The title compound, [Cu
3(C
9H
17N
3O
3)
2(NCS)
2(CH
3CN)
2], contains two square-pyramidal Cu
II units chelated by a
transoid asymmetrical
N-[3-(dimethylamino)propyl]-
N′-(2-hydroxyethyl)oxamidate (dmapheoxd) dianion {H
2dmapheoxd is
N-[3-(dimethylamino)propyl]-
N′-(2-hydroxyethyl)oxamide}, which coordinates to another Cu
II ion in a square-planar environment lying on a crystallographic inversion center. Thus, the
trans-oxamide ligand bridges two Cu
II ions with different coordination numbers, and this is the first instance of such a zero-dimensional oxamide-bridged complex. The activated methyl group in the coordinated acetonitrile molecule is involved in a strong nonclassical C—H
O hydrogen bond, which contributes to a one-dimensional chain extending in the
b direction. Considering the presence of weak bonding between the Cu atom and the uncoordinated hydroxyl O atoms, a two-dimensional structure is formed parallel to the
ab plane.
Supporting information
CCDC reference: 686413
All reagents were of AR grade and were used without further purification. The
H2dmapheoxd ligand was synthesized as follows. An ethanol solution (10 ml)
of 3-dimethylamino-1-propylamine (1.26 ml, 10 mmol) was added very slowly,
via a dropping funnel, to an ethanol solution (10 ml) of diethyl
oxalate (1.36 ml, 10 mmol) with continuous stirring. The mixture was stirred
quickly for 30 min, and then an ethanol solution (10 ml) containing
enthanolamine (0.60 ml) was added dropwise. The reaction solution was kept at
room temperature with stirring for 3 h. The resulting solution was
concentrated under vacuum and H2dmapheoxd precipitated as a white powder
(yield 78%).
[Cu3(dmapheoxd)2(MeCN)2(NCS)2] was obtained according to the following
procedure. To a solution of H2dmapheoxd (0.0217 g, 0.1 mmol) in acetonitrile
(5 ml) were added successively piperidine (0.2 mmol) and a solution of
CuCl2·2H2O (0.0256 g, 0.15 mmol) in acetonitrile (5 ml). The mixture
was stirred quickly for 30 min, and then an acetonitrile solution (5 ml)
containing KSCN (0.0098 g, 0.1 mmol) was added dropwise. The reaction solution
was stirred continuously at 333 K for a further 5 h. Green crystals of the
title complex suitable for X-ray analysis were obtained from the solution by
slow evaporation at room temperature for 7 d (yield 70%). Elemental analysis
for C24H40Cu3N10O6S2, calculated: C 35.18, H 4.92, N 17.09%;
found: C 35.28, H 4.99, N 17.04%.
The hydroxyl H atom was located in a difference Fourier map and treated as
riding, with O—H = 0.85 Å and with a fixed Uiso(H) = 0.08 Å2.
The remaining H atoms were placed in calculated positions, with C—H
distances of 0.96 (methyl) or 0.97 Å (methylene), and refined in riding
mode, with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(methyl C).
The CH3 groups were allowed to rotate freely around the C—N or C—C bond.
Atoms C6, C7, C8 and C9 in the N-[3-(dimethylamino)propyl] moiety
appeared to be disordered, and were refined as two parts (occupancy factors
0.55 and 0.45).
Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT (Bruker, 2002); program(s) used to solve structure: SHELXL97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP (Siemens, 1994); software used to prepare material for publication: WinGX (Farrugia, 1999).
