Download citation
Download citation
link to html
In this work four metal–organic framework isomorphs, based on fructose and alkali-earth halogenides, were investigated to better understand the effect of the size of the cation and the different polarizability of the anion on the calculated hyperpolarizability and optical susceptibility, which are correlated to non-linear optical properties. The compounds were characterized by X-ray diffraction and the first hyperpolarizability and the second-order susceptibility were obtained from theoretical calculations. Furthermore, a new method to measure the second-harmonic (SH) efficiency on a small quantity of powder at different wavelengths of excitation was optimized and an attempt was made to assess the reduction of the SH intensity for small quantities of nano-crystals, in order to ascertain the possibility of applications in biological systems. The results of this work show that both the intrinsic nature of the anion and the induced dissociation of cations and anions by fructose play a role in the second-harmonic generating properties of such compounds.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S2052520617005285/ao5028sup1.cif
Contains datablocks CaFRUBr, srfrubr1

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2052520617005285/ao5028CaFRUBrsup2.hkl
Contains datablock CaFRUBr

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2052520617005285/ao5028srfrubr1sup3.hkl
Contains datablock srfrubr1

rtv

Rietveld powder data file (CIF format) https://doi.org/10.1107/S2052520617005285/ao5028sup4.rtv
Powder diffraction data for all four compounds before and after irradiation

txt

Text file https://doi.org/10.1107/S2052520617005285/ao5028sup5.txt
Chemical connectivity file (MOL)

pdf

Portable Document Format (PDF) file https://doi.org/10.1107/S2052520617005285/ao5028sup6.pdf
Hydrogen-bond list, powder patterns before and after irradiation, IR and RAMAN spectra before and after irradiation

CCDC references: 1511464; 1511467

Computing details top

Data collection: CrysAlis PRO, Agilent Technologies, Version 1.171.37.31 (release 14-01-2014 CrysAlis171 .NET) (compiled Jan 14 2014,18:38:05) for srfrubr1. Cell refinement: CrysAlis PRO, Agilent Technologies, Version 1.171.37.31 (release 14-01-2014 CrysAlis171 .NET) (compiled Jan 14 2014,18:38:05) for srfrubr1. Data reduction: CrysAlis PRO, Agilent Technologies, Version 1.171.37.31 (release 14-01-2014 CrysAlis171 .NET) (compiled Jan 14 2014,18:38:05) for srfrubr1. Program(s) used to solve structure: ShelXT (Sheldrick, 2015) for CaFRUBr; olex2.solve (Bourhis et al., 2015) for srfrubr1. For both structures, program(s) used to refine structure: SHELXL (Sheldrick, 2015); molecular graphics: Olex2 (Dolomanov et al., 2009); software used to prepare material for publication: Olex2 (Dolomanov et al., 2009).

(CaFRUBr) top
Crystal data top
C12H28CaO14·2Br·HOF(000) = 622
Mr = 613.23Dx = 1.790 Mg m3
Monoclinic, C2Mo Kα radiation, λ = 0.71073 Å
a = 16.1449 (7) ÅCell parameters from 3289 reflections
b = 7.8881 (3) Åθ = 3.6–30.5°
c = 11.4702 (5) ŵ = 3.86 mm1
β = 128.842 (4)°T = 293 K
V = 1137.75 (10) Å3Prism, colourless
Z = 20.43 × 0.28 × 0.09 mm
Data collection top
Xcalibur, Ruby, Gemini ultra
diffractometer
3298 independent reflections
Graphite monochromator2917 reflections with I > 2σ(I)
Detector resolution: 10.2890 pixels mm-1Rint = 0.036
ω scansθmax = 30.5°, θmin = 3.2°
Absorption correction: gaussian
CrysAlisPro, Agilent Technologies, Version 1.171.37.31 (release 14-01-2014 CrysAlis171 .NET) (compiled Jan 14 2014,18:38:05) Numerical absorption correction based on gaussian integration over a multifaceted crystal model Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.
h = 2222
Tmin = 0.397, Tmax = 0.727k = 1111
7940 measured reflectionsl = 1616
Refinement top
Refinement on F2Hydrogen site location: mixed
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.034 w = 1/[σ2(Fo2) + (0.0318P)2 + 0.0153P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.076(Δ/σ)max = 0.001
S = 1.05Δρmax = 0.35 e Å3
3298 reflectionsΔρmin = 0.56 e Å3
156 parametersAbsolute structure: Flack x determined using 1126 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons, Flack and Wagner, Acta Cryst. B69 (2013) 249-259).
9 restraintsAbsolute structure parameter: 0.009 (7)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Ca11.00000.69352 (14)1.00000.0210 (2)
O10.74861 (19)0.1768 (5)0.6594 (3)0.0276 (5)
O1W0.9740 (3)0.7962 (4)1.1766 (4)0.0409 (8)
H1WA0.944 (5)0.754 (7)1.210 (7)0.061*
H1WB0.989 (5)0.895 (4)1.213 (7)0.061*
O20.8936 (3)0.4869 (4)0.7913 (4)0.0356 (7)
H20.910 (2)0.411 (5)0.756 (5)0.053*
O30.8452 (2)0.5650 (4)0.9619 (3)0.0302 (6)
H30.817 (3)0.600 (5)1.000 (5)0.045*
O40.7914 (2)0.2353 (4)1.0083 (3)0.0297 (6)
H40.84950.22711.09150.045*
O50.63282 (19)0.1592 (4)0.7166 (3)0.0287 (6)
H50.59480.09330.64660.043*
O60.8755 (2)0.0705 (4)0.8537 (4)0.0330 (7)
H60.88060.01560.79760.09 (3)*
C10.7210 (4)0.3445 (5)0.5997 (5)0.0330 (9)
H1A0.73500.35690.52920.040*
H1B0.64550.36200.54550.040*
C20.7826 (4)0.4785 (5)0.7201 (5)0.0301 (8)
H2A0.75090.58910.67470.036*
C30.7743 (3)0.4486 (5)0.8434 (5)0.0238 (8)
H3A0.70130.46970.80500.029*
C40.8059 (3)0.2674 (4)0.9004 (4)0.0205 (7)
H4A0.88100.25080.94690.025*
C50.7387 (3)0.1424 (4)0.7717 (4)0.0217 (7)
C60.7738 (3)0.0414 (4)0.8152 (6)0.0278 (9)
H6A0.72180.11440.73220.033*
H6B0.77670.07070.89980.033*
O2W0.50000.0667 (6)0.50000.0357 (9)
H2W0.51530.11700.45110.054*0.5
Br11.02993 (3)0.17635 (5)1.31381 (5)0.03926 (13)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ca10.0212 (4)0.0143 (5)0.0301 (5)0.0000.0174 (4)0.000
O10.0341 (13)0.0224 (11)0.0283 (12)0.0008 (16)0.0206 (11)0.0022 (15)
O1W0.056 (2)0.0323 (16)0.057 (2)0.0178 (15)0.046 (2)0.0165 (15)
O20.0418 (19)0.0308 (15)0.0484 (19)0.0135 (13)0.0352 (17)0.0129 (14)
O30.0301 (15)0.0239 (13)0.0460 (18)0.0089 (11)0.0284 (15)0.0139 (13)
O40.0299 (15)0.0350 (15)0.0280 (15)0.0058 (11)0.0200 (14)0.0015 (11)
O50.0181 (12)0.0256 (15)0.0379 (14)0.0038 (12)0.0155 (12)0.0111 (14)
O60.0321 (16)0.0277 (14)0.0482 (19)0.0131 (12)0.0296 (16)0.0125 (13)
C10.036 (2)0.0260 (19)0.027 (2)0.0019 (16)0.015 (2)0.0030 (16)
C20.037 (2)0.0184 (17)0.033 (2)0.0002 (15)0.021 (2)0.0020 (16)
C30.0181 (19)0.0187 (17)0.032 (2)0.0043 (14)0.0148 (17)0.0053 (15)
C40.0192 (17)0.0192 (16)0.0254 (18)0.0024 (13)0.0151 (16)0.0015 (14)
C50.0188 (16)0.0187 (18)0.0276 (18)0.0008 (12)0.0146 (15)0.0031 (13)
C60.024 (2)0.0186 (18)0.042 (2)0.0010 (15)0.021 (2)0.0010 (18)
O2W0.035 (3)0.031 (2)0.032 (2)0.0000.017 (2)0.000
Br10.0433 (2)0.0309 (2)0.0423 (2)0.0006 (2)0.0263 (2)0.0013 (2)
Geometric parameters (Å, º) top
Ca1—O1W2.450 (3)O3—C31.431 (5)
Ca1—O1Wi2.450 (3)O4—C41.419 (4)
Ca1—O22.486 (3)O5—C51.409 (4)
Ca1—O2i2.486 (3)O6—Ca1iv2.468 (3)
Ca1—O3i2.470 (3)O6—C61.427 (4)
Ca1—O32.470 (3)C1—C21.513 (6)
Ca1—O6ii2.468 (3)C2—C31.520 (6)
Ca1—O6iii2.468 (3)C3—C41.521 (5)
O1—C11.427 (5)C4—C51.523 (5)
O1—C51.420 (4)C5—C61.522 (5)
O2—C21.432 (5)
O1W—Ca1—O1Wi141.38 (17)O6ii—Ca1—O383.53 (10)
O1Wi—Ca1—O278.09 (11)O6iii—Ca1—O3i83.53 (10)
O1W—Ca1—O2i78.09 (11)O6iii—Ca1—O6ii82.06 (16)
O1W—Ca1—O2129.79 (10)C5—O1—C1115.7 (3)
O1Wi—Ca1—O2i129.78 (10)C2—O2—Ca1116.2 (2)
O1W—Ca1—O3i131.98 (12)C3—O3—Ca1123.3 (2)
O1W—Ca1—O366.58 (9)C6—O6—Ca1iv128.3 (2)
O1Wi—Ca1—O3i66.58 (9)O1—C1—C2112.4 (3)
O1Wi—Ca1—O3131.99 (12)O2—C2—C1115.1 (3)
O1Wi—Ca1—O6ii71.14 (10)O2—C2—C3106.6 (4)
O1Wi—Ca1—O6iii79.88 (12)C1—C2—C3110.5 (3)
O1W—Ca1—O6ii79.88 (12)O3—C3—C2107.5 (3)
O1W—Ca1—O6iii71.14 (10)O3—C3—C4110.0 (3)
O2—Ca1—O2i98.07 (17)C2—C3—C4110.1 (3)
O3—Ca1—O263.21 (9)O4—C4—C3110.4 (3)
O3—Ca1—O2i84.98 (10)O4—C4—C5108.9 (3)
O3i—Ca1—O2i63.21 (9)C3—C4—C5110.4 (3)
O3i—Ca1—O284.98 (11)O1—C5—C4109.8 (3)
O3i—Ca1—O3131.53 (14)O1—C5—C6104.4 (3)
O6iii—Ca1—O2157.76 (9)O5—C5—O1111.7 (3)
O6ii—Ca1—O293.64 (11)O5—C5—C4107.5 (3)
O6iii—Ca1—O2i93.64 (11)O5—C5—C6109.5 (3)
O6ii—Ca1—O2i157.76 (9)C6—C5—C4114.0 (3)
O6iii—Ca1—O3137.05 (9)O6—C6—C5112.0 (3)
O6ii—Ca1—O3i137.05 (9)
Symmetry codes: (i) x2, y, z2; (ii) x, y1, z; (iii) x2, y1, z2; (iv) x, y+1, z.
(srfrubr1) top
Crystal data top
C12H28O14Sr·2Br·HOF(000) = 658
Mr = 660.80Dx = 1.890 Mg m3
Monoclinic, C2Mo Kα radiation, λ = 0.71073 Å
a = 16.4390 (12) ÅCell parameters from 3111 reflections
b = 8.0240 (5) Åθ = 3.7–29.3°
c = 11.1931 (8) ŵ = 5.83 mm1
β = 128.142 (7)°T = 293 K
V = 1161.20 (16) Å3Prism, colourless
Z = 20.21 × 0.19 × 0.17 mm
Data collection top
Xcalibur, Ruby, Gemini ultra
diffractometer
5390 independent reflections
Graphite monochromator3933 reflections with I > 2σ(I)
Detector resolution: 10.2890 pixels mm-1Rint = 0.044
ω scansθmax = 37.6°, θmin = 3.7°
Absorption correction: multi-scan
CrysAlisPro, Agilent Technologies, Version 1.171.37.31 (release 14-01-2014 CrysAlis171 .NET) (compiled Jan 14 2014,18:38:05) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.
h = 2727
Tmin = 0.844, Tmax = 1.000k = 1313
11419 measured reflectionsl = 1818
Refinement top
Refinement on F2Hydrogen site location: mixed
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.050 w = 1/[σ2(Fo2) + (0.0236P)2]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.096(Δ/σ)max < 0.001
S = 1.00Δρmax = 0.51 e Å3
5390 reflectionsΔρmin = 0.89 e Å3
145 parametersAbsolute structure: Flack x determined using 1074 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons, Flack and Wagner, Acta Cryst. B69 (2013) 249-259).
6 restraintsAbsolute structure parameter: 0.014 (8)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Sr10.00000.05550 (7)0.00000.02056 (11)
Br20.52921 (4)0.95880 (6)0.31064 (6)0.03823 (15)
C10.2850 (5)0.2908 (6)0.4129 (6)0.0347 (12)
H1A0.27540.27570.48940.042*
H1B0.35800.27610.46170.042*
O20.1169 (3)0.1506 (5)0.2270 (5)0.0350 (9)
H20.103 (5)0.222 (6)0.268 (7)0.053*
O30.1606 (3)0.0769 (4)0.0418 (4)0.0285 (8)
H30.187 (4)0.041 (7)0.002 (6)0.043*
O40.2077 (3)0.4061 (4)0.0083 (4)0.0284 (8)
H40.17290.34030.07900.043*
O50.3639 (2)0.4804 (4)0.2864 (4)0.0292 (7)
H50.39980.55210.35080.044*
O60.1264 (3)0.6968 (5)0.1560 (4)0.0340 (9)
H60.11750.62920.20190.06 (2)*
O10.2547 (2)0.4569 (6)0.3531 (3)0.0269 (6)
C20.2235 (4)0.1596 (6)0.2908 (6)0.0304 (11)
H2A0.25520.05090.33550.037*
C30.2291 (4)0.1916 (6)0.1619 (6)0.0251 (10)
H3A0.29990.17350.19800.030*
C40.1963 (4)0.3699 (5)0.1054 (5)0.0211 (8)
H4A0.12360.38410.06190.025*
C50.2620 (3)0.4940 (5)0.2357 (5)0.0207 (8)
C60.2256 (4)0.6723 (6)0.1945 (6)0.0269 (11)
H6A0.27510.74370.27960.032*
H6B0.22340.70520.10910.032*
O1W0.0317 (3)0.1611 (5)0.1836 (5)0.0420 (11)
H1WA0.00490.25810.21600.063*
H1WB0.06570.14960.21080.063*
O2W0.00000.2010 (6)0.50000.0349 (12)
H2W0.00780.26920.44970.052*0.5
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Sr10.0194 (2)0.0156 (2)0.0301 (3)0.0000.0170 (2)0.000
Br20.0400 (3)0.0310 (3)0.0438 (3)0.0001 (3)0.0258 (2)0.0023 (3)
C10.044 (3)0.026 (2)0.024 (3)0.001 (2)0.016 (3)0.0022 (19)
O20.043 (2)0.0299 (18)0.048 (2)0.0132 (17)0.036 (2)0.0126 (16)
O30.0268 (18)0.0258 (16)0.040 (2)0.0098 (14)0.0240 (17)0.0156 (15)
O40.0296 (17)0.0326 (19)0.0290 (18)0.0098 (14)0.0212 (16)0.0065 (13)
O50.0172 (14)0.0255 (17)0.0397 (19)0.0040 (13)0.0150 (14)0.0123 (14)
O60.034 (2)0.0287 (17)0.051 (2)0.0146 (16)0.032 (2)0.0168 (17)
O10.0310 (16)0.0230 (14)0.0270 (15)0.0029 (19)0.0181 (14)0.0023 (15)
C20.035 (3)0.019 (2)0.031 (3)0.0016 (19)0.018 (2)0.0044 (18)
C30.025 (2)0.019 (2)0.035 (3)0.0018 (18)0.021 (2)0.0063 (18)
C40.019 (2)0.0213 (19)0.026 (2)0.0000 (16)0.0152 (19)0.0005 (16)
C50.0165 (18)0.0180 (17)0.028 (2)0.0023 (15)0.0136 (18)0.0047 (15)
C60.027 (3)0.0156 (19)0.043 (3)0.0047 (17)0.024 (3)0.0021 (18)
O1W0.058 (3)0.035 (2)0.061 (3)0.0187 (19)0.050 (3)0.0173 (19)
O2W0.038 (3)0.023 (2)0.038 (3)0.0000.020 (3)0.000
Geometric parameters (Å, º) top
Sr1—O2i2.618 (4)O3—C31.433 (6)
Sr1—O22.618 (4)O4—C41.425 (5)
Sr1—O32.606 (3)O5—C51.401 (5)
Sr1—O3i2.606 (3)O6—Sr1iv2.614 (3)
Sr1—O6ii2.614 (3)O6—C61.420 (6)
Sr1—O6iii2.614 (3)O1—C51.424 (5)
Sr1—O1W2.557 (4)C2—C31.522 (7)
Sr1—O1Wi2.557 (4)C3—C41.522 (7)
C1—O11.435 (7)C4—C51.529 (6)
C1—C21.514 (7)C5—C61.509 (6)
O2—C21.429 (7)
O2—Sr1—O2i101.64 (19)O1W—Sr1—O6ii71.57 (12)
O3i—Sr1—O2i60.86 (10)O1Wi—Sr1—O6ii79.19 (13)
O3—Sr1—O260.86 (10)O1Wi—Sr1—O1W141.30 (18)
O3—Sr1—O2i88.38 (12)O1—C1—C2112.2 (4)
O3i—Sr1—O288.38 (12)C2—O2—Sr1117.1 (3)
O3—Sr1—O3i131.88 (15)C3—O3—Sr1123.5 (3)
O3i—Sr1—O6iii83.73 (12)C6—O6—Sr1iv126.7 (3)
O3—Sr1—O6ii83.74 (12)C5—O1—C1114.9 (4)
O3—Sr1—O6iii136.80 (10)C1—C2—C3109.9 (4)
O3i—Sr1—O6ii136.80 (10)O2—C2—C1114.6 (4)
O6ii—Sr1—O2i158.87 (11)O2—C2—C3107.9 (4)
O6iii—Sr1—O2158.87 (11)O3—C3—C2108.0 (4)
O6ii—Sr1—O291.59 (13)O3—C3—C4110.0 (4)
O6iii—Sr1—O2i91.59 (13)C2—C3—C4109.9 (4)
O6iii—Sr1—O6ii81.04 (19)O4—C4—C3110.8 (4)
O1W—Sr1—O279.69 (12)O4—C4—C5108.3 (3)
O1W—Sr1—O2i126.69 (12)C3—C4—C5110.8 (4)
O1Wi—Sr1—O2126.69 (12)O5—C5—O1111.8 (4)
O1Wi—Sr1—O2i79.69 (12)O5—C5—C4107.4 (3)
O1W—Sr1—O3i65.95 (11)O5—C5—C6110.3 (4)
O1W—Sr1—O3132.66 (13)O1—C5—C4109.4 (4)
O1Wi—Sr1—O3i132.66 (13)O1—C5—C6103.7 (4)
O1Wi—Sr1—O365.95 (11)C6—C5—C4114.3 (4)
O1Wi—Sr1—O6iii71.57 (12)O6—C6—C5112.9 (4)
O1W—Sr1—O6iii79.19 (13)
Symmetry codes: (i) x, y, z; (ii) x, y1, z; (iii) x, y1, z; (iv) x, y+1, z.
 

Follow Acta Cryst. B
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds