Download citation
Download citation
link to html
The two title proton-transfer compounds, 5-methyl­imid­azolium 3-carb­oxy-4-hydroxy­benzene­sulfonate, C4H7N2+·­C7H5O6S, (I), and bis­(5-methyl­imidazolium) 3-carboxyl­ato-4-hydroxy­benzene­sulfonate, 2C4H7N2+·C7H5O6S2−, (II), are each organized into a three-dimensional network by a combination of X—H...O (X = O, N or C) hydrogen bonds, and π–π and C—H...π inter­actions.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270107067273/av3124sup1.cif
Contains datablocks global, I, II

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270107067273/av3124Isup2.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270107067273/av3124IIsup3.hkl
Contains datablock II

CCDC references: 681545; 681546

Comment top

5-Sulfosalicylic acid (5-H2SSA) and its organic complexes or salts can develop well defined non-covalent supramolecular architectures because of their ability to form multiple hydrogen bonds containing components of complementary arrays of hydrogen-bonding sites (Smith et al., 2004, 2006; Smith et al., 2005a,b; Smith, Wermuth & Healy, 2005; Muthiah et al., 2003; Raj et al., 2003; Fan et al., 2005; Wang et al., 2007). Our interest in these materials arises from their potential to display three-dimensional structural diversity. In continuation of our studies of hydrogen-bonding networks formed with 5-H2SSA and Lewis bases (Meng et al. 2007), we report here our findings on another two organic salts, both composed of 5-H2SSA and 5-methyl-imidazole (5-MeIm), C4H7N2+·C7H5O6S-, (I), and 2C4H7N2+·C7H5O6S2-, (II).

Both anhydrous compounds crystallize in space group P21/c, with Z' = 2 in (I), but Z' = 1 in (II) (Fig. 1). These different values may result from the experimental conditions (Das et al., 2006; Anderson et al., 2007). The powder X-ray diffraction patterns of bulk (I) and (II) are in good agreement with the calculated patterns based on the results from single-crystal X-ray diffraction (Fig. 2). Like most analogues containing the 5-HSSA- anion, the sulfonic H atoms transfer to the Lewis base N atoms in preference to the carboxyl group in these two compounds, and the hydroxyl O atom forms a common intramolecular S(6) ring with the carboxyl group [for hydrogen-bonding motifs, see Bernstein et al. (1995)]. With the aim of investigating the probable molar ratio of 5-H2SSA with other Lewis bases in crystallized products, a search of the Cambridge Structural Database [CONQUEST, Version 1.9, September 2006 release; Allen (2002); Bruno et al. (2002)] for organic compounds containing at least one of 5-H2SSA, 5-HSSA- and 5-SSA2- moieties was conducted to determine the numbers of such organic adducts. As a result, three, 26 and four crystal structures with three-dimensional coordinates were found for the neutral, monocation [monoanion?] or dication [dianion?] moieties, respectively, from which we can see that in most cases only the sulfonic H atoms transfer to the Lewis base atoms, forming 1:1 type molecular adducts.

In the molecular structures of (I) and (II), the relative conformations between the sulfonate groups and their attached benzene rings are slightly different. In (I), the plane consisting of atoms O4/O5/O6 makes a dihedral angle of 83.9 (1)° with the C1–C6 aryl ring, with the distances of each O atom from the phenyl plane being ca 1.598 (1), 0.572 (1) and 0.367 (1) Å, respectively; the O10/O11/O12 plane makes a dihedral angle of 86.1 (1)° with its adjacent aryl ring, and the distances of each O atom from the phenyl plane are ca 1.536 (1), 0.632 (1) and 0.462 (1) Å, respectively. However, the corresponding angles and distances in (II) are 85.3 (1)° and ca 1.379 (1), 1.025 (1) and 0.161 (1) Å, which are different from those in (I). The spatial difference between the sulfonic O-atom plane and the phenyl rings may be the result of these hydrogen-bonding interactions involving the sulfonate O atoms.

In the packing structures of both title compounds, the components are linked into three-dimensional frameworks by combinations of X—H···O hydrogen bonds (X = O, N or C) and ππ and C—H···π non-covalent interactions. In (I), the supramolecular structure can be readily analyzed in terms of three simple substructures.

In the first of these substructures, imidazole atoms N1 and N2 at (x, y, z) act as hydrogen-bond donors to sulfonic atom O6 at (x, y, z) and carboxyl atom O2 at (x, y - 1, z), respectively, forming a one-dimensional chain generated by translation running parallel to the [010] direction. Similarly, carboxyl atom O1 at (x, y, z) acts as hydrogen-bond donor to sulfonic atom O4 at (-x, 1/2 + y, 3/2 - z), producing another one-dimensional chain also running parallel to the [010] direction, but this time generated by 21 screw axis lying at (0, y, 3/4). By a combination of these three hydrogen-bonding interactions, S1-containing anions and N1/N2-containing cations are interlinked into a one-dimensional tape (denoted tape A) built from R44(20) rings running along the [010] direction. Almost completely similar to the formation of tape A, S2-containing anions and N3/N4-containing cations are also linked by four hydrogen-bonds into another one-dimensional tape (denoted tape B) also running parallel to the [010] direction, in which atoms N3, N4 and O7 act as hydrogen-bonding donors to symmetry-related atoms O10, O8 and O11, respectively (Table 1 and Fig. 3).

The second substructure is formed by means of three intermolecular C—H···O hydrogen bonds, and adjacent tapes A and B are joined together into a two-dimensional layer (Fig. 4) running parallel to (001) direction lying in the domain of 0.532 < z < 0.958. This layer is consolidated by two inner C—H···π (C18—H18A···Cg4 and C22—H22C···Cg3, Table 1) and two ππ stacking interactions (Cg1···Cg2 and Cg3···Cg3, Table 3). The three-dimensional network in (I) is ultimately shaped through linking of adjacent up and down (001) layers by a combination of another three ππ stacking interactions, i.e. Cg1···Cg1 [symmetry code?], Cg2···Cg4 and Cg4···Cg2 (Table 3).

By comparison, components in (II) are also linked into a three-dimensional network by a combination of X—H···O hydrogen bonds (X = N, O or C) and ππ stacking interactions, which can be analysed more easily than those in (I). Firstly, 5-SSA2- and 5-MeIm+ are linked together into a one-dimensional column structure (Fig. 5) by a combination of four intermolecular N—H···O and C14—H14A···O1 hydrogen bonds (Table 2). Atoms N3, N4 and C14 act as hydrogen-bond donors, via atoms H3A, H14A and H4A, respectively, to each symmetry-related sulfonic atom O4 or O2 and carboxyl atom O1, forming a centrosymmetric R44(14) ring centred at (1/2, 0, 1) and two asymmetric R22(11) rings. Adjacent discrete edge-fused R44(14) and R22(11) rings are joined together by intermolecular N1—H1A···O6 and N2—H2A···O1 hydrogen bonds, forming a one-dimensional column structure running parallel to the [101] direction, which is further strengthened by a ππ stacking interaction between two adjacent imidazole rings (Cg1···Cg2, Table 3).

Next, adjacent [101] columns are linked by the ππ stacking interaction (i.e. Cg2···Cg2) formed between two N3/N4-containing imidazole rings, producing a two-dimensional layer (Fig. 5) running parallel to the (010) plane. The reference two-dimensional layer lies in the domain -0.226 < y < 0.226 and two such two-dimensional layers pass through each unit cell. Finally, neighbouring (010) two-dimensional layers are linked into a three-dimensional network by two C—H···O interactions (Table 2), each of which produces a C(11) chain running parallel to the [201] direction and generated by the c-glide plane at y = 1/4.

In comparison with the stacking pattern of sulfonic aryl and Lewis base heterocyclic rings (Meng et al., 2007), in (I) both the sulfonic aryl and imidazole rings form an up and down homogeneous arrangement, i.e. 5-HSSA- anions stacking only on top of 5-HSSA- anions and 5-MeIm+ cations stacking only on top of 5-MeIm+ cations. In (II), the imidazole rings also stack homogeneously, but the 5-SSA2- dications [dianions?] adopt an almost linear arrangement, which is completely different to that in (I) and the analogues previously reported by us.

In conclusion, the formation of these two three-dimensional networks in (I) and (II) may be largely attributed to the different directional outspread of the sulfonic O atoms acting as hydrogen-bond acceptors. The different arrangement of the aryl and heterocyclic rings in the crystalline state may be mainly related to the crystallization temperature. Further research on how temperature and other related factors effect the crystallization behaviour is currently underway.

Related literature top

For related literature, see: Allen (2002); Anderson & Steed (2007); Bernstein et al. (1995); Bruno et al. (2002); Das et al. (2006); Fan et al. (2005); Meng et al. (2007); Muthiah et al. (2003); Raj et al. (2003); Smith et al. (2004, 2005a, 2005b, 2006); Smith, Wermuth & Healy (2005); Wang & Wei (2007).

Experimental top

All reagents and solvents were used as obtained without further purification. Equivalent molar quantites of 2-methylimidazole (0.2 mmol, 16.2 mg) and 5-sulfosalicylic acid dihydrate (0.2 mmol, 50.8 g) were dissolved in 95% methanol (10 ml). The mixture was stirred for 10 min at ambient temperature and then filtered. The resulting colourless solution was kept in air for two weeks. Block colourless crystals of (I) suitable for single-crystal X-ray diffraction analysis were grown by slow evaporation of the solution at the bottom of the vessel. The crystals were filtered off carefully, washed with distilled water and dried in air (yield 56%, 38 mg, based on the 1:1 organic salt).

Crystals of (II) were obtained by mixing 2:1 molar quantities of 2-methylimidazole (0.2 mmol, 16.2 mg) and 5-sulfosalicylic acid dihydrate (0.1 mmol, 25.4 mg) in 95% methanol (10 ml). The mixture was stirred for 30 min at 330 K and then filtered. The resulting colourless solution was kept in air for 3 d. Block colourless crystals of (II) suitable for single-crystal X-ray diffraction analysis were grown by slow evaporation of the solution at the bottom of the vessel. The crystals were filtered off carefully, washed with distilled water and dried in air (yield 40%, 17.0 mg, based on the 2:1 organic salt).

Refinement top

For both compounds (I) and (II), H atoms bonded to C atoms were positioned geometrically, with C—H = 0.93 (aromatic) or 0.96 Å (methyl), and refined in riding mode, with Uiso(H) = 1.2Ueq(aromatic C) or 1.5Ueq(methyl C). H atoms bonded to N and O atoms were found in Fourier difference maps. N—H and O—H distances were refined freely [Please give ranges of refined values] and Uiso(H) = 1.2Ueq(N) or 1.5Ueq(O).

Computing details top

For both compounds, data collection: SMART (Bruker, 2001); cell refinement: SMART (Bruker, 2001); data reduction: SAINT-Plus (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: PLATON (Spek, 2003).

Figures top
[Figure 1] Fig. 1. The molecular structures of (I) and (II), showing the atom-numbering schemes. Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as small spheres of arbitrary radii. Hydrogen bonds are shown as dashed lines.
[Figure 2] Fig. 2. Experimental and simulated power diffraction of patterns, on the left for (I) and on the right for (II).
[Figure 3] Fig. 3. Part of the crystal structure of (I), showing the formation of tapes A and B, the one-dimensional chains running parallel to the [010] direction. Hydrogen bonds are shown as dashed lines. The top and bottom outlined areas show the tape A and tape B chains, respectively.
[Figure 4] Fig. 4. Part of the crystal structure of (I), showing the formation of the two-dimensional network built from hydrogen bonds and C—H···π and ππ interactions, shown as dashed lines.
[Figure 5] Fig. 5. Part of the crystal structure of (II), showing the formation of the three-dimensional network. Hydrogen bonds and ππ interactions are shown as dashed lines.
(I) 5-methylimidazolium 3-carboxy-4-hydroxybenzenesulfonate top
Crystal data top
C4H7N2+·C7H5O6SF(000) = 1248
Mr = 300.29Dx = 1.576 Mg m3
Dm = no Mg m3
Dm measured by not measured
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 1841 reflections
a = 13.2702 (6) Åθ = 2.2–21.7°
b = 14.9930 (7) ŵ = 0.28 mm1
c = 14.0947 (7) ÅT = 294 K
β = 115.471 (1)°Block, colourless
V = 2531.7 (2) Å30.10 × 0.10 × 0.06 mm
Z = 8
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
4971 independent reflections
Radiation source: fine focus sealed Siemens Mo tube2829 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.078
0.3° wide ω exposures scansθmax = 26.0°, θmin = 1.7°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
h = 1614
Tmin = 0.951, Tmax = 0.983k = 1618
25930 measured reflectionsl = 1717
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.061Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.158H atoms treated by a mixture of independent and constrained refinement
S = 1.01 w = 1/[σ2(Fo2) + (0.0735P)2]
where P = (Fo2 + 2Fc2)/3
4971 reflections(Δ/σ)max < 0.001
387 parametersΔρmax = 0.52 e Å3
0 restraintsΔρmin = 0.27 e Å3
Crystal data top
C4H7N2+·C7H5O6SV = 2531.7 (2) Å3
Mr = 300.29Z = 8
Monoclinic, P21/cMo Kα radiation
a = 13.2702 (6) ŵ = 0.28 mm1
b = 14.9930 (7) ÅT = 294 K
c = 14.0947 (7) Å0.10 × 0.10 × 0.06 mm
β = 115.471 (1)°
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
4971 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
2829 reflections with I > 2σ(I)
Tmin = 0.951, Tmax = 0.983Rint = 0.078
25930 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0610 restraints
wR(F2) = 0.158H atoms treated by a mixture of independent and constrained refinement
S = 1.01Δρmax = 0.52 e Å3
4971 reflectionsΔρmin = 0.27 e Å3
387 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.0990 (3)0.62650 (19)0.6272 (2)0.0252 (8)
C20.1984 (3)0.6148 (2)0.6164 (2)0.0280 (8)
C30.2412 (3)0.5301 (2)0.6206 (3)0.0356 (9)
H30.30680.52250.61270.043*
C40.1879 (3)0.4567 (2)0.6364 (2)0.0338 (8)
H40.21770.40000.63980.041*
C50.0896 (3)0.4675 (2)0.6470 (2)0.0273 (8)
C60.0453 (3)0.5518 (2)0.6413 (2)0.0262 (8)
H60.02160.55850.64690.031*
C70.0560 (3)0.7165 (2)0.6295 (2)0.0304 (8)
C80.4034 (3)0.88000 (19)0.3769 (2)0.0271 (8)
C90.3072 (3)0.8687 (2)0.3943 (3)0.0305 (8)
C100.2652 (3)0.7833 (2)0.3916 (3)0.0343 (8)
H100.20200.77570.40360.041*
C110.3149 (3)0.7103 (2)0.3718 (2)0.0318 (8)
H110.28540.65380.36990.038*
C120.4102 (3)0.7211 (2)0.3544 (2)0.0249 (8)
C130.4531 (3)0.80505 (19)0.3581 (2)0.0275 (8)
H130.51730.81180.34760.033*
C140.4461 (3)0.9698 (2)0.3722 (2)0.0281 (8)
C150.0194 (3)0.0472 (2)0.6355 (3)0.0383 (9)
H150.04480.04630.64650.046*
C160.1677 (3)0.0050 (2)0.6170 (3)0.0435 (10)
H160.22280.03140.61350.052*
C170.1612 (3)0.0945 (2)0.6057 (3)0.0362 (9)
C180.2318 (3)0.1614 (3)0.5845 (3)0.0563 (12)
H18A0.27590.19340.64800.085*
H18B0.18490.20250.53180.085*
H18C0.28020.13150.56010.085*
C190.4887 (3)0.2989 (2)0.3695 (3)0.0396 (9)
H190.55750.29770.36690.048*
C200.3327 (3)0.2568 (2)0.3710 (3)0.0432 (10)
H200.27530.22010.36890.052*
C210.3376 (3)0.3465 (2)0.3824 (3)0.0315 (8)
C220.2630 (3)0.4128 (3)0.3970 (3)0.0532 (11)
H22A0.23170.45070.33630.080*
H22B0.30480.44820.45810.080*
H22C0.20400.38250.40600.080*
N10.0672 (3)0.11847 (19)0.6181 (2)0.0351 (8)
H1A0.039 (3)0.175 (2)0.610 (2)0.042*
N20.0794 (3)0.0223 (2)0.6342 (3)0.0460 (9)
H2A0.073 (3)0.081 (3)0.643 (3)0.055*
N30.4369 (3)0.37010 (18)0.3803 (2)0.0342 (8)
H3A0.456 (3)0.428 (2)0.391 (2)0.041*
N40.4261 (3)0.2301 (2)0.3632 (2)0.0409 (8)
H4A0.439 (3)0.175 (2)0.348 (3)0.049*
O10.0324 (2)0.71702 (16)0.6488 (2)0.0463 (7)
H1B0.051 (3)0.769 (3)0.657 (3)0.069*
O20.1002 (2)0.78518 (14)0.61869 (18)0.0400 (6)
O30.2573 (2)0.68489 (16)0.6047 (2)0.0414 (7)
H3B0.216 (3)0.731 (3)0.598 (3)0.062*
O40.0836 (2)0.36745 (14)0.79296 (18)0.0418 (7)
O50.0911 (2)0.39980 (16)0.6455 (2)0.0505 (7)
O60.0407 (2)0.29930 (14)0.6244 (2)0.0548 (8)
O70.5330 (2)0.96992 (15)0.3504 (2)0.0435 (7)
H7A0.550 (3)1.022 (3)0.335 (3)0.065*
O80.4036 (2)1.03890 (14)0.38562 (18)0.0404 (6)
O90.2519 (2)0.93837 (16)0.4110 (2)0.0453 (7)
H9A0.278 (4)0.986 (3)0.403 (3)0.068*
O100.4601 (2)0.55308 (15)0.3779 (2)0.0535 (7)
O110.4120 (2)0.61976 (14)0.20685 (18)0.0432 (7)
O120.5884 (2)0.65386 (16)0.3514 (2)0.0470 (7)
S10.02396 (8)0.37634 (5)0.67755 (7)0.0319 (3)
S20.47409 (8)0.62962 (5)0.32206 (7)0.0318 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.028 (2)0.0213 (17)0.0269 (17)0.0031 (15)0.0122 (15)0.0009 (13)
C20.032 (2)0.0227 (17)0.0324 (18)0.0047 (16)0.0171 (16)0.0000 (14)
C30.034 (2)0.034 (2)0.044 (2)0.0033 (17)0.0232 (18)0.0006 (16)
C40.035 (2)0.0274 (18)0.042 (2)0.0065 (17)0.0190 (18)0.0012 (15)
C50.031 (2)0.0195 (17)0.0327 (19)0.0023 (15)0.0152 (17)0.0014 (14)
C60.028 (2)0.0212 (17)0.0306 (18)0.0008 (15)0.0143 (16)0.0000 (14)
C70.036 (2)0.0208 (17)0.0336 (19)0.0017 (16)0.0141 (17)0.0001 (14)
C80.035 (2)0.0209 (17)0.0269 (18)0.0003 (16)0.0146 (16)0.0009 (13)
C90.038 (2)0.0233 (18)0.0320 (19)0.0002 (16)0.0166 (17)0.0010 (14)
C100.033 (2)0.0330 (19)0.045 (2)0.0007 (17)0.0240 (18)0.0031 (16)
C110.035 (2)0.0202 (17)0.040 (2)0.0047 (16)0.0150 (17)0.0000 (14)
C120.027 (2)0.0201 (17)0.0265 (18)0.0006 (15)0.0105 (15)0.0000 (13)
C130.032 (2)0.0206 (17)0.0341 (19)0.0038 (15)0.0181 (16)0.0037 (14)
C140.036 (2)0.0206 (17)0.0281 (18)0.0025 (16)0.0137 (17)0.0029 (13)
C150.045 (3)0.034 (2)0.039 (2)0.0075 (19)0.0208 (19)0.0010 (17)
C160.045 (3)0.028 (2)0.057 (3)0.0093 (19)0.022 (2)0.0024 (17)
C170.041 (2)0.0306 (19)0.036 (2)0.0033 (18)0.0149 (18)0.0008 (15)
C180.049 (3)0.056 (3)0.071 (3)0.003 (2)0.032 (2)0.015 (2)
C190.041 (3)0.033 (2)0.050 (2)0.0038 (19)0.024 (2)0.0026 (17)
C200.044 (3)0.034 (2)0.053 (2)0.012 (2)0.022 (2)0.0054 (18)
C210.024 (2)0.0329 (19)0.037 (2)0.0001 (17)0.0130 (17)0.0033 (15)
C220.042 (3)0.061 (3)0.058 (3)0.015 (2)0.023 (2)0.000 (2)
N10.040 (2)0.0228 (16)0.0444 (18)0.0055 (15)0.0198 (16)0.0014 (13)
N20.057 (3)0.0205 (16)0.055 (2)0.0042 (18)0.0194 (19)0.0033 (15)
N30.0331 (19)0.0214 (15)0.0469 (19)0.0000 (14)0.0161 (15)0.0024 (13)
N40.054 (2)0.0221 (16)0.048 (2)0.0052 (17)0.0240 (17)0.0035 (14)
O10.0458 (18)0.0225 (13)0.085 (2)0.0021 (12)0.0422 (16)0.0055 (13)
O20.0477 (17)0.0201 (12)0.0579 (16)0.0016 (12)0.0280 (13)0.0030 (11)
O30.0407 (17)0.0306 (14)0.0621 (17)0.0069 (12)0.0307 (14)0.0044 (12)
O40.0530 (17)0.0285 (13)0.0440 (15)0.0070 (11)0.0210 (13)0.0070 (10)
O50.0319 (16)0.0387 (15)0.082 (2)0.0040 (12)0.0253 (15)0.0068 (14)
O60.087 (2)0.0198 (13)0.0711 (18)0.0044 (13)0.0465 (17)0.0091 (12)
O70.0496 (18)0.0203 (13)0.0743 (19)0.0014 (12)0.0396 (16)0.0077 (12)
O80.0520 (17)0.0199 (12)0.0517 (15)0.0038 (12)0.0247 (13)0.0036 (11)
O90.0502 (19)0.0293 (14)0.0700 (18)0.0089 (13)0.0389 (15)0.0003 (13)
O100.082 (2)0.0222 (13)0.0680 (18)0.0008 (14)0.0431 (16)0.0047 (12)
O110.0526 (17)0.0328 (14)0.0432 (15)0.0068 (12)0.0196 (13)0.0099 (11)
O120.0363 (17)0.0380 (14)0.0690 (18)0.0067 (12)0.0247 (14)0.0027 (13)
S10.0398 (6)0.0171 (4)0.0417 (5)0.0024 (4)0.0201 (5)0.0006 (3)
S20.0410 (6)0.0165 (4)0.0429 (5)0.0039 (4)0.0228 (5)0.0012 (3)
Geometric parameters (Å, º) top
C1—C61.387 (4)C16—N21.359 (5)
C1—C21.403 (5)C16—H160.9300
C1—C71.471 (4)C17—N11.378 (4)
C2—O31.360 (4)C17—C181.488 (5)
C2—C31.383 (4)C18—H18A0.9600
C3—C41.377 (4)C18—H18B0.9600
C3—H30.9300C18—H18C0.9600
C4—C51.384 (4)C19—N41.303 (4)
C4—H40.9300C19—N31.314 (4)
C5—C61.381 (4)C19—H190.9300
C5—S11.771 (3)C20—N41.352 (4)
C6—H60.9300C20—C211.352 (5)
C7—O21.226 (4)C20—H200.9300
C7—O11.314 (4)C21—N31.376 (4)
C8—C131.385 (4)C21—C221.479 (5)
C8—C91.410 (5)C22—H22A0.9600
C8—C141.473 (4)C22—H22B0.9600
C9—O91.355 (4)C22—H22C0.9600
C9—C101.390 (4)N1—H1A0.91 (4)
C10—C111.367 (4)N2—H2A0.90 (4)
C10—H100.9300N3—H3A0.90 (3)
C11—C121.397 (4)N4—H4A0.89 (4)
C11—H110.9300O1—H1B0.84 (4)
C12—C131.374 (4)O3—H3B0.86 (4)
C12—S21.772 (3)O4—S11.477 (2)
C13—H130.9300O5—S11.438 (2)
C14—O81.233 (3)O6—S11.445 (2)
C14—O71.314 (4)O7—H7A0.86 (4)
C15—N21.317 (5)O9—H9A0.82 (4)
C15—N11.318 (4)O10—S21.448 (2)
C15—H150.9300O11—S21.479 (2)
C16—C171.350 (5)O12—S21.437 (2)
C6—C1—C2118.7 (3)N1—C17—C18122.1 (3)
C6—C1—C7120.7 (3)C17—C18—H18A109.5
C2—C1—C7120.6 (3)C17—C18—H18B109.5
O3—C2—C3117.9 (3)H18A—C18—H18B109.5
O3—C2—C1122.2 (3)C17—C18—H18C109.5
C3—C2—C1119.9 (3)H18A—C18—H18C109.5
C4—C3—C2120.7 (3)H18B—C18—H18C109.5
C4—C3—H3119.7N4—C19—N3107.5 (3)
C2—C3—H3119.7N4—C19—H19126.2
C3—C4—C5119.8 (3)N3—C19—H19126.2
C3—C4—H4120.1N4—C20—C21107.8 (3)
C5—C4—H4120.1N4—C20—H20126.1
C6—C5—C4119.9 (3)C21—C20—H20126.1
C6—C5—S1118.6 (2)C20—C21—N3104.6 (3)
C4—C5—S1121.4 (2)C20—C21—C22133.1 (4)
C5—C6—C1121.0 (3)N3—C21—C22122.3 (3)
C5—C6—H6119.5C21—C22—H22A109.5
C1—C6—H6119.5C21—C22—H22B109.5
O2—C7—O1122.6 (3)H22A—C22—H22B109.5
O2—C7—C1123.8 (3)C21—C22—H22C109.5
O1—C7—C1113.5 (3)H22A—C22—H22C109.5
C13—C8—C9118.5 (3)H22B—C22—H22C109.5
C13—C8—C14120.6 (3)C15—N1—C17110.3 (3)
C9—C8—C14120.8 (3)C15—N1—H1A125 (2)
O9—C9—C10118.3 (3)C17—N1—H1A125 (2)
O9—C9—C8122.4 (3)C15—N2—C16109.6 (3)
C10—C9—C8119.3 (3)C15—N2—H2A133 (3)
C11—C10—C9121.3 (3)C16—N2—H2A118 (3)
C11—C10—H10119.4C19—N3—C21110.3 (3)
C9—C10—H10119.4C19—N3—H3A133 (2)
C10—C11—C12119.7 (3)C21—N3—H3A117 (2)
C10—C11—H11120.1C19—N4—C20109.8 (3)
C12—C11—H11120.1C19—N4—H4A125 (2)
C13—C12—C11119.4 (3)C20—N4—H4A125 (2)
C13—C12—S2118.8 (2)C7—O1—H1B112 (3)
C11—C12—S2121.7 (2)C2—O3—H3B106 (3)
C12—C13—C8121.8 (3)C14—O7—H7A114 (3)
C12—C13—H13119.1C9—O9—H9A112 (3)
C8—C13—H13119.1O5—S1—O6114.33 (17)
O8—C14—O7122.7 (3)O5—S1—O4111.23 (16)
O8—C14—C8123.4 (3)O6—S1—O4111.69 (15)
O7—C14—C8113.9 (3)O5—S1—C5107.58 (15)
N2—C15—N1107.3 (3)O6—S1—C5106.83 (15)
N2—C15—H15126.3O4—S1—C5104.51 (14)
N1—C15—H15126.3O12—S2—O10114.23 (16)
C17—C16—N2107.7 (3)O12—S2—O11111.21 (16)
C17—C16—H16126.2O10—S2—O11112.10 (15)
N2—C16—H16126.2O12—S2—C12107.04 (15)
C16—C17—N1105.1 (3)O10—S2—C12106.63 (15)
C16—C17—C18132.8 (4)O11—S2—C12104.93 (14)
C6—C1—C2—O3178.5 (3)C13—C8—C14—O8178.1 (3)
C7—C1—C2—O31.8 (5)C9—C8—C14—O81.9 (5)
C6—C1—C2—C30.5 (5)C13—C8—C14—O70.7 (4)
C7—C1—C2—C3176.2 (3)C9—C8—C14—O7176.9 (3)
O3—C2—C3—C4177.5 (3)N2—C16—C17—N10.7 (4)
C1—C2—C3—C40.6 (5)N2—C16—C17—C18179.2 (4)
C2—C3—C4—C50.7 (5)N4—C20—C21—N30.2 (4)
C3—C4—C5—C60.3 (5)N4—C20—C21—C22178.3 (4)
C3—C4—C5—S1175.0 (3)N2—C15—N1—C170.3 (4)
C4—C5—C6—C11.4 (5)C16—C17—N1—C150.3 (4)
S1—C5—C6—C1174.0 (2)C18—C17—N1—C15179.7 (3)
C2—C1—C6—C51.5 (5)N1—C15—N2—C160.7 (4)
C7—C1—C6—C5175.2 (3)C17—C16—N2—C150.9 (4)
C6—C1—C7—O2179.2 (3)N4—C19—N3—C210.8 (4)
C2—C1—C7—O22.6 (5)C20—C21—N3—C190.6 (4)
C6—C1—C7—O12.0 (4)C22—C21—N3—C19178.1 (3)
C2—C1—C7—O1174.6 (3)N3—C19—N4—C200.6 (4)
C13—C8—C9—O9178.5 (3)C21—C20—N4—C190.2 (4)
C14—C8—C9—O92.3 (5)C6—C5—S1—O525.6 (3)
C13—C8—C9—C100.3 (5)C4—C5—S1—O5159.0 (3)
C14—C8—C9—C10176.0 (3)C6—C5—S1—O6148.8 (3)
O9—C9—C10—C11177.9 (3)C4—C5—S1—O635.8 (3)
C8—C9—C10—C110.4 (5)C6—C5—S1—O492.7 (3)
C9—C10—C11—C120.4 (5)C4—C5—S1—O482.7 (3)
C10—C11—C12—C130.3 (5)C13—C12—S2—O1225.9 (3)
C10—C11—C12—S2176.9 (3)C11—C12—S2—O12156.9 (3)
C11—C12—C13—C81.1 (5)C13—C12—S2—O10148.6 (3)
S2—C12—C13—C8176.2 (2)C11—C12—S2—O1034.2 (3)
C9—C8—C13—C121.0 (5)C13—C12—S2—O1192.3 (3)
C14—C8—C13—C12175.2 (3)C11—C12—S2—O1184.9 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1B···O4i0.84 (4)1.76 (4)2.588 (3)166 (4)
N2—H2A···O2ii0.90 (4)2.10 (4)2.916 (4)152 (3)
N4—H4A···O8ii0.89 (4)2.20 (4)2.913 (4)136 (3)
N4—H4A···O11iii0.89 (4)2.55 (4)3.186 (4)129 (3)
O7—H7A···O11iv0.86 (4)1.74 (4)2.596 (3)173 (4)
C15—H15···O9v0.932.523.378 (5)154
C22—H22C···O1v0.962.553.445 (5)156
C19—H19···O3vi0.932.333.241 (5)167
N1—H1A···O60.91 (4)1.87 (4)2.740 (4)158 (3)
N3—H3A···O100.90 (3)1.89 (4)2.763 (4)164 (3)
O3—H3B···O20.86 (4)1.87 (4)2.646 (3)149 (4)
O9—H9A···O80.82 (4)1.96 (4)2.658 (3)142 (4)
C18—H18A···Cg4vii0.962.893.758 (4)151
C22—H22A···Cg3viii0.962.763.582 (4)143
Symmetry codes: (i) x, y+1/2, z+3/2; (ii) x, y1, z; (iii) x+1, y1/2, z+1/2; (iv) x+1, y+1/2, z+1/2; (v) x, y+1, z+1; (vi) x+1, y+1, z+1; (vii) x, y+1/2, z+1/2; (viii) x, y+1/2, z1/2.
(II) bis(5-methylimidazolium) 3-carboxylato-4-hydroxybenzenesulfonate top
Crystal data top
2C4H7N2+·C7H4O6S2F(000) = 800
Mr = 382.39Dx = 1.436 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 6249 reflections
a = 9.5394 (5) Åθ = 2.3–28.0°
b = 17.8475 (9) ŵ = 0.22 mm1
c = 10.4174 (5) ÅT = 297 K
β = 94.136 (1)°Block, colourless
V = 1768.99 (15) Å30.20 × 0.20 × 0.13 mm
Z = 4
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
3840 independent reflections
Radiation source: fine focus sealed Siemens Mo tube3138 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.030
0.3° wide ω exposures scansθmax = 27.0°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
h = 1212
Tmin = 0.947, Tmax = 0.972k = 2222
19241 measured reflectionsl = 1312
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.155H atoms treated by a mixture of independent and constrained refinement
S = 0.82 w = 1/[σ2(Fo2) + (0.1381P)2 + 0.7402P]
where P = (Fo2 + 2Fc2)/3
3840 reflections(Δ/σ)max < 0.001
252 parametersΔρmax = 0.33 e Å3
0 restraintsΔρmin = 0.30 e Å3
Crystal data top
2C4H7N2+·C7H4O6S2V = 1768.99 (15) Å3
Mr = 382.39Z = 4
Monoclinic, P21/cMo Kα radiation
a = 9.5394 (5) ŵ = 0.22 mm1
b = 17.8475 (9) ÅT = 297 K
c = 10.4174 (5) Å0.20 × 0.20 × 0.13 mm
β = 94.136 (1)°
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
3840 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
3138 reflections with I > 2σ(I)
Tmin = 0.947, Tmax = 0.972Rint = 0.030
19241 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0420 restraints
wR(F2) = 0.155H atoms treated by a mixture of independent and constrained refinement
S = 0.82Δρmax = 0.33 e Å3
3840 reflectionsΔρmin = 0.30 e Å3
252 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.36558 (19)0.15653 (10)0.75778 (18)0.0353 (4)
C20.4151 (2)0.17439 (11)0.6385 (2)0.0403 (4)
C30.3216 (2)0.19588 (12)0.5361 (2)0.0455 (5)
H30.35550.20930.45780.055*
C40.1787 (2)0.19741 (11)0.55035 (18)0.0396 (4)
H40.11660.21090.48130.047*
C50.12780 (19)0.17870 (9)0.66807 (17)0.0323 (4)
C60.22115 (19)0.15993 (10)0.77149 (17)0.0330 (4)
H60.18710.14950.85100.040*
C70.4623 (2)0.13182 (11)0.8695 (2)0.0417 (5)
C80.3398 (3)0.06558 (12)0.3740 (2)0.0515 (5)
C90.3467 (2)0.16694 (13)0.2553 (2)0.0500 (5)
H9A0.32810.21460.22480.060*
C100.4342 (2)0.05526 (13)0.2736 (2)0.0514 (5)
H10A0.48780.01240.25660.062*
C110.2894 (4)0.01506 (17)0.4821 (3)0.0913 (11)
H11A0.35840.02310.49340.137*
H11B0.27480.04370.55990.137*
H11C0.20250.00800.46250.137*
C121.0074 (2)0.08427 (11)1.14030 (19)0.0428 (4)
C130.9257 (2)0.12589 (11)1.0560 (2)0.0459 (5)
H13A0.94250.17501.03170.055*
C140.8254 (2)0.01646 (11)1.0685 (2)0.0439 (5)
H14A0.76260.02311.05540.053*
C151.1413 (3)0.10154 (16)1.2181 (3)0.0716 (8)
H15A1.17170.15121.19830.107*
H15B1.21220.06611.19800.107*
H15C1.12600.09841.30800.107*
N10.28697 (19)0.13594 (10)0.35977 (19)0.0472 (4)
H1A0.233 (3)0.1581 (15)0.415 (3)0.057*
N20.43733 (19)0.11896 (11)0.20114 (18)0.0472 (4)
H2A0.486 (3)0.1264 (14)0.125 (3)0.057*
N30.94125 (18)0.01584 (9)1.14631 (17)0.0414 (4)
H3A0.971 (3)0.0215 (14)1.187 (2)0.050*
N40.81413 (18)0.08243 (10)1.01293 (17)0.0434 (4)
H4A0.750 (3)0.0920 (14)0.963 (2)0.052*
O10.41137 (16)0.11674 (9)0.97363 (15)0.0531 (4)
O20.59191 (15)0.12639 (10)0.84943 (18)0.0625 (5)
O30.55352 (17)0.17114 (10)0.61791 (19)0.0604 (5)
H3B0.598 (4)0.153 (2)0.694 (3)0.091*
O40.08099 (15)0.09665 (8)0.72195 (17)0.0537 (4)
O50.08108 (16)0.22571 (10)0.79086 (15)0.0561 (4)
O60.12446 (14)0.19529 (8)0.56583 (14)0.0463 (4)
S10.05450 (4)0.17435 (2)0.68877 (4)0.03494 (17)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0334 (9)0.0328 (9)0.0386 (10)0.0011 (7)0.0052 (7)0.0010 (7)
C20.0344 (9)0.0398 (10)0.0467 (11)0.0030 (7)0.0025 (8)0.0027 (8)
C30.0486 (11)0.0515 (11)0.0371 (11)0.0010 (9)0.0079 (9)0.0069 (9)
C40.0447 (10)0.0409 (10)0.0322 (10)0.0026 (8)0.0041 (8)0.0030 (8)
C50.0350 (9)0.0299 (8)0.0310 (9)0.0008 (6)0.0042 (7)0.0006 (6)
C60.0336 (9)0.0344 (9)0.0300 (9)0.0012 (7)0.0041 (7)0.0020 (7)
C70.0360 (9)0.0376 (10)0.0493 (12)0.0025 (7)0.0124 (8)0.0011 (8)
C80.0644 (13)0.0433 (11)0.0444 (12)0.0019 (10)0.0128 (10)0.0037 (9)
C90.0472 (12)0.0493 (12)0.0522 (13)0.0052 (9)0.0040 (10)0.0038 (9)
C100.0592 (13)0.0483 (12)0.0451 (12)0.0089 (10)0.0069 (10)0.0042 (9)
C110.141 (3)0.0571 (16)0.0692 (19)0.0034 (17)0.0378 (19)0.0105 (14)
C120.0505 (11)0.0372 (10)0.0394 (10)0.0033 (8)0.0051 (8)0.0012 (8)
C130.0581 (12)0.0328 (9)0.0457 (11)0.0038 (8)0.0042 (9)0.0023 (8)
C140.0408 (10)0.0422 (10)0.0487 (12)0.0002 (8)0.0028 (9)0.0056 (8)
C150.0766 (17)0.0655 (16)0.0677 (17)0.0086 (13)0.0300 (14)0.0006 (13)
N10.0450 (9)0.0483 (10)0.0458 (10)0.0020 (7)0.0147 (8)0.0067 (8)
N20.0430 (9)0.0612 (11)0.0361 (9)0.0020 (8)0.0073 (7)0.0002 (8)
N30.0459 (9)0.0363 (8)0.0415 (9)0.0072 (7)0.0003 (7)0.0098 (7)
N40.0399 (9)0.0463 (9)0.0430 (10)0.0093 (7)0.0044 (7)0.0056 (7)
O10.0462 (8)0.0678 (10)0.0425 (9)0.0037 (7)0.0162 (7)0.0112 (7)
O20.0329 (8)0.0805 (12)0.0721 (11)0.0030 (7)0.0106 (7)0.0129 (9)
O30.0370 (8)0.0797 (12)0.0655 (12)0.0000 (7)0.0104 (8)0.0040 (9)
O40.0420 (8)0.0466 (9)0.0711 (11)0.0045 (6)0.0051 (7)0.0240 (7)
O50.0488 (8)0.0713 (11)0.0476 (9)0.0170 (7)0.0006 (7)0.0089 (7)
O60.0430 (7)0.0478 (8)0.0451 (8)0.0046 (6)0.0178 (6)0.0114 (6)
S10.0317 (3)0.0366 (3)0.0352 (3)0.00171 (16)0.00689 (18)0.00681 (17)
Geometric parameters (Å, º) top
C1—C61.397 (3)C11—H11A0.9600
C1—C21.398 (3)C11—H11B0.9600
C1—C71.498 (3)C11—H11C0.9600
C2—O31.355 (3)C12—C131.353 (3)
C2—C31.394 (3)C12—N31.378 (3)
C3—C41.382 (3)C12—C151.495 (3)
C3—H30.9300C13—N41.366 (3)
C4—C51.392 (3)C13—H13A0.9300
C4—H40.9300C14—N41.313 (3)
C5—C61.388 (2)C14—N31.322 (3)
C5—S11.7694 (19)C14—H14A0.9300
C6—H60.9300C15—H15A0.9600
C7—O11.250 (3)C15—H15B0.9600
C7—O21.272 (2)C15—H15C0.9600
C8—C101.342 (3)N1—H1A0.84 (3)
C8—N11.365 (3)N2—H2A0.90 (3)
C8—C111.495 (3)N3—H3A0.83 (3)
C9—N11.314 (3)N4—H4A0.79 (3)
C9—N21.315 (3)O3—H3B0.93 (4)
C9—H9A0.9300O4—S11.4557 (15)
C10—N21.364 (3)O5—S11.4403 (16)
C10—H10A0.9300O6—S11.4498 (14)
C6—C1—C2118.67 (17)H11B—C11—H11C109.5
C6—C1—C7119.35 (17)C13—C12—N3105.77 (18)
C2—C1—C7121.95 (17)C13—C12—C15131.9 (2)
O3—C2—C3117.91 (19)N3—C12—C15122.29 (19)
O3—C2—C1121.78 (19)C12—C13—N4107.45 (18)
C3—C2—C1120.31 (18)C12—C13—H13A126.3
C4—C3—C2120.33 (18)N4—C13—H13A126.3
C4—C3—H3119.8N4—C14—N3108.42 (19)
C2—C3—H3119.8N4—C14—H14A125.8
C3—C4—C5119.94 (18)N3—C14—H14A125.8
C3—C4—H4120.0C12—C15—H15A109.5
C5—C4—H4120.0C12—C15—H15B109.5
C6—C5—C4119.79 (17)H15A—C15—H15B109.5
C6—C5—S1118.42 (14)C12—C15—H15C109.5
C4—C5—S1121.74 (14)H15A—C15—H15C109.5
C5—C6—C1120.89 (17)H15B—C15—H15C109.5
C5—C6—H6119.6C9—N1—C8109.62 (18)
C1—C6—H6119.6C9—N1—H1A125.1 (18)
O1—C7—O2124.72 (18)C8—N1—H1A124.8 (18)
O1—C7—C1118.77 (17)C9—N2—C10108.55 (19)
O2—C7—C1116.49 (19)C9—N2—H2A124.4 (16)
C10—C8—N1105.9 (2)C10—N2—H2A126.8 (16)
C10—C8—C11131.7 (2)C14—N3—C12109.26 (17)
N1—C8—C11122.4 (2)C14—N3—H3A124.0 (17)
N1—C9—N2108.3 (2)C12—N3—H3A126.6 (17)
N1—C9—H9A125.9C14—N4—C13109.09 (18)
N2—C9—H9A125.9C14—N4—H4A121.1 (19)
C8—C10—N2107.66 (19)C13—N4—H4A129.8 (19)
C8—C10—H10A126.2C2—O3—H3B106 (2)
N2—C10—H10A126.2O5—S1—O6113.20 (9)
C8—C11—H11A109.5O5—S1—O4112.83 (10)
C8—C11—H11B109.5O6—S1—O4112.25 (9)
H11A—C11—H11B109.5O5—S1—C5106.80 (9)
C8—C11—H11C109.5O6—S1—C5105.96 (9)
H11A—C11—H11C109.5O4—S1—C5105.05 (8)
C6—C1—C2—O3178.96 (17)N3—C12—C13—N40.3 (2)
C7—C1—C2—O30.8 (3)C15—C12—C13—N4179.5 (3)
C6—C1—C2—C30.7 (3)N2—C9—N1—C80.2 (3)
C7—C1—C2—C3178.86 (18)C10—C8—N1—C90.0 (3)
O3—C2—C3—C4177.55 (19)C11—C8—N1—C9178.2 (3)
C1—C2—C3—C42.1 (3)N1—C9—N2—C100.3 (3)
C2—C3—C4—C51.1 (3)C8—C10—N2—C90.3 (3)
C3—C4—C5—C61.2 (3)N4—C14—N3—C120.1 (2)
C3—C4—C5—S1176.19 (15)C13—C12—N3—C140.3 (2)
C4—C5—C6—C12.7 (3)C15—C12—N3—C14179.6 (2)
S1—C5—C6—C1174.83 (14)N3—C14—N4—C130.1 (2)
C2—C1—C6—C51.7 (3)C12—C13—N4—C140.2 (2)
C7—C1—C6—C5176.53 (16)C6—C5—S1—O560.09 (16)
C6—C1—C7—O11.9 (3)C4—C5—S1—O5122.47 (16)
C2—C1—C7—O1179.93 (18)C6—C5—S1—O6178.96 (14)
C6—C1—C7—O2176.75 (18)C4—C5—S1—O61.52 (18)
C2—C1—C7—O21.4 (3)C6—C5—S1—O459.97 (16)
N1—C8—C10—N20.2 (3)C4—C5—S1—O4117.47 (16)
C11—C8—C10—N2178.1 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O60.84 (3)1.94 (3)2.767 (2)168 (3)
O3—H3B···O20.93 (4)1.70 (4)2.542 (3)150 (3)
N4—H4A···O20.79 (3)1.95 (3)2.737 (2)174 (3)
N2—H2A···O1i0.90 (3)1.80 (3)2.685 (2)166 (2)
N3—H3A···O4ii0.83 (3)1.91 (3)2.725 (2)167 (2)
C14—H14A···O1ii0.932.363.287 (3)175
C9—H9A···O3iii0.932.553.333 (3)142
C13—H13A···O6iv0.932.433.230 (2)144
Symmetry codes: (i) x1, y, z1; (ii) x+1, y, z+2; (iii) x1, y+1/2, z1/2; (iv) x+1, y+1/2, z+1/2.

Experimental details

(I)(II)
Crystal data
Chemical formulaC4H7N2+·C7H5O6S2C4H7N2+·C7H4O6S2
Mr300.29382.39
Crystal system, space groupMonoclinic, P21/cMonoclinic, P21/c
Temperature (K)294297
a, b, c (Å)13.2702 (6), 14.9930 (7), 14.0947 (7)9.5394 (5), 17.8475 (9), 10.4174 (5)
β (°) 115.471 (1) 94.136 (1)
V3)2531.7 (2)1768.99 (15)
Z84
Radiation typeMo KαMo Kα
µ (mm1)0.280.22
Crystal size (mm)0.10 × 0.10 × 0.060.20 × 0.20 × 0.13
Data collection
DiffractometerBruker SMART APEX CCD area-detector
diffractometer
Bruker SMART APEX CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2003)
Multi-scan
(SADABS; Sheldrick, 2003)
Tmin, Tmax0.951, 0.9830.947, 0.972
No. of measured, independent and
observed [I > 2σ(I)] reflections
25930, 4971, 2829 19241, 3840, 3138
Rint0.0780.030
(sin θ/λ)max1)0.6170.639
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.061, 0.158, 1.01 0.042, 0.155, 0.82
No. of reflections49713840
No. of parameters387252
H-atom treatmentH atoms treated by a mixture of independent and constrained refinementH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.52, 0.270.33, 0.30

Computer programs: SMART (Bruker, 2001), SAINT-Plus (Bruker, 2001), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), PLATON (Spek, 2003).

Hydrogen-bond geometry (Å, º) for (I) top
D—H···AD—HH···AD···AD—H···A
O1—H1B···O4i0.84 (4)1.76 (4)2.588 (3)166 (4)
N2—H2A···O2ii0.90 (4)2.10 (4)2.916 (4)152 (3)
N4—H4A···O8ii0.89 (4)2.20 (4)2.913 (4)136 (3)
N4—H4A···O11iii0.89 (4)2.55 (4)3.186 (4)129 (3)
O7—H7A···O11iv0.86 (4)1.74 (4)2.596 (3)173 (4)
C15—H15···O9v0.932.523.378 (5)154
C22—H22C···O1v0.962.553.445 (5)156
C19—H19···O3vi0.932.333.241 (5)167
N1—H1A···O60.91 (4)1.87 (4)2.740 (4)158 (3)
N3—H3A···O100.90 (3)1.89 (4)2.763 (4)164 (3)
O3—H3B···O20.86 (4)1.87 (4)2.646 (3)149 (4)
O9—H9A···O80.82 (4)1.96 (4)2.658 (3)142 (4)
C18—H18A···Cg4vii0.962.893.758 (4)151
C22—H22A···Cg3viii0.962.763.582 (4)143
Symmetry codes: (i) x, y+1/2, z+3/2; (ii) x, y1, z; (iii) x+1, y1/2, z+1/2; (iv) x+1, y+1/2, z+1/2; (v) x, y+1, z+1; (vi) x+1, y+1, z+1; (vii) x, y+1/2, z+1/2; (viii) x, y+1/2, z1/2.
Hydrogen-bond geometry (Å, º) for (II) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O60.84 (3)1.94 (3)2.767 (2)168 (3)
O3—H3B···O20.93 (4)1.70 (4)2.542 (3)150 (3)
N4—H4A···O20.79 (3)1.95 (3)2.737 (2)174 (3)
N2—H2A···O1i0.90 (3)1.80 (3)2.685 (2)166 (2)
N3—H3A···O4ii0.83 (3)1.91 (3)2.725 (2)167 (2)
C14—H14A···O1ii0.932.363.287 (3)175
C9—H9A···O3iii0.932.553.333 (3)142
C13—H13A···O6iv0.932.433.230 (2)144
Symmetry codes: (i) x1, y, z1; (ii) x+1, y, z+2; (iii) x1, y+1/2, z1/2; (iv) x+1, y+1/2, z+1/2.
Geometry of ππ stacking interactions for (I) and (II) (°, Å) top
CgiCgjDihedral angleCentroid distanceInterplanar spacing
(I)
Cg1Cg1v0.004.200 (2)3.667 (2)
Cg1Cg2ix3.5 (1)4.187 (2)3.478 (2)
Cg2Cg4vi7.2 (1)3.864 (2)3.485 (2)
Cg3Cg3v0.02 (1)3.618 (2)3.372 (2)
Cg4Cg2vi2.30 (1)3.864 (2)3.485 (2)
(II)
Cg1Cg2i16.3 (1)3.582 (2)3.490 (2)
Cg2Cg2v0.03 (1)3.523 (2)3.231 (2)
In (I), Cg1 is the centroid of the ring C1–C6, Cg2 is the centroid of the ring C8–C13, Cg3 is the centroid of the ring N1/N2/C15–C17 and Cg4 is the centroid of the ring N3/N4/C19–C21. Symmetry codes: (v) -x, 1-y, 1-z; (vi) 1-x, 1-y, 1-z; (vii) 1-x, y-1/2, 1-z; (viii) 2-x, 1/2+y, -z; (ix) x, 3/2-y, 1/2+z. In (II), Cg1 is the centroid of the ring N1/N2/C8–C10 and Cg2 is the centroid of the ring N3/N4/C12–C14. Symmetry codes: (i) -1+x, y, -1+z; (ii) 2-x, -y, 2-z.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds