Download citation
Download citation
link to html
Hydro­thermal reaction of Zn(NO3)2·6H2O with pyridine-2,5-dicarboxylic acid, 4,4′-bipyridine and pyridine in a 1:1:1:2 molar ratio affords the title complex, (C10H10N2)[Zn(C7H3NO4)2(H2O)2], in which both ions are centrosymmetric. The ZnII atom is octahedrally coordin­ated by two pyridine-2,5-dicarboxyl­ate chelating ligands and two water mol­ecules in a distorted octa­hedral geometry. 4,4′-Bipyridinium, acting as counter-ion, has hydrogen-bonding inter­actions with pyridine-2,5-dicarboxyl­ate, forming a three-dimensional structure.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536806047015/at2147sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536806047015/at2147Isup2.hkl
Contains datablock I

CCDC reference: 629406

Key indicators

  • Single-crystal X-ray study
  • T = 273 K
  • Mean [sigma](C-C) = 0.003 Å
  • R factor = 0.023
  • wR factor = 0.063
  • Data-to-parameter ratio = 10.3

checkCIF/PLATON results

No syntax errors found



Alert level C PLAT042_ALERT_1_C Calc. and Rep. MoietyFormula Strings Differ .... ? PLAT250_ALERT_2_C Large U3/U1 Ratio for Average U(i,j) Tensor .... 2.33 PLAT250_ALERT_2_C Large U3/U1 Ratio for Average U(i,j) Tensor .... 2.12
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 3 ALERT level C = Check and explain 0 ALERT level G = General alerts; check 1 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 2 ALERT type 2 Indicator that the structure model may be wrong or deficient 0 ALERT type 3 Indicator that the structure quality may be low 0 ALERT type 4 Improvement, methodology, query or suggestion 0 ALERT type 5 Informative message, check

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Sheldrick, 2000); software used to prepare material for publication: SHELXTL (Sheldrick, 2000).

