNR and the z-score can be combined into an even more

informative metric.

In Fig. 22, we calculated the normalized cross-correlations

between the simulated particles shown in Fig. 3 and a series of

2D projections, where the angles  and ’ were kept the same

as those of the simulated particles, while the polar angle � was

uniformly sampled between 0� and 180�. The polar angles

from the simulated particles, �0, were labeled. As shown in the

plots, r(i, j, �) exhibits a sharp, unimodal peak near �0 for all

three particles.

APPENDIX B

Zernike decomposition of cryo-EM density maps

The Zernike decomposition of a 3D density map V(r) can be

expressed as

VðrÞ ¼
P1

n¼0

Pn

l¼0

Pl

m¼� l

cn;l;m � Zn;l;mðrÞ; ð42Þ

where r = (x, y, z) is the position vector in 3D space, cn,l,m

are the Zernike coefficients, representing the contribution of

each Zernike polynomial to the density map, Zn,l,m(r) are the

Zernike polynomials, defined as the product of radial and

angular components,

Zn;l;mðrÞ ¼ Rn;lðrÞ � Y
m
l ð�; ’Þ; ð43Þ

Rn, l(r) is the radial polynomial and Ym
l ð�; ’Þ is the spherical

harmonic function.

Here, r, � and ’ are the spherical coordinates related to the

Cartesian coordinates (x, y, z).

The rotationally invariant components are those that are

associated with the coefficients where m = 0, and the rota-

tionally variant components involves terms where m 6¼ 0,

Sinvariant ¼
P1

n¼0

Pn

l¼0

jcn;l;0j; ð44Þ
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Svariant ¼
P1

n¼0

Pn

l¼0

P

m6¼0

jcn;l;mj: ð45Þ

To quantify the asphericity of apoferritin, modified tubulin

patch and clathrin monomer, we bin the density map to

64 � 64 � 64 and calculate the Zernike decomposition with

order 120 using codes from the GitHub repository zernike3d

(Bayly-Jones, 2024). The results are shown in Table 1.

APPENDIX C

Modeling the 2DTM z-scores using the generalized extreme

value distribution

C1. Introduction of the generalized extreme value

distribution

The family of generalized extreme value (GEV) distribu-

tions is frequently used to model the maxima (or minima) of a

large set of random variables. The GEV distribution combines

the Gumbel, Fréchet and Weibull distributions into a single

family with a common cumulative density function (CDF)

given by

Fðx;�; �; �Þ ¼ exp � 1þ �
x � �

�

� �h i� 1=�
� �

; ð46Þ

where � is the location parameter, � > 0 is the scale parameter

and � is the shape parameter.

Note that 1 + �[(x � �)/�] should be greater than zero. The

probability density function (PDF) is

f ðx;�; �; �Þ ¼

1

�
1þ �

x � �

�

� �h i� ð1þ1=�Þ

� exp � 1þ �
x � �

�

� �h i� 1=�
� �

; if � 6¼ 0;

1

�
exp �

x � �

�

� �

� exp � exp �
x � �

�

� �h i
; if � ¼ 0:

8
>>>>>>>><

>>>>>>>>:

ð47Þ
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Table 1
Quantification of the asphericity of the template.

Target Order Sinvariant Svariant Sinvariant/(Sinvariant + Svariant)

Apoferritin 120 0.0020 0.0122 0.1388

Tubulin patch 120 0.0007 0.0095 0.0722
Clathrin monomer 120 0.0007 0.0087 0.0782

Figure 22
Normalized cross-correlation r(i, j; �) between simulated particle images in Fig. 3 and 2D projections generated at varying �. The 2D projections were
generated by keeping the angles  and ’ equal to those of the simulated particles in Fig. 3 [(a) apoferritin and (b, c) tubulin patches] while uniformly
sampling the polar angle � at 0.5� intervals between 0 and �. In all three cases, r(i, j; �) is sharp around the optimal � = �0.



When � is zero, the distribution is simplified to the Gumbel

distribution.