Diacetonitrile-1
κN,3
κN-bis{µ-
trans-
N-[3-(dimethylamino)propyl]-N'-
(2-hydroxyethyl)oxamidato(2-)}-1:2
κ5N,
N',
O:
O',
N'';2:3
κ5O',
N'':
N,
N',
O-
dithiocyanato-1
κN,3
κN-tricopper(II)
top
Crystal data top
[Cu3(C9H17N3O3)2(NCS)2(C2H3N)2] | Z = 1 |
Mr = 819.45 | F(000) = 421 |
Triclinic, P1 | Dx = 1.606 Mg m−3 |
Hall symbol: -P 1 | Mo Kα radiation, λ = 0.71073 Å |
a = 6.040 (5) Å | Cell parameters from 1007 reflections |
b = 8.262 (6) Å | θ = 2.4–25.2° |
c = 17.256 (13) Å | µ = 2.04 mm−1 |
α = 91.999 (10)° | T = 298 K |
β = 97.831 (10)° | Prism, green |
γ = 96.185 (10)° | 0.19 × 0.12 × 0.08 mm |
V = 847.1 (11) Å3 | |
Data collection top
Bruker APEX area-detector diffractometer | 2987 independent reflections |
Radiation source: fine-focus sealed tube | 1649 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.048 |
ϕ and ω scans | θmax = 25.2°, θmin = 2.4° |
Absorption correction: multi-scan (SADABS; Sheldrick, 2003) | h = −6→7 |
Tmin = 0.698, Tmax = 0.854 | k = −9→9 |
4458 measured reflections | l = −18→20 |
Refinement top
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.063 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.175 | H-atom parameters constrained |
S = 1.00 | w = 1/[σ2(Fo2) + (0.0826P)2] where P = (Fo2 + 2Fc2)/3 |
2987 reflections | (Δ/σ)max < 0.001 |
247 parameters | Δρmax = 0.63 e Å−3 |
19 restraints | Δρmin = −0.49 e Å−3 |
Crystal data top
[Cu3(C9H17N3O3)2(NCS)2(C2H3N)2] | γ = 96.185 (10)° |
Mr = 819.45 | V = 847.1 (11) Å3 |
Triclinic, P1 | Z = 1 |
a = 6.040 (5) Å | Mo Kα radiation |
b = 8.262 (6) Å | µ = 2.04 mm−1 |
c = 17.256 (13) Å | T = 298 K |
α = 91.999 (10)° | 0.19 × 0.12 × 0.08 mm |
β = 97.831 (10)° | |
Data collection top
Bruker APEX area-detector diffractometer | 2987 independent reflections |
Absorption correction: multi-scan (SADABS; Sheldrick, 2003) | 1649 reflections with I > 2σ(I) |
Tmin = 0.698, Tmax = 0.854 | Rint = 0.048 |
4458 measured reflections | |
Refinement top
R[F2 > 2σ(F2)] = 0.063 | 19 restraints |
wR(F2) = 0.175 | H-atom parameters constrained |
S = 1.00 | Δρmax = 0.63 e Å−3 |
2987 reflections | Δρmin = −0.49 e Å−3 |
247 parameters | |
Special details top
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes)
are estimated using the full covariance matrix. The cell e.s.d.'s are taken
into account individually in the estimation of e.s.d.'s in distances, angles
and torsion angles; correlations between e.s.d.'s in cell parameters are only
used when they are defined by crystal symmetry. An approximate (isotropic)
treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s.
planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor
wR and goodness of fit S are based on F2, conventional
R-factors R are based on F, with F set to zero for
negative F2. The threshold expression of F2 >
σ(F2) is used only for calculating R-factors(gt) etc.
and is not relevant to the choice of reflections for refinement.
R-factors based on F2 are statistically about twice as large
as those based on F, and R- factors based on ALL data will be
even larger. |
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top | x | y | z | Uiso*/Ueq | Occ. (<1) |
Cu1 | 0.0000 | 0.0000 | 0.0000 | 0.0445 (4) | |
Cu2 | 0.26972 (16) | 0.31187 (12) | 0.27230 (6) | 0.0438 (4) | |
S1 | 0.0488 (5) | 0.7658 (3) | 0.40289 (15) | 0.0693 (8) | |
O1 | −0.5675 (10) | 0.1578 (7) | −0.0271 (4) | 0.0637 (17) | |
H1 | −0.4716 | 0.1249 | −0.0540 | 0.080* | |
O2 | 0.0379 (9) | 0.3276 (6) | 0.1780 (3) | 0.0516 (15) | |
O3 | 0.1903 (9) | −0.0347 (6) | 0.0983 (3) | 0.0455 (14) | |
N1 | −0.0662 (10) | 0.1953 (7) | 0.0556 (4) | 0.0392 (15) | |
N2 | 0.3151 (10) | 0.1090 (8) | 0.2160 (4) | 0.0406 (16) | |
N3 | 0.4609 (10) | 0.2646 (7) | 0.3749 (4) | 0.0506 (18) | |
N4 | 0.1577 (12) | 0.4950 (9) | 0.3228 (4) | 0.0522 (18) | |
N5 | 0.5423 (14) | 0.4881 (10) | 0.2179 (5) | 0.071 (2) | |
C1 | −0.4541 (14) | 0.2754 (10) | 0.0318 (5) | 0.053 (2) | |
H1A | −0.4672 | 0.2327 | 0.0829 | 0.064* | |
H1B | −0.5293 | 0.3734 | 0.0283 | 0.064* | |
C2 | −0.2050 (13) | 0.3211 (9) | 0.0260 (5) | 0.046 (2) | |
H2A | −0.1873 | 0.3376 | −0.0283 | 0.055* | |
H2B | −0.1528 | 0.4231 | 0.0557 | 0.055* | |
C3 | 0.0407 (13) | 0.2147 (9) | 0.1270 (5) | 0.0389 (18) | |
C4 | 0.1922 (13) | 0.0833 (9) | 0.1496 (5) | 0.0388 (19) | |
C5 | 0.4874 (16) | −0.0004 (11) | 0.2370 (5) | 0.065 (3) | |
H5A | 0.6241 | 0.0397 | 0.2168 | 0.078* | 0.454 (18) |
H5B | 0.4358 | −0.1080 | 0.2127 | 0.078* | 0.454 (18) |
H5C | 0.4183 | −0.1010 | 0.2551 | 0.078* | 0.546 (18) |
H5D | 0.5553 | −0.0271 | 0.1911 | 0.078* | 0.546 (18) |
C6A | 0.539 (4) | −0.013 (2) | 0.3246 (7) | 0.058 (7) | 0.454 (18) |
H6A | 0.4014 | −0.0491 | 0.3456 | 0.070* | 0.454 (18) |
H6B | 0.6437 | −0.0927 | 0.3363 | 0.070* | 0.454 (18) |
C6B | 0.669 (2) | 0.080 (2) | 0.3005 (7) | 0.056 (6) | 0.546 (18) |
H6C | 0.7901 | 0.0122 | 0.3099 | 0.067* | 0.546 (18) |
H6D | 0.7302 | 0.1848 | 0.2841 | 0.067* | 0.546 (18) |
C7A | 0.638 (3) | 0.1507 (19) | 0.3619 (18) | 0.059 (9) | 0.454 (18) |
H7A | 0.7398 | 0.2024 | 0.3289 | 0.070* | 0.454 (18) |
H7B | 0.7256 | 0.1348 | 0.4120 | 0.070* | 0.454 (18) |
C7B | 0.566 (4) | 0.1034 (19) | 0.3741 (12) | 0.056 (7) | 0.546 (18) |
H7C | 0.6813 | 0.1037 | 0.4193 | 0.067* | 0.546 (18) |
H7D | 0.4516 | 0.0133 | 0.3777 | 0.067* | 0.546 (18) |
C8A | 0.338 (6) | 0.201 (4) | 0.439 (2) | 0.044 (7) | 0.454 (18) |
H8A | 0.2653 | 0.2871 | 0.4604 | 0.066* | 0.454 (18) |
H8B | 0.4422 | 0.1635 | 0.4795 | 0.066* | 0.454 (18) |