4,4'-Bipyridinium diaquabis(pyridine-2,5-dicarboxylato-κ2N,O2)zinc(II) top
Crystal data top
(C10H10N2)[Zn(C7H3NO4)2(H2O)2]Z = 1
Mr = 589.81F(000) = 302
Triclinic, P1Dx = 1.740 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.0178 (12) ÅCell parameters from 2462 reflections
b = 8.6945 (15) Åθ = 2.7–27.6°
c = 10.4753 (18) ŵ = 1.16 mm1
α = 112.469 (2)°T = 273 K
β = 90.395 (2)°Block, light yellow
γ = 106.127 (2)°0.30 × 0.30 × 0.20 mm
V = 562.78 (17) Å3
Data collection top
Bruker SMART CCD area-detector
diffractometer
1960 independent reflections
Radiation source: fine-focus sealed tube1897 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.011
φ and ω scansθmax = 25.1°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 88
Tmin = 0.722, Tmax = 0.801k = 1010
2945 measured reflectionsl = 125
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.023Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.063H atoms treated by a mixture of independent and constrained refinement
S = 1.06 w = 1/[σ2(Fo2) + (0.0356P)2 + 0.217P]
where P = (Fo2 + 2Fc2)/3
1960 reflections(Δ/σ)max < 0.001
190 parametersΔρmax = 0.27 e Å3
1 restraintΔρmin = 0.22 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn10.50000.50001.00000.03028 (11)
C10.2173 (3)0.2154 (2)0.77493 (17)0.0268 (4)
C20.0750 (3)0.0592 (2)0.69546 (19)0.0315 (4)
H20.00520.04550.61410.038*
C30.0381 (3)0.0762 (2)0.73907 (19)0.0325 (4)
H30.05730.18240.68690.039*
C40.1428 (2)0.0543 (2)0.86005 (18)0.0270 (4)
C50.2801 (3)0.1083 (2)0.93545 (18)0.0286 (4)
H50.35010.12561.01800.034*
C60.2776 (3)0.3675 (2)0.73095 (18)0.0292 (4)
C70.1121 (3)0.2001 (2)0.91078 (19)0.0290 (4)
C80.4594 (3)0.7682 (3)0.6634 (2)0.0373 (4)
H80.50350.76660.74670.045*
C90.5285 (3)0.9180 (2)0.64029 (19)0.0334 (4)
H90.61771.01730.70790.040*
C100.4648 (3)0.9208 (2)0.51550 (18)0.0266 (4)
C110.3306 (3)0.7686 (2)0.4192 (2)0.0384 (4)
H110.28460.76530.33450.046*
C120.2657 (3)0.6229 (3)0.4487 (2)0.0414 (5)
H120.17540.52180.38380.050*
N10.3162 (2)0.24062 (18)0.89514 (15)0.0276 (3)
N20.3303 (2)0.6250 (2)0.56850 (17)0.0358 (4)
O10.40490 (19)0.50546 (16)0.81078 (13)0.0338 (3)
O20.1984 (2)0.34214 (17)0.61376 (14)0.0404 (3)
O30.0075 (2)0.34403 (17)0.83410 (15)0.0465 (4)
O40.2084 (2)0.16469 (17)1.02368 (15)0.0425 (3)
O50.2535 (2)0.5780 (2)1.08673 (15)0.0367 (3)
H2A0.291 (5)0.531 (3)0.585 (3)0.097 (11)*
H5A0.220 (4)0.640 (3)1.061 (3)0.051 (7)*
H5B0.163 (4)0.507 (4)1.100 (3)0.062 (8)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.03816 (18)0.01752 (16)0.03079 (18)0.00171 (12)0.00755 (12)0.01236 (12)
C10.0314 (9)0.0238 (9)0.0257 (8)0.0060 (7)0.0011 (7)0.0122 (7)
C20.0368 (9)0.0285 (9)0.0271 (9)0.0039 (8)0.0045 (7)0.0133 (8)
C30.0334 (9)0.0230 (9)0.0333 (10)0.0002 (7)0.0029 (8)0.0094 (8)
C40.0300 (9)0.0223 (8)0.0294 (9)0.0061 (7)0.0052 (7)0.0124 (7)
C50.0346 (9)0.0233 (8)0.0287 (9)0.0037 (7)0.0019 (7)0.0148 (7)
C60.0337 (9)0.0271 (9)0.0309 (9)0.0079 (8)0.0028 (8)0.0167 (8)
C70.0316 (9)0.0230 (9)0.0346 (10)0.0064 (7)0.0074 (8)0.0151 (8)
C80.0432 (10)0.0377 (11)0.0341 (10)0.0057 (9)0.0011 (8)0.0222 (9)
C90.0372 (10)0.0316 (10)0.0295 (9)0.0028 (8)0.0019 (8)0.0157 (8)
C100.0303 (9)0.0247 (9)0.0260 (8)0.0077 (7)0.0046 (7)0.0119 (7)
C110.0554 (12)0.0273 (9)0.0287 (9)0.0037 (9)0.0068 (8)0.0135 (8)
C120.0557 (12)0.0257 (10)0.0352 (10)0.0009 (9)0.0068 (9)0.0124 (8)
N10.0316 (7)0.0205 (7)0.0282 (7)0.0015 (6)0.0028 (6)0.0117 (6)
N20.0441 (9)0.0285 (8)0.0384 (9)0.0075 (7)0.0034 (7)0.0197 (7)
O10.0418 (7)0.0244 (7)0.0342 (7)0.0003 (6)0.0055 (6)0.0178 (6)
O20.0555 (8)0.0319 (7)0.0322 (7)0.0012 (6)0.0098 (6)0.0198 (6)
O30.0578 (9)0.0247 (7)0.0485 (9)0.0065 (6)0.0034 (7)0.0191 (7)
O40.0557 (9)0.0295 (7)0.0443 (8)0.0070 (6)0.0055 (7)0.0214 (6)
O50.0402 (8)0.0315 (7)0.0457 (8)0.0068 (6)0.0031 (6)0.0261 (7)
Geometric parameters (Å, º) top
Zn1—N1i2.1040 (14)C6—O21.257 (2)
Zn1—N12.1040 (14)C7—O41.243 (2)
Zn1—O1i2.1089 (12)C7—O31.247 (2)
Zn1—O12.1089 (12)C8—N21.332 (3)
Zn1—O5i2.1170 (15)C8—C91.372 (3)
Zn1—O52.1170 (15)C8—H80.9300
C1—N11.345 (2)C9—C101.390 (3)
C1—C21.380 (2)C9—H90.9300
C1—C61.516 (2)C10—C111.389 (3)
C2—C31.381 (3)C10—C10ii1.487 (3)
C2—H20.9300C11—C121.374 (3)
C3—C41.381 (3)C11—H110.9300
C3—H30.9300C12—N21.323 (3)
C4—C51.389 (2)C12—H120.9300
C4—C71.517 (2)N2—H2A0.873 (18)
C5—N11.333 (2)O5—H5A0.78 (3)
C5—H50.9300O5—H5B0.81 (3)
C6—O11.251 (2)
N1i—Zn1—N1179.999 (1)O1—C6—C1118.33 (15)
N1i—Zn1—O1i79.37 (5)O2—C6—C1116.57 (15)
N1—Zn1—O1i100.63 (5)O4—C7—O3126.67 (17)
N1i—Zn1—O1100.63 (5)O4—C7—C4117.08 (15)
N1—Zn1—O179.37 (5)O3—C7—C4116.24 (16)
O1i—Zn1—O1180.0N2—C8—C9121.10 (17)
N1i—Zn1—O5i90.96 (6)N2—C8—H8119.4
N1—Zn1—O5i89.04 (6)C9—C8—H8119.4
O1i—Zn1—O5i89.84 (6)C8—C9—C10119.75 (17)
O1—Zn1—O5i90.16 (6)C8—C9—H9120.1
N1i—Zn1—O589.04 (6)C10—C9—H9120.1
N1—Zn1—O590.96 (6)C11—C10—C9117.32 (16)
O1i—Zn1—O590.16 (6)C11—C10—C10ii120.57 (19)
O1—Zn1—O589.84 (6)C9—C10—C10ii122.11 (19)
O5i—Zn1—O5180.00 (10)C12—C11—C10120.27 (18)
N1—C1—C2121.91 (16)C12—C11—H11119.9
N1—C1—C6115.45 (15)C10—C11—H11119.9
C2—C1—C6122.61 (15)N2—C12—C11120.71 (18)
C1—C2—C3118.76 (16)N2—C12—H12119.6
C1—C2—H2120.6C11—C12—H12119.6
C3—C2—H2120.6C5—N1—C1118.62 (15)
C2—C3—C4120.06 (16)C5—N1—Zn1129.13 (12)
C2—C3—H3120.0C1—N1—Zn1112.14 (11)
C4—C3—H3120.0C12—N2—C8120.85 (17)
C3—C4—C5117.47 (16)C12—N2—H2A120 (2)
C3—C4—C7122.25 (16)C8—N2—H2A119 (2)
C5—C4—C7120.28 (15)C6—O1—Zn1114.08 (10)
N1—C5—C4123.13 (16)Zn1—O5—H5A115.7 (18)
N1—C5—H5118.4Zn1—O5—H5B118.6 (19)
C4—C5—H5118.4H5A—O5—H5B114 (3)
O1—C6—O2125.07 (16)
Symmetry codes: (i) x+1, y+1, z+2; (ii) x+1, y+2, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H5A···O4iii0.78 (3)1.90 (3)2.657 (2)164 (3)
O5—H5B···O3iv0.81 (3)1.89 (3)2.677 (2)164 (3)
N2—H2A···O20.87 (2)1.73 (2)2.600 (2)176 (3)
N2—H2A···O10.87 (2)2.60 (3)3.177 (2)125 (3)
Symmetry codes: (iii) x, y+1, z; (iv) x, y, z+2.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds