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Although the method of crystal structure determination by diffraction is well over a

century old (Friedrich et al., 1913), its importance continues to grow, and at an increasing

rate. We have become accustomed to the fact that every crystalline material is examined

sooner or later using diffraction, and ultimately all atomic positions are determined in

three-dimensional space, meaning that chemical analysis is also provided free of charge

via a detour. Once the atomic positions have been found, quantum-chemical calculations

can be carried out, because the sheer existence of the substance, the molecule, the

material ultimately needs to be understood. What a wonderful method – quite aston-

ishing. And what would science look like if this method didn’t exist?

Nonetheless, even in a rock-solid crystal the atoms are not standing still, not even at

absolute zero temperature (if only for quantum-mechanical reasons, thus spoke

Heisenberg). And at finite temperatures the atoms have to move even more, and they

have to do so collectively, otherwise it wouldn’t remain a crystal. So collective vibrations

in the crystal – called phonons – become excited, and it is precisely these movements that

change the X-ray or neutron intensities. Incidentally, contrary to original fears, the

moving atoms also result in sharp diffraction images, despite their movement. This is the

subject of the topical review by Hoser and Madsen (2025), two proven experts in this

field, in the current issue of IUCrJ, using the properly chosen example of small

(everyday) molecules.

Their work provides a competent overview of the significance and modeling of thermal

movements in crystals. The protagonist is the so-called Debye–Waller factor (Debye,

1913; Waller, 1923), which is mathematically attached to the atomic form factor as a

correction term. Considering the pure atom–beam interaction, it is precisely the Debye–

Waller factor that causes the observed diffraction intensities to decrease at finite

temperature due to the atom oscillating back and forth. If the intensities can be measured

precisely enough, the thermal movement can also be reconstructed precisely upon

modeling these intensities, regardless of which radiation source is used.

Originally it looked – partly due to poor data, partly due to a lack of theory – as if

atomic motion were isotropic (i.e. the same in all spatial directions). For high-symmetry

crystals (cubic table salt is a good example) this crude assumption is sufficient, but not so

in more complex cases. In molecular crystals, for instance, the atoms are bound to certain

neighboring atoms (but not to others), so the thermal movement can and will be highly

anisotropic, because it reflects the differing chemical bondings. Hence, in 2025, we

routinely talk about anisotropic displacement parameters (ADPs), which are needed to

describe atomic motion mathematically. To do so, a symmetrical 3 � 3 matrix – typically

denoted as U – is required. Its elements would be very difficult to visualise if C. K.

Johnson had not demonstrated, exactly 60 years ago using the ‘Oak Ridge Thermal

Ellipsoid Plot’ (ORTEP) program, how to represent the thermal movement graphically

(Johnson, 1965). Fig. 1 shows a typical case in an idealized form. In a figurative sense, we

‘see’ how the atom moves or displaces or oscillates, because the blue atom on the left

looks isotropic but as we move towards the right-hand side of the figure the vertical

oscillation component (one main axis) becomes increasingly larger, as the quotient for

the orange and red atoms indicates. The ellipsoid could of course also be tilted in space,

for which the non-diagonal elements of U would then be needed.

So much for the gray theory, but life is much more colorful. In the practice of crystal

structure analysis, the anisotropic displacement parameters are routinely used to refine a

crystal structure as perfectly as possible, under the plausible assumption – but what an
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assumption! – that these ADPs actually describe the atomic

motions correctly. However, it is also conceivable that the

ADPs conceal or disguise certain residual errors or even

incorrect models, as ‘botch’ parameters, so to speak. So do the

ADPs actually reflect the thermal motion? Or is the structural

model incorrect, possibly disordered? How can one demon-

strate that? Could powerful theory help, especially in experi-

mentally difficult situations?

Using small molecules as the most fitting examples, Hoser

and Madsen discuss various approaches to modeling the

atomic thermal motion in a very pedagogical way, starting with

lattice dynamics and dispersion analysis of various phonon

modes in reciprocal space. They continue with the more-or-

less direct calculation of the Debye–Waller factor using

(empirical) force fields, ab initio calculations and molecular

dynamics simulations. A real challenge lies in the anharmonic

movements that lead to, for example, thermal expansion of the

crystal, and which can be described using extended formulas

(say, Gram–Charlier series). High-resolution diffraction data

as complete as possible are essential here, in addition to

a correct structural (and ideally also electronic structure)

model. The challenges of hydrogen atoms and the compar-

ability of X-ray and neutron diffraction are also explained,

including approaches for validating ADPs.

In their review, Hoser and Madsen finally discuss specia-

lized models (e.g. ‘rigid body’ and ‘TLS’ = translation/libra-

tion/screw analysis) that allow the interpretation of collective

motions of groups of atoms belonging together, and they

explain the SHADE approach for the treatment of hydrogen

atoms bonded to C, N and O. In addition, thermodynamic

quantities such as vibrational entropies or heat capacities can

be estimated from really precise ADPs. All this results in a

close interplay between precise experiments, advanced theory

and computer simulations, these days known as ‘quantum

crystallography’, to capture precisely thermal motion (and

possible deviations from that) in small-molecule crystals. In

the future, diffuse scattering will also be looked at more

closely, and machine learning will be given its chance.

That being said, a lot has happened since 1913, and in view

of more precise measurements and – the subject of their

topical review – considerably more powerful modeling

methods, nothing stands in the way of the quantitative analysis

of atomic movements. There is a great deal of additional

information in these movements that is worth exploiting, as

nicely demonstrated by Hoser and Madsen.
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Figure 1
An ORTEP representation of an arbitrary atom with different ratios of
lowest and highest principal-axis displacement parameters, i.e. reflecting
the amount of asphericity, with most isotropic on the left (in blue) and
most anisotropic on the right (in red). Adapted from Deringer et al., 2014,
with permission from The Royal Society of Chemistry.
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