Download citation
Download citation
link to html
The title compound, C19H18O3, also known as tanshinone IIA, contains a four-ring system. The crystal packing involves π–π stacking inter­actions of 3.279 Å and C—H...O hydrogen bonds. The molecule lies on a crystallographic mirror plane, which involves disorder of the cyclohexene ring across this plane.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536807021320/at2283sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536807021320/at2283Isup2.hkl
Contains datablock I

CCDC reference: 651565

Key indicators

  • Single-crystal X-ray study
  • T = 113 K
  • Mean [sigma](C-C) = 0.004 Å
  • Disorder in main residue
  • R factor = 0.057
  • wR factor = 0.139
  • Data-to-parameter ratio = 10.1

checkCIF/PLATON results

No syntax errors found



Alert level C PLAT220_ALERT_2_C Large Non-Solvent C Ueq(max)/Ueq(min) ... 2.77 Ratio PLAT301_ALERT_3_C Main Residue Disorder ......................... 8.00 Perc. PLAT333_ALERT_2_C Large Average Benzene C-C Dist. C4 -C9 1.45 Ang. PLAT335_ALERT_2_C Large Benzene C-C Range ....... C4 -C9 0.21 Ang. PLAT369_ALERT_2_C Long C(sp2)-C(sp2) Bond C6 - C7 ... 1.56 Ang. PLAT764_ALERT_4_C Overcomplete CIF Bond List Detected (Rep/Expd) . 1.19 Ratio PLAT779_ALERT_2_C Suspect or Irrelevant (Bond) Angle in CIF ...... 41.10 Deg. C15 -C14 -C15 2.555 1.555 1.555 PLAT779_ALERT_2_C Suspect or Irrelevant (Bond) Angle in CIF ...... 24.90 Deg. C16 -C15 -C16 2.555 1.555 1.555 PLAT779_ALERT_2_C Suspect or Irrelevant (Bond) Angle in CIF ...... 24.20 Deg. C16 -C17 -C16 2.555 1.555 1.555
Alert level G PLAT860_ALERT_3_G Note: Number of Least-Squares Restraints ....... 1
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 9 ALERT level C = Check and explain 1 ALERT level G = General alerts; check 0 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 7 ALERT type 2 Indicator that the structure model may be wrong or deficient 2 ALERT type 3 Indicator that the structure quality may be low 1 ALERT type 4 Improvement, methodology, query or suggestion 0 ALERT type 5 Informative message, check

Comment top

Tanshinone IIA is one of the major active constitutes isolated from the traditional Chinese medicinal herb, Salvia miltiorrhiza Bunge, which has been widely used in China to treat coronary heart diseases (Chang et al., 1991), antitumour (Ryu et al., 1997), angina pectoris and myocardial infarction (Xue et al., 1999). Tanshinone IIA is also most effective and has been used as a qualitycontroller for some medicine. We report here the crystal structure (I)(Fig. 1).

The crystal structure of (I) illustrated in Fig. 1 shows that the C12—C17 ring has a twisted conformation. Also, the C4—C9 are essentially coplanar with the aromatic rings. An intermolecular C—H···O hydrogen bond links the molecules into a chain extending along the b axis. No π-π interactions are observed.

Related literature top

For related literature, see: Chang et al. (1991); Ryu et al. (1997); Xue et al. (1999).

Experimental top

Dried powder of Salvia miltiorrhiza Bunge was exacted with EtOH and the extract was concentrated in vacuo. The residue was subjected to silical-gel coloumn chromatography. Elution with petroleum ether-ethyl acetate (9:1v/v) yielded the title compound. The identity of (I) was confirmed by NMR spectroscopy. 1H NMR in CDCl3 (400 MHz):1.30 (s, 6H), 1.65 (m, 2H), 1.78 (m, 2H), 2.25(d,1.3 Hz, 3H), 3.18 (t, 6 Hz, 2H), 7.21 (q,1.3 Hz,1H), 7.53 (d, AB, 8 Hz,1H), 7.62(d, AB, 8 Hz,1H). 13C NMR in CDCl3 (100 MHz): 8.96, 19.33, 30.01, 32.03, 34.86, 38.07, 120.11, 120.43, 121.35, 126.71, 127.66, 133.64, 141.49, 144.66, 150.35, 161.91, 175.96, 183.83.

Refinement top

All H atoms were positioned geometrically and refined using a riding model, in the range of 0.95–0.98 Å, with Uiso(H) = 1.2Ueq(carrier) or Uiso(H) = 1.5Ueq(methyl C). The methylene groups C15 and C16, and five H atoms H3a, H3b, H3c, H14a, H14b are found to be disordered. The molecular were located on mirror plane (the molecule has no such symmetry), so C15, C16 were disordered in two position. All the two site occupancies were refined to 0.5:0.5.

Structure description top

Tanshinone IIA is one of the major active constitutes isolated from the traditional Chinese medicinal herb, Salvia miltiorrhiza Bunge, which has been widely used in China to treat coronary heart diseases (Chang et al., 1991), antitumour (Ryu et al., 1997), angina pectoris and myocardial infarction (Xue et al., 1999). Tanshinone IIA is also most effective and has been used as a qualitycontroller for some medicine. We report here the crystal structure (I)(Fig. 1).

The crystal structure of (I) illustrated in Fig. 1 shows that the C12—C17 ring has a twisted conformation. Also, the C4—C9 are essentially coplanar with the aromatic rings. An intermolecular C—H···O hydrogen bond links the molecules into a chain extending along the b axis. No π-π interactions are observed.

For related literature, see: Chang et al. (1991); Ryu et al. (1997); Xue et al. (1999).

Computing details top

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 1997); software used to prepare material for publication: SHELXTL.

Figures top
[Figure 1] Fig. 1. A view of the molecular of (I). Displacement ellipsoids are drawn at the 30% probability level. One disorder component is shown for clarity.
1,6,6-Trimethyl-6,7,8,9-tetrahydrophenanthro[1,2-b]furan-10,11-dione top
Crystal data top
C19H18O3Dx = 1.337 Mg m3
Mr = 294.33Melting point = 209.0–210.0 K
Orthorhombic, PmnaMo Kα radiation, λ = 0.71070 Å
Hall symbol: -P 2ac 2Cell parameters from 2823 reflections
a = 6.5579 (11) Åθ = 2.2–27.9°
b = 9.1687 (15) ŵ = 0.09 mm1
c = 24.328 (4) ÅT = 113 K
V = 1462.8 (4) Å3Prism, colourless
Z = 40.24 × 0.20 × 0.10 mm
F(000) = 624
Data collection top
Rigaku Saturn
diffractometer
1404 independent reflections
Radiation source: rotating anode1343 reflections with I > 2σ(I)
Confocal monochromatorRint = 0.044
Detector resolution: 7.31 pixels mm-1θmax = 25.0°, θmin = 2.2°
ω scansh = 77
Absorption correction: multi-scan
(SADABS; Sheldrick,1996)
k = 1010
Tmin = 0.968, Tmax = 0.991l = 2828
10602 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.057Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.139H-atom parameters constrained
S = 1.17 w = 1/[σ2(Fo2) + (0.0606P)2 + 0.879P]
where P = (Fo2 + 2Fc2)/3
1404 reflections(Δ/σ)max = 0.001
139 parametersΔρmax = 0.22 e Å3
1 restraintΔρmin = 0.22 e Å3
Crystal data top
C19H18O3V = 1462.8 (4) Å3
Mr = 294.33Z = 4
Orthorhombic, PmnaMo Kα radiation
a = 6.5579 (11) ŵ = 0.09 mm1
b = 9.1687 (15) ÅT = 113 K
c = 24.328 (4) Å0.24 × 0.20 × 0.10 mm
Data collection top
Rigaku Saturn
diffractometer
1404 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick,1996)
1343 reflections with I > 2σ(I)
Tmin = 0.968, Tmax = 0.991Rint = 0.044
10602 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0571 restraint
wR(F2) = 0.139H-atom parameters constrained
S = 1.17Δρmax = 0.22 e Å3
1404 reflectionsΔρmin = 0.22 e Å3
139 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C10.00000.8407 (3)0.29609 (10)0.0249 (6)
H10.00000.94280.30290.030*
C20.00000.7377 (3)0.33594 (11)0.0240 (6)
C30.00000.7590 (3)0.39690 (11)0.0315 (7)
H3A0.02430.86200.40530.047*0.50
H3B0.10810.69950.41340.047*0.50
H3C0.13230.72930.41190.047*0.50
C40.00000.6329 (3)0.25212 (10)0.0194 (6)
C50.00000.6018 (3)0.30665 (10)0.0200 (6)
C60.00000.4508 (3)0.32377 (10)0.0210 (6)
C70.00000.3346 (3)0.27671 (10)0.0202 (6)
C80.00000.3812 (3)0.21762 (10)0.0189 (6)
C90.00000.5325 (3)0.20633 (10)0.0184 (6)
C100.00000.5814 (3)0.15243 (10)0.0221 (6)
H100.00000.68300.14480.026*
C110.00000.4819 (3)0.10997 (10)0.0243 (6)
H110.00000.51660.07320.029*
C120.00000.3313 (3)0.11940 (10)0.0221 (6)
C130.00000.2793 (3)0.17363 (10)0.0195 (6)
C140.00000.1179 (3)0.18488 (11)0.0353 (8)
H14A0.13650.08610.19260.042*0.50
H14B0.08250.09810.21660.042*0.50
C150.0843 (7)0.0305 (4)0.13403 (15)0.0428 (12)0.50
H15A0.07830.07270.14040.051*0.50
H15B0.22320.05750.12680.051*0.50
C160.0492 (11)0.0744 (4)0.08622 (15)0.049 (3)0.50
H16A0.18960.06780.09710.059*0.50
H16B0.02780.00910.05590.059*0.50
C170.00000.2317 (3)0.06866 (11)0.0294 (7)
C180.1883 (4)0.2607 (3)0.03377 (9)0.0509 (7)
H18A0.18950.19390.00230.076*
H18B0.31100.24510.05600.076*
H18C0.18560.36160.02050.076*
O10.00000.77918 (18)0.24416 (7)0.0236 (5)
O20.00000.4085 (2)0.37113 (7)0.0291 (5)
O30.00000.2080 (2)0.29159 (7)0.0293 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0282 (15)0.0191 (13)0.0275 (14)0.0000.0000.0064 (11)
C20.0228 (14)0.0236 (13)0.0257 (13)0.0000.0000.0040 (11)
C30.0406 (18)0.0298 (15)0.0241 (14)0.0000.0000.0053 (12)
C40.0178 (13)0.0180 (12)0.0224 (13)0.0000.0000.0002 (10)
C50.0171 (13)0.0208 (14)0.0220 (13)0.0000.0000.0002 (10)
C60.0180 (13)0.0215 (13)0.0235 (13)0.0000.0000.0014 (10)
C70.0162 (13)0.0202 (14)0.0240 (13)0.0000.0000.0018 (11)
C80.0165 (13)0.0189 (12)0.0215 (13)0.0000.0000.0013 (10)
C90.0146 (12)0.0209 (13)0.0198 (13)0.0000.0000.0010 (10)
C100.0226 (14)0.0214 (13)0.0222 (13)0.0000.0000.0030 (11)
C110.0290 (15)0.0244 (14)0.0195 (12)0.0000.0000.0008 (10)
C120.0219 (14)0.0233 (13)0.0212 (13)0.0000.0000.0028 (11)
C130.0177 (13)0.0181 (13)0.0228 (13)0.0000.0000.0011 (10)
C140.061 (2)0.0192 (14)0.0254 (14)0.0000.0000.0005 (11)
C150.076 (3)0.0224 (19)0.030 (2)0.0069 (19)0.001 (2)0.0050 (16)
C160.091 (9)0.0283 (18)0.0280 (18)0.015 (3)0.002 (2)0.0086 (15)
C170.0432 (18)0.0248 (14)0.0202 (13)0.0000.0000.0055 (11)
C180.0437 (14)0.0737 (17)0.0352 (12)0.0013 (13)0.0074 (10)0.0271 (12)
O10.0293 (11)0.0185 (9)0.0231 (9)0.0000.0000.0011 (7)
O20.0401 (12)0.0273 (11)0.0200 (9)0.0000.0000.0029 (8)
O30.0413 (12)0.0201 (10)0.0266 (10)0.0000.0000.0026 (8)
Geometric parameters (Å, º) top
C1—C21.354 (4)C12—C131.403 (3)
C1—O11.384 (3)C12—C171.535 (3)
C1—H10.9500C13—C141.504 (4)
C2—C51.435 (4)C14—C15i1.574 (4)
C2—C31.496 (4)C14—C151.575 (4)
C3—H3A0.9800C14—H14A0.9600
C3—H3B0.9800C14—H14B0.9602
C3—H3C0.9800C15—C15i1.106 (10)
C4—O11.355 (3)C15—C16i1.252 (5)
C4—C51.357 (3)C15—C161.511 (6)
C4—C91.445 (3)C15—H15A0.9601
C5—C61.445 (3)C15—H15B0.9600
C6—O21.216 (3)C16—C16i0.646 (15)
C6—C71.564 (3)C16—C15i1.252 (5)
C7—O31.216 (3)C16—C171.539 (5)
C7—C81.500 (3)C16—H16A0.9600
C8—C91.414 (3)C16—H16B0.9600
C8—C131.421 (4)C17—C181.522 (3)
C9—C101.386 (3)C17—C18i1.522 (3)
C10—C111.378 (4)C17—C16i1.539 (5)
C10—H100.9500C18—H18A0.9800
C11—C121.399 (4)C18—H18B0.9800
C11—H110.9500C18—H18C0.9800
C2—C1—O1111.7 (2)C15—C14—H14B109.7
C2—C1—H1124.2H14A—C14—H14B108.1
O1—C1—H1124.2C15i—C15—C16i79.4 (4)
C1—C2—C5104.5 (2)C15i—C15—C1654.6 (3)
C1—C2—C3128.2 (2)C16i—C15—C1624.9 (6)
C5—C2—C3127.3 (2)C15i—C15—C1469.43 (17)
C2—C3—H3A109.5C16i—C15—C14120.1 (4)
C2—C3—H3B109.5C16—C15—C14105.4 (3)
H3A—C3—H3B109.5C15i—C15—H15A87.7
C2—C3—H3C109.5C16i—C15—H15A117.4
H3A—C3—H3C109.5C16—C15—H15A111.3
H3B—C3—H3C109.5C14—C15—H15A111.1
O1—C4—C5110.3 (2)C15i—C15—H15B161.6
O1—C4—C9121.4 (2)C16i—C15—H15B85.5
C5—C4—C9128.3 (2)C16—C15—H15B109.9
C4—C5—C2107.6 (2)C14—C15—H15B110.3
C4—C5—C6118.9 (2)H15A—C15—H15B108.8
C2—C5—C6133.5 (2)C16i—C16—C15i100.6 (4)
O2—C6—C5125.3 (2)C16i—C16—C1554.6 (3)
O2—C6—C7118.5 (2)C15i—C16—C1546.0 (4)
C5—C6—C7116.2 (2)C16i—C16—C1777.9 (3)
O3—C7—C8123.9 (2)C15i—C16—C17126.7 (3)
O3—C7—C6115.6 (2)C15—C16—C17110.0 (4)
C8—C7—C6120.5 (2)C16i—C16—H16A163.5
C9—C8—C13119.9 (2)C15i—C16—H16A63.0
C9—C8—C7117.8 (2)C15—C16—H16A109.1
C13—C8—C7122.3 (2)C17—C16—H16A109.7
C10—C9—C8120.1 (2)C16i—C16—H16B81.6
C10—C9—C4121.5 (2)C15i—C16—H16B122.7
C8—C9—C4118.4 (2)C15—C16—H16B109.9
C11—C10—C9119.7 (2)C17—C16—H16B109.9
C11—C10—H10120.2H16A—C16—H16B108.3
C9—C10—H10120.2C18—C17—C18i108.5 (3)
C10—C11—C12122.0 (2)C18—C17—C12110.17 (15)
C10—C11—H11119.0C18i—C17—C12110.17 (15)
C12—C11—H11119.0C18—C17—C16i98.5 (3)
C11—C12—C13119.3 (2)C18i—C17—C16i119.2 (3)
C11—C12—C17117.1 (2)C12—C17—C16i109.5 (2)
C13—C12—C17123.6 (2)C18—C17—C16119.2 (3)
C12—C13—C8119.0 (2)C18i—C17—C1698.5 (3)
C12—C13—C14120.4 (2)C12—C17—C16109.5 (2)
C8—C13—C14120.6 (2)C16i—C17—C1624.2 (5)
C13—C14—C15i111.0 (2)C17—C18—H18A109.5
C13—C14—C15111.0 (2)C17—C18—H18B109.5
C15i—C14—C1541.1 (3)H18A—C18—H18B109.5
C13—C14—H14A109.5C17—C18—H18C109.5
C15i—C14—H14A70.8H18A—C18—H18C109.5
C15—C14—H14A109.1H18B—C18—H18C109.5
C13—C14—H14B109.4C4—O1—C1105.86 (19)
C15i—C14—H14B137.2
O1—C1—C2—C50.0C9—C8—C13—C14180.0
O1—C1—C2—C3180.000 (1)C7—C8—C13—C140.0
O1—C4—C5—C20.0C12—C13—C14—C15i22.10 (19)
C9—C4—C5—C2180.0C8—C13—C14—C15i157.90 (19)
O1—C4—C5—C6180.0C12—C13—C14—C1522.10 (19)
C9—C4—C5—C60.000 (1)C8—C13—C14—C15157.90 (19)
C1—C2—C5—C40.0C13—C14—C15—C15i98.27 (12)
C3—C2—C5—C4180.0C13—C14—C15—C16i34.7 (6)
C1—C2—C5—C6180.000 (1)C15i—C14—C15—C16i63.6 (5)
C3—C2—C5—C60.000 (1)C13—C14—C15—C1656.5 (4)
C4—C5—C6—O2180.0C15i—C14—C15—C1641.8 (4)
C2—C5—C6—O20.000 (1)C15i—C15—C16—C16i179.998 (2)
C4—C5—C6—C70.0C14—C15—C16—C16i130.1 (3)
C2—C5—C6—C7180.0C16i—C15—C16—C15i180.002 (1)
O2—C6—C7—O30.0C14—C15—C16—C15i49.9 (3)
C5—C6—C7—O3180.0C15i—C15—C16—C17122.2 (4)
O2—C6—C7—C8180.0C16i—C15—C16—C1757.8 (4)
C5—C6—C7—C80.0C14—C15—C16—C1772.2 (4)
O3—C7—C8—C9180.0C11—C12—C17—C1859.82 (17)
C6—C7—C8—C90.0C13—C12—C17—C18120.18 (17)
O3—C7—C8—C130.0C11—C12—C17—C18i59.82 (17)
C6—C7—C8—C13180.0C13—C12—C17—C18i120.18 (17)
C13—C8—C9—C100.0C11—C12—C17—C16i167.1 (3)
C7—C8—C9—C10180.0C13—C12—C17—C16i12.9 (3)
C13—C8—C9—C4180.0C11—C12—C17—C16167.1 (3)
C7—C8—C9—C40.0C13—C12—C17—C1612.9 (3)
O1—C4—C9—C100.0C16i—C16—C17—C1833.80 (18)
C5—C4—C9—C10180.0C15i—C16—C17—C18128.1 (6)
O1—C4—C9—C8180.0C15—C16—C17—C1878.6 (4)
C5—C4—C9—C80.0C16i—C16—C17—C18i150.60 (15)
C8—C9—C10—C110.0C15i—C16—C17—C18i115.1 (7)
C4—C9—C10—C11180.0C15—C16—C17—C18i164.6 (3)
C9—C10—C11—C120.0C16i—C16—C17—C1294.37 (11)
C10—C11—C12—C130.0C15i—C16—C17—C120.1 (8)
C10—C11—C12—C17180.0C15—C16—C17—C1249.5 (4)
C11—C12—C13—C80.0C15i—C16—C17—C16i94.3 (7)
C17—C12—C13—C8180.0C15—C16—C17—C16i44.8 (4)
C11—C12—C13—C14180.0C5—C4—O1—C10.0
C17—C12—C13—C140.0C9—C4—O1—C1180.0
C9—C8—C13—C120.0C2—C1—O1—C40.0
C7—C8—C13—C12180.0
Symmetry code: (i) x, y, z.

Experimental details

Crystal data
Chemical formulaC19H18O3
Mr294.33
Crystal system, space groupOrthorhombic, Pmna
Temperature (K)113
a, b, c (Å)6.5579 (11), 9.1687 (15), 24.328 (4)
V3)1462.8 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.24 × 0.20 × 0.10
Data collection
DiffractometerRigaku Saturn
Absorption correctionMulti-scan
(SADABS; Sheldrick,1996)
Tmin, Tmax0.968, 0.991
No. of measured, independent and
observed [I > 2σ(I)] reflections
10602, 1404, 1343
Rint0.044
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.057, 0.139, 1.17
No. of reflections1404
No. of parameters139
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.22, 0.22

Computer programs: SMART (Bruker, 1997), SAINT (Bruker, 1997), SAINT, SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), SHELXTL (Bruker, 1997), SHELXTL.

 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds