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The Debye–Waller factor, introduced a century ago, remains a fundamental

component in the refinement of crystal structures against X-ray, neutron and

electron diffraction data. This review marks its centenary by exploring its

applications in small-molecule crystallography. We provide a historical overview

of the development of the Debye–Waller factor and its foundations in lattice

dynamics. The review discusses the practical use of anisotropic displacement

parameters and their role in accurate structure determination. We also address

the challenges and advancements in modelling thermal motion and disorder, the

role of multi-temperature measurements and modern computational approa-

ches.

1. The Debye–Waller factor: 100 years of modelling

Soon after the famous discovery in 1912 that crystals diffract

X-rays (Friedrich et al., 1913), it became evident that the

intensities of the diffracted X-rays depend on the temperature

of the measurements (Bragg, 1914).

This variation was attributed to the thermal motion of

atoms within the crystal lattice: the perfect crystal symmetry –

where every atom can be related to equivalent atoms in other

unit cells – is broken when the atoms wiggle about their mean

positions: this causes a reduction in the diffracted intensities.

The higher the temperature, the greater the reduction in the

intensities observed.

At the same time as the discovery of X-ray diffraction, Max

Born and Theodore von Kármán developed a theoretical

model of atomic vibrations in crystals called ‘lattice dynamics’

(Born & von Kármán, 1912). In their approach, interacting

atoms give rise to waves of motion (called phonons)

throughout the crystal. This theoretical framework for

understanding the vibrations of atoms in a crystal lattice

provided the foundation for Peter Debye’s model of specific

heat and phonon behaviour in solids (Debye, 1912), and led to

the quantification of the effect of thermal vibrations on the

scattering intensity (Debye, 1913) and this was furthered by

Ivar Waller leading to the formulation of the Debye–Waller

factor (Waller, 1923). The effect of temperature on the

diffracted intensities was confirmed by more accurate

measurements in the same period (James, 1925; James & Firth,

1927; Backhurst, 1922).

A century has passed, and the Debye–Waller factor (DW

factor) still plays a central role in the models of crystals refined

against X-ray, neutron and electron diffraction data.

In this contribution, we celebrate the centennial of the

Debye–Waller factor by describing its applications in the

context of small-molecule crystallography. In particular, we

would like to give an introduction to thermal motion that is
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not too technical, and to provide pointers to places in the

literature that we have found useful to further our under-

standing.

For many chemists that use crystallography as an analytical

tool, the displacement parameters are mostly considered a

convenient way to lower the refinement statistics and to help

find accurate positions of the atoms. However, as we hope to

convey in the following, there is a lot of information hidden in

the analysis of Debye–Waller factors.

2. The Debye–Waller factor and anisotropic

displacement parameters

Let us start by considering how the Debye–Waller factor is

defined in the context of the usual scattering formalism used in

X-ray crystallography. We consider the case of X-ray diffrac-

tion, but similar (though not identical) considerations apply to

neutron and electron diffraction measurements. Atoms in a

crystal lattice vibrate about their mean positions, even at the

lowest temperatures because of zero-point motion. This

implies that the measured diffraction intensities correspond to

the scattering from an electron density h�(r)i in the unit cell

that is time- and spatially-averaged over all unit cells in the

crystal. The structure factor for reflection h becomes a Fourier

transformation of this average electron density,

FðhÞ ¼

Z

h�ðrÞi expð2�ih � rÞ dr: ð1Þ

This average electron density can be approximated as a sum of

individual atomic contributions. Each atom m can be

described as the convolution of a static atomic density �m and

a function pm that describes the probability density of the

position of the atom with respect to the atom’s reference

position rm0. We sum up over all N atoms in the unit cell and

multiply by each atom’s occupancy factor nm.

h�ðrÞi �
XN

m¼1

nm

Z

�mðr � rmÞpmðrm � rm0Þ drm: ð2Þ

This approximation implies that the atomic electron densities

�m are smeared out with pm but are not deformed as a function

of the displacements, a model that has been termed the ‘rigid

pseudo atom model’.

The Fourier transform of the equation above gives the

conventional approximation for the structure factor of a Bragg

reflection:

FðhÞ �
XN

m¼1

nmfmðhÞTmðhÞ expð2�ih � rm0Þ: ð3Þ

The scattering for each atom is a product of the atomic form

factor fm(h), representing the scattering from a static picture

(static electron density in the case of X-rays, static nucleus in

the case of neutrons and a static electrostatic potential in the

case of electron scattering). The Debye–Waller factor Tm(h) is

the Fourier transform of the probability density function

TmðhÞ ¼

Z

pmðuÞ expð2�ih � uÞ du; ð4Þ

where u = rm � rm0. Tm(h) accounts for the reduction in the

amplitude of the structure factor due to the averaging of this

static object in both time and space between different unit

cells. This smearing can be due to thermal motion but also due

to static or dynamic disorder.

In the equation above, the probability density function

pm(u) can take any form. In almost all crystallographic models,

the choice is to use a 1D or 3D Gaussian function. In fact, it

can be shown using the lattice-dynamical theory (see below)

that, in the harmonic approximation, this is the correct form of

the function (Willis & Pryor, 1975; chapter 4). The Fourier

transform of a 3D Gaussian is conveniently also a Gaussian,

and the Debye–Waller factor assumes the following expres-

sion:

TðhÞ ¼ exp � hTb h
� �� �

; ð5Þ

where b is a symmetrical 3 � 3 matrix with components �ij.

The quantity �ij is one of the forms of the anisotropic

displacement parameter (ADP). In typical crystallographic

software it is more common to use the following form of the

displacement parameters:

Uij ¼
�ij

2�2aiaj
; ð6Þ

where ai, aj are the lengths of the reciprocal lattice vectors. The

exact expression for T(h) varies in the literature, because the

U tensor can be expressed in different coordinate systems. A

very thorough description of these matters can be found in the

report of an IUCr Subcommittee on Atomic Displacement
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Figure 1
Ellipsoids used in crystallographic illustrations. The 3D equal-probability
ellipsoids (shown in the insert) can be understood by considering the 2D
example, where ellipses of equal probability can be shown in both direct
(blue) and reciprocal (green) space. Illustration inspired by the excellent
book by Dunitz (1995).



Parameter Nomenclature (Trueblood et al., 1996), and we can

also recommend the review by Downs (2000). The elements of

U have dimension (length)2 and can be associated with the

mean-square displacement in the corresponding directions.

The 3D Gaussian function defined by U can be illustrated by

surfaces of constant probability: these are the displacement

ellipsoids that are common in crystallographic structure

illustrations, see Fig. 1, where the insert shows the typical 3D

surface and we show a 2D example of an equal-probability

surface of an anisotropic probability density function (blue)

and the corresponding equiprobability contour of the Debye–

Waller factor. The larger the mean square displacement (given

by the blue surface), the smaller the scattering power of the

atom (given by the green surface) in that direction.

There is one overall problem related to the use of atomic

displacement parameters. Implicitly, it is assumed that each

atom is vibrating independently in the mean field of the

surrounding atoms in the crystal. However, it is rather the case

that the atoms are interacting, and covalently bound atoms are

to a large extent behaving as rigid entities (with a few torsional

motions) that vibrate collectively in the crystal.

These phenomena are considered by the theory of lattice

dynamics.

3. Lattice dynamics

Born and von Kármán introduced the idea of treating the

crystal as a periodic array of atoms related by harmonic

potentials (springs), which can vibrate collectively. They

proposed periodic boundary conditions, meaning the crystal is

imagined as repeating infinitely in all directions. This simpli-

fication allows for the calculation of vibrational modes and

frequencies, which provides an understanding of heat

capacity, thermal conductivity, elastic constants and other

properties of the crystal. It also provides a direct link to the

Debye–Waller factors that we can derive from diffraction

measurements.

It is not the purpose of this text to describe the theory of

lattice dynamics in full, but we think it makes sense to give a

sketch of it, so that we can contrast the lattice-dynamical

model with the simpler models that are typically used in

crystallography. An in-depth description of lattice dynamics

can be found in many textbooks (e.g. Willis & Pryor, 1975;

Dove, 1993). We also recommend Gavezzotti (2007), which

inspired the description below.

The lattice-dynamical approach describes atomic vibrations

in terms of travelling waves through the crystal. Each wave –

called a phonon – has a particular pattern of motion of atoms.

The associated wavelength of these phonons affects the energy

– and thus frequency – of the motion. This relation between

the wavelength of the phonon and the corresponding

frequency can be summarized in a so-called ‘dispersion

diagram’. On this diagram, normalized reciprocal space

vectors describe the direction of propagation of phonons and

how the wavelength of these phonons is related to their

frequencies of vibration.

In the language of lattice dynamics, wavevectors expressed

in the reciprocal lattice are given the symbol k. Each wave-

vector k represents a direction and wavelength � of a propa-

gating wave. There is an inverse relationship between the

length of k and the wavelength: |k| = 2�/�. Because of the

periodic nature of crystals, it suffices to consider a small

fraction of reciprocal space, namely the space from a reci-

procal lattice point and half-way to each neighbouring lattice

point. This space is called the irreducible Brillouin zone, or

simply ‘the Brillouin zone’. In a real 3D crystal, the Brillouin

zone is a 3D space. For visualization purposes, the dispersion

relations are typically depicted in certain directions of interest

of reciprocal space, which are often chosen to be specific high-

symmetry directions. These directions are selected because

they provide the most information about the vibrational

properties of the materials. Most notably, the � (Gamma)

point is the centre of the Brillouin zone (|k| = 0) and represents

the long-wavelength limit of the phonon modes, and the X

point is the boundary of the Brillouin zone along the [100]

direction.

In a phonon vibration, atoms in different unit cells show the

same motion, but not at the same time. If the wavelength of

the phonon is long compared with the lattice dimensions,

equivalent atoms in adjacent unit cells will move almost in
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Figure 2
The basic idea of dispersion relations in the theory of lattice dynamics, for a two-atom unit cell.



phase. If the wavelength is short, equivalent atoms – or

molecules – in ajacent unit cells will be out of phase.

In order for the reader to grasp the idea of the lattice-

dynamical model, we consider a 1D case: consider an endless

string of two-atom molecules separated by a lattice spacing

(Fig. 2); the molecules will vibrate along the string, and the

movements of the molecules will depend on the neighbouring

molecules, but also on next-nearest neighbours and further on

to some extent.

In the computational machinery of lattice dynamics, the

force constants between each and every atom have to be

calculated. Of course, if we consider an endless string, this

would sum up to an infinite number of calculations; however,

at longer distances the forces become insignificant, and it is

often sufficient to calculate forces in a small supercell.

In Fig. 2 we consider two typical types of motion. The first is

the intermolecular vibration, where rigid molecules interact

with each other (shown in blue). On the left side of the

dispersion diagram, |k| is small and the wavelength of the

vibration is very large. This implies that the molecules vibrate

in phase, and the frequency ! of the vibration (which is

proportional to the energy) is also very small, going towards

zero as the wavelength goes towards infinity. Following this

(blue) phonon branch towards the border of the Brillouin

zone (right side), we have a short wavelength, where adjacent

molecules are out of phase: they bump in to each other. This

corresponds to a much larger energy of the phonon, which is

reflected in the larger frequency of the vibration.

The second vibration (green) that we consider is the

intramolecular bond stretch. The intramolecular vibrations

typically have higher frequencies than the intermolecular

ones. When we contrast the in-phase vibrations (left side of

the diagram) with the out-of-phase diagram (right side), we

see that the intermolecular distances are shorter, and thus the

energy is higher when the molecules are vibrating in phase.

The dispersion curve is therefore declining as |k| becomes

higher. In a real 3D molecular system there are many more

dispersion curves (see an example for urea in Fig. 3). If the

molecules are flexible, there will be no sharp delimiter

between the low-frequency intermolecular vibrations and

the high-frequency intramolecular ones. Rather, there will be

an intermediate region in the dispersion diagram which

consists of modes that combine inter- and intramolecular

vibrations.
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Figure 3
Dispersion curves of the urea crystal in the [001] direction of reciprocal space, as well as calculated displacement ellipsoids (50%) corresponding to
123 K, based on ab initio calculations from Madsen et al. (2013). Blue and red indicate the low-frequency ‘external’ phonons and ‘internal’ phonons,
respectively. The two domains of motion contribute differently to the displacements, as seen in the ellipsoid drawings in blue and red, and sum up to the
ellipsoids depicted in greyscale. Published dispersion curves typically cover several directions in k-space, and would be more complicated than what we
depict here.



The basic behaviour of phonons, as laid out in the lattice-

dynamical theory, has proven to be a useful model that

corresponds well with experimental results. In particular,

dispersion relations such as the one sketched in Fig. 2 can be

measured using inelastic neutron scattering experiments on

single crystals. This technique has been an important tool for

studying extended solids, such as minerals (Chaplot et al.,

2002). These experiments are time consuming and require

very large crystals (some cubic centimetres), and it is no

wonder that relatively few dispersion curves have been

mapped out. In the case of molecular crystals, only a handful

of systems have been explored, and these systems consist of

very small molecules in lattices of high symmetry (Micu et al.,

1995; Pawley, 1969; Schatschneider et al., 2012; Chaplot et al.,

1983; Lefebvre et al., 1975; Dolling & Powell, 1970; Natkaniec

et al., 1980; Dove et al., 1989).

A great deal of information about vibrational modes can

also be obtained from Raman and infrared spectroscopies.

These techniques provide information on the frequencies of

phonons in the long-wavelength limit (the left edge of the

diagram in Fig. 2, which is called the � point).

Lattice-dynamical theory relies on the harmonic approx-

imation. This implies that phenomena such as thermal

expansion cannot be explained based on this model. Lattice-

dynamical models moving beyond the harmonic approxima-

tion are being proposed (Monacelli et al., 2021; Castellano et

al., 2023).

4. Calculation of Debye–Waller factors from theory

If a full lattice-dynamical model has been constructed – i.e. a

description of the lattice vibrations (called normal modes) and

their frequencies, covering all areas of the Brillouin zone in a

dense grid – then it is possible to calculate the atomic Debye–

Waller factors by summing mean square displacements from

all possible normal modes. Such a model can be obtained in a

number of ways, as outlined in the following sections.

4.1. Force fields fitted against experimental dispersion curves

One approach is to fit a model of interatomic forces against

the dispersion curves obtained from inelastic neutron scat-

tering and Raman spectroscopy. This was done for urotropine

(Willis & Howard, 1975) and for silicon (Flensburg & Stewart,

1999). In both cases, the comparison between the Debye–

Waller factors obtained from diffraction measurements and

the lattice-dynamical approach showed a very good agree-

ment. These results testify that in these cases, the ADPs that

we derive from X-ray and neutron crystallography do corre-

spond to the mean-square displacements of the atoms in the

crystal, and are only biased by other effects (see Section 5) to a

lesser extent.

4.2. Ab initio and force-field calculations

The lattice-dynamical model has been used to calculate the

Debye–Waller factors in a number of studies. Pioneering work

in the late 1970s and 1980s by Gramaccioli and co-workers was

done on molecular crystals using empirical force fields

(Gramaccioli et al., 1982; Gramaccioli & Filippini, 1983).

These studies showed a reasonable agreement with experi-

mental Debye–Waller factors from neutron diffraction studies.

In recent years, it has become feasible to derive the force

constants from ab initio calculations to set up the lattice-

dynamical model. One approach that has been used quite

extensively is to perform periodic calculations, either using

atom-centred basis sets (Madsen et al., 2013) or plane-wave

calculations (Deringer et al., 2014; George et al., 2015, 2016). A

computationally faster alternative is to use so-called ONIOM

calculations, which describe central atoms at a high level of

theory and atoms in the perimeter of the system at a lower

level (Dittrich et al., 2012).

In such ab initio calculations, it is often found that the

frequencies of intramolecular vibrations match very well with

information from Raman and IR spectroscopy (Scott &

Radom, 1996). However, the ‘softer’ vibrations that are

dominated by intermolecular motion, and also combinations

of inter- and intramolecular vibrations, are much more difficult

to calculate. This is because the potential energy hypersurface

that determines the frequencies of these vibrations is based on

quite weak interactions, including dispersion forces that are

difficult to assess accurately using density-functional theory

(DFT) calculations. The majority of the contribution to the

ADPs comes from the low-frequency modes, as can be seen in

Fig. 3, which illustrates some dispersion curves and the

corresponding displacement ellipsoids for the urea crystal.

Nevertheless, the resulting calculated ADPs are often found to

be in reasonable agreement with the experimentally deter-

mined ADPs. To consider the temperature-dependent lattice

expansion, one can apply the so-called quasi-harmonic

approximation, where the harmonically approximated forces

are calculated at different (experimentally determined) lattice

dimensions corresponding to different temperatures. This

approach considerably improves the agreement of measured

and calculated ADPs at higher temperatures (George et al.,

2017).

Most software packages that perform periodic DFT calcu-

lations can compute a lattice-dynamical model. Some of these

programs can also compute the ADPs [e.g. the CRYSTAL

program (Erba et al., 2023)], but there is also dedicated

auxiliary software that can perform the task, one notable

example being the program phonopy (Togo et al., 2023), which

can interface to many different periodic ab initio programs.

4.3. Debye–Waller factors from molecular dynamics

simulations

The lattice-dynamical approaches mentioned above typi-

cally employ the harmonic approximation, which is sufficient

for calculating ADPs. However anharmonic effects are often

seen in high-resolution crystallographic studies (see further in

Section 6). In this context, molecular dynamics simulations can

provide an alternative view beyond the harmonic approx-

imation. Reilly et al. (2007, 2011) used such ab initio molecular

dynamics simulations in order to come up with alternative
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functions to describe atomic motion in crystallographic

models providing curvilinear motion which cannot be

obtained with the standard harmonic approach.

Molecular dynamics simulations are more often based on

empirical force fields. This implies that the calculations are

orders of magnitude faster than the ab initio based approa-

ches. However, the results are very dependent on the applied

force field, and this approach tends to underestimate the

magnitude of ADPs compared with the experimental results

(Nemkevich et al., 2010). A promising alternative can be to use

machine learning to derive force fields from ab initio calcu-

lations. This approach is faster than ab initio molecular

dynamics and more accurate than classical force fields (Liu et

al., 2021).

5. Anisotropic displacement parameters from

diffraction experiments

As mentioned in the introduction, Debye–Waller factors can

be obtained not only from X-ray diffraction measurements,

but also from neutron and electron diffraction measurements.

ADPs can be affected by many factors. Some of them are

obvious and arise from the physical meaning of the ADPs, e.g.

temperature (higher temperature gives larger ADPs), atomic

mass (heavier atoms give smaller ADPs) and the APDs must

obey the crystal symmetry.

While it is common for articles reporting new structures to

include figures depicting displacement ellipsoids, the accurate

determination of these parameters is neither a straightforward

nor a trivial task. In the following section, we provide a

detailed explanation of the underlying reasons. We will first

focus on single-crystal X-ray diffraction measurements, and

then discuss neutron diffraction.

The intensity of a Bragg peak is given by the equation

IðhÞ ¼ I0jFðhÞj
2AðhÞPLðhÞ

�3�

V2
; ð7Þ

where I0 is the intensity of the incident beam; |Fh|2 is the

squared modulus of the structure factor for reflection h, which

includes the Debye–Waller factor; A is the absorption coeffi-

cient; P is the polarization correction; L is the Lorentz factor;

� is the radiation wavelength; � is the volume of a crystal; and

V is the unit-cell volume.

It is immediately apparent that inaccurate modelling of

density or issues with the absorption coefficient can lead to

unreliable ADPs. Any problems arising from an incorrect

structural model, improper electron density description,

absorption corrections or other experimental difficulties will

likewise impact the accuracy of the ADPs. Consequently,

ADPs are frequently regarded as a catch-all for various

experimental errors.

5.1. Disorder or thermal motion?

One should keep in mind that ADPs are ‘displacement

factors’ not just temperature factors. Displacement of atoms

from their positions in the crystal might be related not only to

thermal vibrations and motion of atoms, but also to any type

of disorder. Configurational disorders, however small, will

affect ADPs. In some cases, it might be difficult to distinguish

between disorder and thermal motion – multi-temperature

measurements can help [ADPs that appear elongated at

higher temperatures might model several atomic sites, which

can be revealed when the thermal motion is diminished at

lower temperatures (Bürgi, 2000), or diffraction can be

complemented by other techniques such as solid-state NMR

(Moran et al., 2017)]. Occupational disorders, modulations and

thermal diffuse scattering (Wahlberg & Madsen, 2017) will

also affect ADPs.

5.2. Factors related to experiment: data collection strategy

It is important to be aware that the strategy used during

single-crystal X-ray diffraction measurement is crucial for

obtaining accurate ADPs. Data collection resolution and

completeness strongly affect the ADPs. When the resolution is

not high enough, bonding density might not be separated from

ADPs accurately and the ADPs might be too large, especially

in the bond direction. It was shown by Parsons with leverage

analysis in an analysis of diffraction data for l-alanine that

data above sin(�)/� = 0.6 Å� 1 are most influential for the

ADPs (Parsons et al., 2012). Application of modern quantum

crystallography techniques during refinement might solve the

problem of deconvolution of bonding density from ADPs as

we discuss further in Section 5.4.

It is much more complicated to overcome problems related

to data completeness, which are often encountered in the case

of complicated experimental setups such as high pressure,

humidity cells or furnaces, as well as for collection of Laue

neutron diffraction data and electron diffraction data. It is well

known (however not studied systematically yet) that a missing

cusp of data leads to elongation of ADPs along the direction

where the data are missing. Obviously, in the case of all types

of experiments it is important to try to obtain the best possible

completeness. In the case of high-pressure data, it can be done

by orienting the crystal properly in the diamond anvil cell

(DAC) (Tchoń & Makal, 2021). Another option to improve

completeness is to merge datasets from different crystals,

although this may also be problematic (e.g. in the case of

electron diffraction data), where dynamical scattering effects

will be different for every crystal. Usually in the case of low-

symmetry compounds even with proper orientation of the

crystal in a DAC it might be difficult to get full completeness.

Thus, during the refinement of such incomplete data, in many

cases constraints and restraints on ADPs must be imposed.

Note that ADPs may also be affected by radiation damage [as

shown by McMonagle et al. (2024)].

5.3. Factors related to data treatment

The correct treatment of data is crucial for obtaining

accurate ADPs. In the case of compounds containing heavy

and strongly absorbing elements, an absorption correction

should be applied. It was recently shown that, for strongly

absorbing atoms, ADPs computed using DFT calculations are
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in better agreement with those obtained from the refinement

of synchrotron data (smaller crystals, shorter wavelength, less

absorption) than from in-house measurements (Mroz et al.,

2020). The impact of refining an extinction coefficient and the

use of a weighting scheme for the observed intentities during

refinement was investigated in a study of low albite

(Armbruster et al., 1990), where differences of about 0.01 Å2

were observed depending on the use of an extinction correc-

tion and a weighting scheme of 1/� or no weights. Similar

conclusions were drawn by Capelli and co-workers (Bürgi et

al., 2000); errors in the ADPs might be the result of insufficient

extinction correction in the diffraction data.

5.4. Factors related to refinement

Pioneers in experimental charge density studies, Philip

Coppens and Tibor Koritzansky have stated that ‘no reason-

able estimate of the charge density parameters can be

obtained without an adequate description of the thermal

motion’ (Koritsanszky & Coppens, 2001). Obviously, this kind

of relation is mutual: without an adequate description of the

electron density, it is not possible to accurately characterize

thermal motion. Therefore, to get the best possible thermal

motion description, it is crucial to use the best possible density

models. At present the most frequently applied models which

take the asphericity of the electron density into account are

the TAAM (transferable aspherical atom model) (Dominiak

et al., 2007; Jarzembska & Dominiak, 2012) and the HAR

(Hirshfeld atom refinement) (Jayatilaka & Dittrich, 2008;

Capelli et al., 2014). It was shown by Sanjuan-Szklarz et al.

(2016) that by application of TAAM or HAR one can improve

the deconvolution of thermal motion and electron density

even for low-resolution data.

HAR and TAAM refinements can easily be conducted in

Olex2 (Dolomanov et al., 2009) using NoSpherA2 (Kleemiss et

al., 2021), and we would advocate this type of refinement for

standard structure solution in order to obtain more accurate

atomic coordinates as well as ADPs.

It has become possible to use aspherical density models

even for disordered structures. In the presence of disorder, it is

not uncommon for the ADPs to appear elongated. This could

indicate that the refinement is not adequately capturing the

complexity of the disorder, or that the disorder is too subtle or

hidden by symmetry (Bürgi & Capelli, 2003). If the disorder

cannot be described properly by refining multiple atomic sites,

it may be necessary to apply constraints or restraints to the

ADPs during the refinement process.

Another important consideration during the refinement

process is whether a harmonic model sufficiently captures the

motion of the atoms, or if it would be more appropriate to

employ models that account for anharmonic motion, as we will

discuss Section 6.

5.5. ADPs from single-crystal neutron diffraction

In the case of neutron diffraction, radiation is scattered not

by electron density but by nuclei. In contrast to X-ray atomic

scattering factors, scattering lengths for neutron diffraction do

not decrease with sin(�)/� and are not dependent on the

number of electrons or protons. Therefore, single-crystal

neutron diffraction offers a unique opportunity to obtain

accurate positions and atomic displacements for hydrogen

atoms. This advantage is particularly important in the case of

strong hydrogen bonds (Cowan et al., 2005; Wilson & Thomas,

2005) or other exotic X—H bonds. Additionally, hydrogen

atom positions and ADPs obtained from neutron diffraction

can be applied when performing multipolar refinement for

accurate experimental charge density determination (e.g.

Sovago et al., 2014). Moreover, joint X-ray–neutron refine-

ment against two datasets can be conducted (Liebschner et al.,

2023; Coppens et al., 1981). Interesting conclusions can be

made by comparing ADPs of non-hydrogen atoms obtained

for the same structures by neutron and X-ray measurements at

the same temperature. It appears that ADPs from these two

different diffraction techniques may differ significantly. This

phenomenon was investigated by Blessing (1995), who

explained that differences in ADPs obtained by various

diffraction techniques might arise due to different experi-

mental conditions (e.g. slight variations in temperature).

Additionally, as neutron and X-ray diffraction use different

types of radiation and measure different crystal sizes (larger

for neutron diffraction and relatively smaller for X-rays),

factors such as absorption, extinction and multiple scattering –

if not properly accounted for – can contribute to discrepancies

between neutron and X-ray ADPs. Thus, Blessing (1995)

proposed that if hydrogen atom ADPs from neutron diffrac-

tion are to be used during X-ray refinement, the non-hydrogen

ADPs should first be compared. Based on this comparison,

appropriate scaling factors for hydrogen atom ADPs should

be applied. This comparison and scaling can be performed

using the UIJXN program (Blessing, 1995). Later, an inter-

esting comparison of ADPs from neutron and X-ray diffrac-

tion was conducted by Morgenroth et al. (2008), who analysed

ADPs from neutron and X-ray diffraction for seventeen

different structures [see Table 2 in Morgenroth et al. (2008)].

Their study found that an outstanding agreement was

achieved for extremely simple crystals, such as metallic Be.

However, for molecular crystals, deviations between neutron

and X-ray ADPs were larger. Increasing the temperature from

helium levels (� 10 K) to nitrogen levels (� 100 K) appeared

to worsen the agreement between X-ray and neutron ADPs.

Nevertheless, it is possible to obtain extremely good agree-

ment between neutrons and X-rays.

Unfortunately, although there has been progress in single-

crystal neutron diffraction, it still requires larger single crystals

than X-ray diffraction, which are sometimes impossible to

grow.

Debye–Waller factors can be obtained not only from single-

crystal X-ray or single-crystal neutron diffraction, but also

from powder diffraction via Rietveld refinement. Many

studies in which accurate Debye–Waller factors were obtained

by neutron powder diffraction for inorganic systems were

conducted (e.g. Tilli et al., 1980; Mohanlal, 1979; Lawson et al.,

1992), in some cases thermal evolution of Debye–Waller

factors was investigated (e.g. Vidal & Vidal-Valat, 1986).
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Recently, it was shown that with current development of

quantum chemistry methods, for rubidium and caesium

ureate, it is possible to refine against the experimental powder

diffraction neutron data using starting parameters from ab

initio simulations of atomic positions and ADPs (Sterri et al.,

2016).

We emphasize that the availability of neutron sources is

limited, as they are typically found only at specialized research

facilities. Producing a neutron beam requires either a reactor

or a spallation source, making access to measurements more

challenging and time consuming. However, when neutron

diffraction data can be obtained, they are highly beneficial, as

they provide information that is absent in X-ray diffraction

data (e.g. the positions and ADPs of hydrogen atoms,

magnetic properties).

6. Harmonic versus anharmonic approximation

Vibrations of atoms are usually described by means of the

harmonic approximation; it is a fast and simple model.

Unfortunately, the potential energy surface in a crystal is often

more complex. Many physical properties would not exist and

cannot be correctly described within the harmonic approx-

imation, e.g. thermal expansion. In a harmonic potential (Fig.

4), a rise in temperature will allow more vibrational modes to

be populated, but the mean value of the interatomic distance

remains the same. This implies that distances between atoms

and, as a consequence, unit-cell parameters, do not change as a

function of temperature within this approximation. In

contrast, when anharmonicity is considered the potential

curve has a nonsymmetric shape, and one can immediately see

that the mean values of internuclear distances are increasing

with the temperature because higher energy levels are popu-

lated.

Beyond the harmonic approximation the probability

density function, pk(u), will not be well described by a 3D

Gaussian function. This means that ADPs, which are purely

harmonic, will not be able to model anharmonic effects. This

might be manifested in unmodelled residual density near

atoms. The residual density will have a characteristic shashlik-

like pattern.

The first thorough theoretical investigations into the effects

of anharmonicity on atomic displacements were conducted in

the early 1960s by Krivoglaz & Tokhonova and Maradudin &

Flinn (1963). The first report of anharmonic structure refine-

ment came when Burns et al. (1963) applied it to single-crystal

neutron diffraction data of XeF4. A large range of studies

related to anharmonicity were carried out and summarized by

Kuhs (1988, 1992). In the cited contributions, Kuhs described

the methods which can be applied to model anharmonic

motion of atoms, i.e. deconvolution of the thermal factors

into Gram–Charlier (Johnson & Levy, 1974) or Edgeworth

series (Johnson, 1969), and the OPP (one particle potential)

formalism. In the most frequently applied approach, Gram–

Charlier coefficients are used as parameters during refine-

ment. The harmonic Debye–Waller factor is amended so that

the full Debye–Waller factor is expressed with the following

formula,

TðhÞ ¼ TharmðhÞ

"

1þ
ð2�iÞ

3

3!
CjklQjQkQl

þ
ð2�iÞ

4

4!
DijklmQjQkQlQm þ � � �

#

;

ð8Þ

where Cjkl and Dijklm are the Gram–Charlier third- and fourth-

order anharmonic terms, and Qj = hj/2�. Here we use

Einstein’s summation rule over repeated indices, and j, k, l, m,

n = 1, 2, 3, respectively, are the Miller indices.

A selection of graphical representations of density modu-

lations due to higher-order terms in the Gram–Charlier series

expansion of a Gaussian atomic probability density function

are provided in International tables for crystallography

Volume D (Kuhs, 2013).

The use of Gram–Charlier parameters comes with a

substantial increase in the number of refined parameters. The

use of third-order terms increases the number of parameters

per atom to 25, and the number of data required for having a

meaningful refinement is high. According to Kuhs (1992),

many attempts to model anharmonicity have failed because

the dataset was not measured at sufficiently high resolution,

rather than because of deficiencies in the models or the quality

of the data. Kuhs formulated rules for the diffraction

measurements which should be obeyed in order to mean-

ingfully refine anharmonic motion. In many cases, where the

data resolution is limited, it might be more meaningful to

consider a model of curvilinear nature, as discussed in Section

4.3.

Refinement of anharmonic motion was carried out even

before models which consider asphericity of the electron

density distribution were developed. Therefore, when unex-

plained residual density appeared in the model, it was hard to

distinguish whether it came from undescribed anharmonic
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Figure 4
Harmonic versus anharmonic potential. In the anharmonic case, the
average internuclear distance changes as a function of temperature, when
more energy levels are populated.



motion or whether it was just a bias of the spherical inde-

pendent atom model.

Thus, many studies related to anharmonicity have been

done with neutron diffraction, which probes the nuclei, and

therefore are not prone to these deconvolution problems

(Volkov et al., 2023). Development of models which account

for the asphericity of the electron density allowed for detec-

tion of anharmonicity in many systems using high-resolution

X-ray diffraction. The first studies which combined anhar-

monic motion treatment with multipolar formalism were done

by the Philip Coppens group (Mallinson et al., 1988). Restori

& Schwarzenbach (1996) showed that multi-temperature

measurements are crucial for unambiguously separating

effects related to anharmonic atomic motion and chemical

bonding. Meindl et al. (2010) analysed how the residual

density distribution as well as the location and strength of

valence-shell charge concentrations change as a consequence

of neglected anharmonic effects. In a very thorough

contribution, Herbst-Irmer et al. (2013) analysed multiple

datasets across varying temperatures and demonstrated that

the anharmonic model in the case of 9-diphenylthio-

phosphinoylanthracene outperformed the disorder model.

They found that the refined multipole parameters were

affected when the anharmonic motion was not adequately

addressed (Herbst-Irmer et al., 2013). This study underscored

the significance of accurately identifying and managing

anharmonic motion. Later on, anharmonic motion was

modelled and analysed in many experimental charge density

studies (Destro et al., 2021; Tidey et al., 2017; Hübschle et al.,

2018; Jarzembska et al., 2015, 2017). In some recent contri-

butions it was shown that anharmonic motion can be refined

not only in the case where the charge density is described by a

multipole model but also when HAR and X-ray wavefunction

fitting is employed (Woinska et al., 2019).

The Gram–Charlier formalism focuses on deviations of the

probability density function due to anharmonicity. However,

as clearly illustrated in Fig. 4, the harmonic approximation

fails to account for thermal expansion, and the potential

energy curve diverges significantly from the harmonic form,

particularly at higher temperatures. This discrepancy affects

the evolution of atomic displacement parameters with

temperature, and should be considered in the analysis of

multi-temperature data, as has been done by Bürgi et al.

(2000). We discuss their approach in Section 8. For more

information related to anharmonicity, an excellent mini-

review is recommended (Volkov et al., 2023).

7. Validation of ADPs

Once the refinement process is completed and has converged,

it is crucial to conduct a thorough analysis of the refinement

statistics and residual density. In addition, verifying the atomic

displacement parameters is essential. A visual inspection of

the atomic displacement parameters can often reveal impor-

tant insights into the accuracy of the structure, such as iden-

tifying misassigned atoms and other potential issues. For

instance, if the atomic displacement parameters are oriented

consistently in one direction, this may indicate problems with

absorption correction. Moreover, small amounts of disorder

within the structure can often be detected through visual

examination of the atomic displacement parameters.

In addition to a visual inspection of atomic displacement

parameters, there are several tests that can be performed to

verify their reliability. One such test that is routinely

conducted as part of the checkCIF procedure is the Hirshfeld

rigid-bond test (Hirshfeld, 1976). The rigid-bond criterion

posits that the mean-square displacement amplitudes of atoms

connected by a covalent bond are equal along the direction of

that bond. This test requires the calculation of the vibration

amplitudes in the direction of the bonds.

In addition to being used solely for validation purposes,

restraints on atomic displacement parameters can also be

established based on the principles of rigid-bond assumptions.

Rollett (1970) applied rigid-bond restraints in the least-

squares refinement of crystal structures by means of additional

observational equations. This approach was later applied in

SHELXL (Sheldrick, 2008) and REFMAC (Murshudov et al.,

2011). Subsequently, Thorn et al. (2012) reformulated the

Hirshfeld rigid-bond condition, so that the relative motion of

the two atoms is required to be perpendicular to the bond, a

so-called enhanced rigid-bond restraint) – the different rigid

bonds are depicted in Fig. 5.

8. Analysis of ADPs: rigid-body analysis and beyond

The rigid-bond tests and constraints mentioned in the previous

section try to impose physically meaningful restraints on the

ADPs. In a similar manner, rigid-body analysis is an attempt to

analyse the atomic mean square displacements of a molecule

as if the molecule was vibrating as a rigid unit, vibrating in the

mean field of the surrounding molecules in the crystal. This

type of analysis can be applied to ADPs coming from any

diffraction technique. Cruickshank (1956e) showed the

connection between displacement and frequency of each

mode of vibration and developed the first analysis of ADPs in

terms of rigid-body vibrations.

Following the pioneering work of Cruickshank (1956c,b),

researchers have analysed the ADPs as if they originated from
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Figure 5
The rigid-bond criterion is satisfied by both (a) and (b), but only (b) fulfils
the enhanced rigid-bond restraint, as defined by Thorn et al. (2012), from
where the figure originates.



collective motion with a considerable amount of success. The

most well known model is the translation/libration/screw

(TLS) model developed by Schomaker & Trueblood (1968),

which has been used in numerous applications. The TLS

approach can be extended to include ‘attached rigid groups’,

and this allows for characterization of internal degrees of

freedom that have been used derive force constants of such

vibrational modes (Trueblood & Dunitz, 1983; Dunitz et al.,

1988). One prominent objective of applying the rigid-body

model has been to obtain libration corrections to the inter-

atomic distances: as first noted by Cruickshank (1956a),

librational motion of molecules causes the refined atomic

positions to be slightly displaced from the true positions

towards the rotation axes.

The ADPs do not contain information about the correlation

of motion between different atoms; however, since the

amplitudes of the vibrational modes depend differently on the

temperature, multi-temperature experiments can recover part

of this correlation, as shown by Bürgi, Capelli and co-workers

(Bürgi & Capelli, 2000; Capelli et al., 2000).

A range of computer programs have been developed to

perform rigid-body analysis, either using the TLS formalism

[PLATON (Spek, 1990) and THMA11 (Schomaker & True-

blood, 1968)] or related models [EKRT (He & Craven, 1985,

1993)].

9. The special case of hydrogen atoms

Due to the relatively low scattering power of hydrogen atoms

(which arises from the lack of any core electron density), it is

difficult to define the positions and thermal parameters for

hydrogen atoms using X-ray diffraction data alone. Therefore,

for a long time constraints and restraints on both position and

isotropic displacement parameters (most commonly elonga-

tion of X—H bond lengths to standard neutron values and the

‘riding’ approximation) were used during refinements. Current

quantum crystallography methods like HAR and TAAM

enable us to precisely find positions of hydrogen atoms, even

in the case of strong hydrogen bonds or for hydrogen atoms

bonded to transition metals. Unfortunately, hydrogen atom

ADPs purely from diffraction data are difficult to capture

even with HAR – in many cases they are elongated in one

direction, sometimes non-positive definite. Despite this

obstacle, the positions of hydrogen atoms can be found

accurately, even when using an isotropic displacement para-

meters for the hydrogen atoms. On the contrary, for more

accurate calculations of properties of charge density distri-

bution, particularly when employing a multipole model or

refining the wavefunction constrained by X-ray data (Jayati-

laka & Grimwood, 2001), it is essential to correct the X—H

bond distances and apply ADPs for hydrogen atoms during

the refinement process (Hoser et al., 2009; Madsen et al., 2004;

Malaspina et al., 2020). Hydrogen ADPs can be obtained via

theoretical calculations, or from the SHADE server or

normal-mode refinement, as described below.

9.1. The SHADE approach

It is possible to analyse the vibrational motion of hydrogen

atoms in a similar vein as the statistical analysis of X—H bond

lengths derived from neutron diffraction studies found in

International tables for crystallography Volume C (Allen et al.,
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Figure 6
Estimated hydrogen atom ADPs for 1-methyluracil using various approaches.



2006). When the total atomic mean square displacement

tensor U has been determined from neutron diffraction

experiments, and the rigid molecular motion Urigid has been

determined from a rigid-body analysis of the non-hydrogen

ADPs, it becomes possible to get an estimate of the internal

motion of the hydrogen atoms:

Uinternal ¼ Utotal � Urigid: ð9Þ

It was noted by Johnson (1970) that the mean square displa-

cements derived from Uinternal of hydrogen atoms were in

good agreement with spectroscopic information, showing

systematic trends corresponding to the functional group that

hydrogen was part of. Similar observations were made by

Craven and co-workers in the analysis of several systems (Gao

et al., 1994; Kampermann et al., 1995; Luo et al., 1996; Weber et

al., 1991). The internal torsional motion of a range of librating

groups – including methyl, carboxyl and amino – was also

thoroughly investigated by Trueblood & Dunitz (1983) based

on more than 125 neutron diffraction studies of molecular

crystals from the literature.

Inspired by these results, we analysed a range of neutron

structures found in the literature, and the estimates of internal

motion were collected in a ‘library’ and later improved and

enhanced with more statistical material (Madsen et al., 2003;

Munshi et al., 2008). The present SHADE2 library provides

mean values of internal stretch modes as well as in-plane and

out-of-plane bending modes for a range of chemical groups

involving hydrogen bound to C, N and O. The library forms

the basis for assigning ADPs to hydrogen atoms in the

SHADE server (Madsen, 2006), which allows users to submit a

CIF containing the atomic coordinates and the ADPs of the

non-hydrogen atoms. The server performs a TLS analysis

using the THMA11 program and combines the rigid-body

motion with the internal motion obtained from analysis of

neutron diffraction data. The SHADE server is available at

http://crystallography.if.ku.dk.

Several approaches to estimate hydrogen ADPs have

been proposed, e.g. ADPH (Roversi & Destro, 2004),

TLS+ONIOM (Whitten & Spackman, 2006), APD (Lübben et

al., 2015) and SHADE3 (Madsen & Hoser, 2014). The ADPH,

SHADE and TLS+ONIOM approaches have been compared

by Munshi et al. (2008). They differ primarily in the way the

internal motion is estimated. The ADPs of hydrogen atoms in

1-methyluracil based on these approaches are compared in

Fig. 6. All approaches were found to be in good agreement

with the ADPs based on neutron diffraction experiments. A

full periodic DFT approach in the quasi-harmonic approx-

imation can yield very similar results (Mroz et al., 2021).

10. Extracting physical properties from ADP analysis

When the ADPs are accurately determined and there is no

sign of disorder they might be used for estimation of ther-

modynamic properties. This approach can be traced back to

Cruickshank (1956d), who estimated the entropy of crystalline

naphthalene in 1956. In a similar vein, Madsen and Larsen

used frequencies obtained from TLS for estimation of the

vibrational entropy of a solid (Madsen & Larsen, 2007). They

applied this procedure to obtain the difference in vibrational

entropy for the epimeric compounds xylitol and ribitol.

Subsequently, this approach was applied for polymorphs of 2-

pyridinecarboxaldehyde hydrazones (Mazur et al., 2016) as

well as nicotinamide and pyrazinamide (Jarzembska et al.,

2014).

Meanwhile Bürgi and Capelli developed a new approach,

the so-called normal-mode coordinates analysis (NKA)

(Capelli et al., 2000). This approach utilizes multi-temperature

single-crystal diffraction measurements to learn about system

dynamics from the temperature evolution of ADPs. A

common model, which includes both intermolecular and

intramolecular motion, is fitted by least squares against ADPs

obtained at different temperatures. Anharmonicity is taken

into account via a Grüneisen parameter. The NKA approach

was applied for naphtalene multi-temperature data and the

heat capacity for naphthalene was obtained from the resulting

frequencies of normal modes (Capelli et al., 2006). Aree, Bürgi

and their colleagues conducted an extensive study of multi-

temperature datasets for three glycine polymorphs (Aree et

al., 2012; Aree et al., 2013; Aree et al., 2014), applying

synchrotron radiation data to various charge density models to

derive optimal atomic displacement parameters and utilizing

the NKA model to analyse the thermodynamics of all solid

forms. When using the NKA, the investigator must provide an

initial model of normal modes and next decide which

frequencies to obtain from NKA and which to derive through

computational methods. Their findings indicate that achieving

more accurate predictions of thermodynamic properties and

relative stability in polymorphic systems requires both precise

calculations of lattice energy and a refined description of

lattice vibrations, including zero-point energy considerations.

11. Alternative approach to refining atomic motion

using quantum crystallography

The refinement of ADPs assumes that each atom vibrates

independently in a harmonic mean field of the surrounding

atoms. The frequent use of rigid-bond restraints, analysis of

rigid-body motion and use of Gram–Charlier parameters to

describe anharmonicity bear witness to the fact that this is a

crude assumption. Nevertheless, it is a very useful model that

provides a very stable least-squares refinement and precise

atomic positions.

Because the thermal contributions to the Debye–Waller

factors correspond to the average motion of each atom over

the entire crystal, it is not possible to directly extract infor-

mation on atomic correlation from the elastic diffraction data.

Furthermore, it is difficult to come up with convincing models

of correlated motion: it will always be a matter of inter-

pretation and the researcher will propose case-by-case models.

To circumvent this problem, the model could be based on ab

initio calculations. In 2016 we proposed a method to refine

selected vibrational frequencies of a lattice-dynamical model

derived from periodic DFT calculations against single-crystal

diffraction data, a technique known as normal-mode refine-
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ment (NoMoRe) (Hoser & Madsen, 2016). This approach was

first tested on urea and subsequently applied to l-alanine,

naphthalene and xylitol (Hoser & Madsen, 2017). It was

demonstrated that the heat capacity of naphthalene could be

obtained in good agreement with calorimetric measurements.

Following this, comparable results for heat capacities were

obtained for urea, as well as for the alpha and beta poly-

morphs of glycine, benzoic acid and 4-hydroxybenzoic acid

after applying NoMoRe (Hoser et al., 2021). Additionally,

NoMoRe was employed to estimate the vibrational contri-

butions to the free energy for various polymorphic systems,

including pyrazinamide (Hoser et al., 2022) and l-pyroglu-

tamic acid (Hoser et al., 2025). When the ADPs are affected by

disorder, the entropy should be evaluated using different

equations (Phillips & Walker, 2023). This observation calls for

using a multi-temperature approach to distinguish disorder

from thermal vibrations. Such an approach was used in the

case of dimethyl 3,6-dichloro-2,5-dihydroxyterephthalate

(Kofoed et al., 2019). While initial studies related to NoMoRe

utilized the independent atom model (IAM) for electron

density modelling, the approach has since been enhanced,

allowing users the flexibility to choose between IAM, HAR or

TAAM for the static electron density representation

(Butkiewicz et al., 2025). The NoMoRe approach reduces the

number of parameters used to describe the thermal motion

significantly and provides an attempt to include the correlated

atomic motion in the model, however, at the expense of higher

residual densities and larger agreement indices than obtained

with the standard ADP refinement (Sovago et al., 2020). We

have no clear answer to the reason for these observations, but

it may simply imply that the notion of having one well defined

crystal lattice is very far from the situation in real crystals

where the microstructure may impose many kinds of local

disorder and vibrational behaviour.

12. Outlook

The advent of large computational power and mature ab initio

calculation methods calls for a more integrated approach

between quantum calculations and crystallographic analysis.

This integration has already been successfully achieved in the

description of static charge densities, for instance, through the

use of aspherical form factors such as HAR and TAAM.

However, when it comes to nuclear motion – derived from

either neutron, X-ray or electron diffraction experiments – we

see a need to move beyond the traditional ADPs towards

models that more accurately reflect the physical reality in

crystals, specifically the correlated atomic motion. We believe

that ab initio calculations can provide information which is

very difficult, or impossible, to extract from standard crystal-

lographic measurements. The NoMoRe approach represents

an attempt in this direction, but there is definitely room for

further improvement and innovation. For example, there is

considerable information in diffuse scattering patterns that

often accompany the Bragg scattering that is used in standard

crystallography. Thermal diffuse scattering manifests itself as a

non-uniform contribution to Bragg peaks, and could be a very

interesting phenomenon to consider for complementing the

normal-mode refinement with information on the acoustic

phonons, in a similar approach to the extraction of informa-

tion on elastic constants (Wehinger et al., 2017). Alternative

approaches to modelling of atomic motion are also needed in

the case of low-resolution data. With the advent of deep-

learning techniques to solve the phase problem (Larsen et al.,

2024), structures can be determined at 2 Å resolution. The

amount of data at this resolution does not allow refinement of

individual ADPs for each atom, and restrained models, or

models describing the motion of the full molecule or parts of

it, will be needed. The normal-mode refinement is very

computing intensive due to the use of periodic DFT calcula-

tions. Application of accurate empirical force fields or force

fields based on machine-learning algorithms might be an

interesting area to explore, either to build a lattice-dynamical

model or to investigate the use of molecular dynamics simu-

lations that can better incorporate effects such as anharmo-

nicity and disorder.
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