C2. Modeling the z-score map using the GEV distribution

The cross-correlations r(i, j) at different locations in the

cryo-EM image can have different statistical behaviors: (i) for

locations without targets and dominated by shot noise, the

correlations are primarily affected by noise, leading to overall

low values and possibly higher variations; (ii) for locations

with background noise (membranes or dense structures in the

cell), the correlations tend to have higher values but still do

not depend on orientations; and (iii) for locations with sear-

ched targets, the correlations depend on the orientation and

can be significantly higher at the correct orientation.

The 2DTM z-score is essentially a scaled maximal value

drawn from a large number of correlations. For locations

without targets, cases (i) and (ii), the normalization during

the z-score calculation removes local variations caused by

heterogeneous densities (for example membranes and other

cellular structures) and varying imaging conditions, aligning

the z-scores more closely with the GEV distribution. The

results are shown in Table 2.
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Martı́nez, M., Myška, D., Strelak, D., Filipovic, J., Sorzano, C. O. S.
& Carazo, J. M. (2023). Nat. Commun. 14, 154.

Himes, B. & Grigorieff, N. (2021). IUCrJ, 8, 943–953.
Horner, J. L. & Gianino, P. D. (1984). Appl. Opt. 23, 812–816.
Kaksonen, M. & Roux, A. (2018). Nat. Rev. Mol. Cell Biol. 19, 313–

326.
Lam, V. & Villa, E. (2021). Methods Mol. Biol. 2215, 49–82.
Lucas, B. A. & Grigorieff, N. (2023). Proc. Natl Acad. Sci. USA, 120,

e2301852120.
Lucas, B. A., Himes, B. A. & Grigorieff, N. (2023). eLife, 12,

12RP90486.
Lucas, B. A., Himes, B. A., Xue, L., Grant, T., Mahamid, J. &

Grigorieff, N. (2021). eLife, 10, e68946.
Lucas, B. A., Zhang, K., Loerch, S. & Grigorieff, N. (2022). eLife, 11,

e79272.
Maurer, V. J., Siggel, M. & Kosinski, J. (2024). SoftwareX, 25, 101636.
Morris, K. L., Jones, J. R., Halebian, M., Wu, S., Baker, M., Armache,

J.-P., Avila Ibarra, A., Sessions, R. B., Cameron, A. D., Cheng, Y. &
Smith, C. J. (2019). Nat. Struct. Mol. Biol. 26, 890–898.

Peet, M. J., Henderson, R. & Russo, C. J. (2019). Ultramicroscopy,
203, 125–131.

Rangan, A., Spivak, M., Andén, J. & Barnett, A. (2020). Inverse
Probl. 36, 024001.

Rangan, A. V. (2022). Inverse Probl. 39, 015003.
Rickgauer, J. P., Choi, H., Lippincott-Schwartz, J. & Denk, W. (2020).

bioRxiv, 2020.04.22.053868.
Rickgauer, J. P., Grigorieff, N. & Denk, W. (2017). eLife, 6, e25648.
Rohou, A. & Grigorieff, N. (2015). J. Struct. Biol. 192, 216–221.
Roseman, A. (2004). J. Struct. Biol. 145, 91–99.
Roseman, A. M. (2003). Ultramicroscopy, 94, 225–236.
Schnell, H. M., Walsh, R. M. Jr, Rawson, S., Kaur, M., Bhanu, M. K.,

Tian, G., Prado, M. A., Guerra-Moreno, A., Paulo, J. A., Gygi, S. P.,
Roelofs, J., Finley, D. & Hanna, J. (2021). Nat. Struct. Mol. Biol. 28,
418–425.

Shang, Z. & Sigworth, F. J. (2012). J. Struct. Biol. 180, 10–16.

research papers

IUCrJ (2025). 12 Kexin Zhang et al. � Robust target detection in cryo-EM 21 of 22

Table 2
Generalized extreme value parameter fitting of 2DTM z-scores of yeast
lamella images.

Image ID Shape (c) Location (�) Scale (�)

148 0.024 6.311 0.16
150 0.021 6.309 0.159

151 0.026 6.309 0.16
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