H8C | 0.2267 | 0.1130 | 0.4184 | 0.066* | 0.454 (18) |
C8B | 0.301 (5) | 0.251 (3) | 0.4347 (17) | 0.045 (6) | 0.546 (18) |
H8D | 0.3822 | 0.2340 | 0.4850 | 0.067* | 0.546 (18) |
H8E | 0.1869 | 0.1615 | 0.4197 | 0.067* | 0.546 (18) |
H8F | 0.2319 | 0.3504 | 0.4377 | 0.067* | 0.546 (18) |
C9A | 0.585 (3) | 0.425 (2) | 0.406 (2) | 0.039 (7) | 0.454 (18) |
H9A | 0.6854 | 0.4097 | 0.4530 | 0.059* | 0.454 (18) |
H9B | 0.4796 | 0.4981 | 0.4185 | 0.059* | 0.454 (18) |
H9C | 0.6703 | 0.4716 | 0.3678 | 0.059* | 0.454 (18) |
C9B | 0.648 (3) | 0.398 (2) | 0.400 (2) | 0.049 (7) | 0.546 (18) |
H9D | 0.7329 | 0.3710 | 0.4483 | 0.073* | 0.546 (18) |
H9E | 0.5854 | 0.4983 | 0.4084 | 0.073* | 0.546 (18) |
H9F | 0.7439 | 0.4099 | 0.3605 | 0.073* | 0.546 (18) |
C10 | 0.1182 (14) | 0.6088 (10) | 0.3561 (5) | 0.047 (2) | |
C11 | 0.6791 (16) | 0.5777 (11) | 0.1996 (5) | 0.053 (2) | |
C12 | 0.8580 (16) | 0.6906 (10) | 0.1797 (6) | 0.063 (2) | |
H12A | 0.9814 | 0.6326 | 0.1696 | 0.094* | |
H12B | 0.9073 | 0.7695 | 0.2224 | 0.094* | |
H12C | 0.8050 | 0.7452 | 0.1337 | 0.094* | |
Atomic displacement parameters (Å2) top | U11 | U22 | U33 | U12 | U13 | U23 |
Cu1 | 0.0654 (10) | 0.0367 (8) | 0.0301 (9) | 0.0107 (7) | 0.0001 (7) | −0.0075 (6) |
Cu2 | 0.0410 (6) | 0.0498 (6) | 0.0389 (7) | 0.0093 (4) | 0.0004 (5) | −0.0146 (5) |
S1 | 0.0906 (19) | 0.0505 (14) | 0.0660 (18) | 0.0188 (13) | 0.0055 (15) | −0.0176 (12) |
O1 | 0.061 (4) | 0.071 (4) | 0.056 (4) | 0.005 (3) | 0.002 (3) | −0.012 (3) |
O2 | 0.052 (4) | 0.057 (3) | 0.045 (4) | 0.022 (3) | −0.004 (3) | −0.022 (3) |
O3 | 0.058 (4) | 0.042 (3) | 0.036 (3) | 0.012 (3) | 0.004 (3) | −0.008 (3) |
N1 | 0.045 (4) | 0.042 (4) | 0.031 (4) | 0.011 (3) | 0.002 (3) | 0.000 (3) |
N2 | 0.039 (4) | 0.052 (4) | 0.028 (4) | 0.010 (3) | −0.007 (3) | −0.007 (3) |
N3 | 0.052 (4) | 0.054 (4) | 0.045 (5) | 0.009 (4) | 0.005 (4) | −0.011 (3) |
N4 | 0.056 (5) | 0.060 (5) | 0.038 (5) | 0.008 (4) | 0.002 (4) | −0.016 (4) |
N5 | 0.073 (6) | 0.069 (5) | 0.070 (6) | −0.003 (5) | 0.020 (5) | −0.005 (4) |
C1 | 0.059 (6) | 0.057 (5) | 0.046 (6) | 0.017 (4) | 0.011 (4) | −0.005 (4) |
C2 | 0.049 (5) | 0.040 (4) | 0.046 (6) | 0.002 (4) | 0.003 (4) | −0.006 (4) |
C3 | 0.035 (4) | 0.046 (5) | 0.036 (5) | 0.004 (4) | 0.006 (4) | 0.001 (4) |
C4 | 0.037 (5) | 0.037 (4) | 0.043 (5) | 0.003 (4) | 0.013 (4) | −0.006 (4) |
C5 | 0.089 (7) | 0.066 (6) | 0.039 (6) | 0.036 (6) | −0.009 (5) | −0.018 (5) |
C6A | 0.065 (15) | 0.063 (14) | 0.051 (15) | 0.034 (12) | 0.004 (11) | 0.009 (11) |
C6B | 0.067 (12) | 0.078 (13) | 0.022 (10) | 0.028 (10) | −0.011 (8) | −0.006 (9) |
C7A | 0.050 (15) | 0.066 (17) | 0.05 (2) | 0.009 (14) | −0.011 (13) | −0.010 (14) |
C7B | 0.069 (16) | 0.047 (11) | 0.047 (13) | 0.012 (11) | −0.014 (11) | 0.002 (11) |
C8A | 0.056 (15) | 0.019 (16) | 0.060 (18) | 0.015 (11) | 0.012 (13) | 0.009 (11) |
C8B | 0.068 (16) | 0.029 (15) | 0.037 (11) | 0.008 (10) | 0.001 (10) | 0.017 (11) |
C9A | 0.008 (10) | 0.064 (14) | 0.044 (13) | 0.003 (10) | 0.007 (12) | −0.027 (12) |
C9B | 0.027 (11) | 0.071 (13) | 0.052 (13) | 0.016 (10) | 0.013 (12) | −0.011 (10) |
C10 | 0.051 (5) | 0.050 (5) | 0.035 (5) | 0.004 (4) | −0.009 (4) | −0.012 (4) |
C11 | 0.060 (6) | 0.057 (5) | 0.046 (6) | 0.017 (5) | 0.008 (5) | 0.006 (4) |
C12 | 0.073 (6) | 0.050 (5) | 0.064 (7) | 0.002 (5) | 0.008 (5) | 0.005 (5) |
Geometric parameters (Å, º) top
Cu1—N1 | 1.954 (6) | C5—C6A | 1.511 (11) |
Cu1—N1i | 1.954 (6) | C5—C6B | 1.520 (11) |
Cu1—O3 | 1.964 (5) | C5—H5A | 0.9700 |
Cu1—O3i | 1.964 (5) | C5—H5B | 0.9700 |
Cu2—N2 | 1.972 (6) | C5—H5C | 0.9700 |
Cu2—N3 | 2.052 (7) | C5—H5D | 0.9700 |
Cu2—N4 | 1.948 (7) | C6A—C7A | 1.506 (11) |
Cu2—N5 | 2.390 (9) | C6A—H6A | 0.9700 |
Cu2—O2 | 2.015 (6) | C6A—H6B | 0.9700 |
S1—C10 | 1.626 (8) | C7A—H7A | 0.9700 |
O1—C1 | 1.430 (9) | C7A—H7B | 0.9700 |
O1—H1 | 0.8499 | C8A—H8A | 0.9600 |
O2—C3 | 1.262 (9) | C8A—H8B | 0.9600 |
O3—C4 | 1.291 (8) | C8A—H8C | 0.9600 |
N1—C3 | 1.307 (9) | C9A—H9A | 0.9600 |
N1—C2 | 1.467 (9) | C9A—H9B | 0.9600 |
N2—C4 | 1.275 (9) | C9A—H9C | 0.9600 |
N2—C5 | 1.467 (10) | C6B—C7B | 1.502 (11) |
N3—C7A | 1.533 (14) | C6B—H6C | 0.9700 |
N3—C7B | 1.537 (13) | C6B—H6D | 0.9700 |
N3—C8A | 1.494 (10) | C7B—H7C | 0.9700 |
N3—C8B | 1.506 (9) | C7B—H7D | 0.9700 |
N3—C9A | 1.500 (10) | C8B—H8D | 0.9600 |
N3—C9B | 1.496 (10) | C8B—H8E | 0.9600 |
N4—C10 | 1.148 (9) | C8B—H8F | 0.9600 |
N5—C11 | 1.134 (11) | C9B—H9D | 0.9600 |
C1—C2 | 1.529 (11) | C9B—H9E | 0.9600 |
C1—H1A | 0.9700 | C9B—H9F | 0.9600 |
C1—H1B | 0.9700 | C11—C12 | 1.436 (13) |
C2—H2A | 0.9700 | C12—H12A | 0.9600 |
C2—H2B | 0.9700 | C12—H12B | 0.9600 |
C3—C4 | 1.522 (10) | C12—H12C | 0.9600 |
| | | |
O3—Cu1—O3i | 180 | N2—C5—H5D | 109.4 |
N1i—Cu1—N1 | 180 | C6A—C5—C6B | 45.4 (9) |
N1i—Cu1—O3 | 95.2 (2) | C6A—C5—H5A | 109.2 |
N1—Cu1—O3 | 84.8 (2) | C6A—C5—H5B | 109.2 |
N1i—Cu1—O3i | 84.8 (2) | C6A—C5—H5C | 67.0 |
N1—Cu1—O3i | 95.2 (2) | C6A—C5—H5D | 137.4 |
O2—Cu2—N3 | 169.2 (2) | C6B—C5—H5A | 67.3 |
O2—Cu2—N5 | 91.4 (3) | C6B—C5—H5B | 139.0 |
N2—Cu2—N3 | 95.0 (3) | C6B—C5—H5C | 109.8 |
N2—Cu2—N5 | 97.0 (3) | C6B—C5—H5D | 109.2 |
N2—Cu2—O2 | 82.7 (2) | H5A—C5—H5B | 107.9 |
N3—Cu2—N5 | 99.3 (3) | H5A—C5—H5C | 138.9 |
N4—Cu2—N2 | 167.9 (3) | H5A—C5—H5D | 45.3 |
N4—Cu2—N3 | 91.5 (3) | H5B—C5—H5C | 45.8 |
N4—Cu2—N5 | 92.1 (3) | H5B—C5—H5D | 65.2 |
N4—Cu2—O2 | 89.1 (2) | H5C—C5—H5D | 108.1 |
N4—Cu2—N3 | 91.5 (3) | C5—C6A—H6A | 109.8 |
C1—O1—H1 | 108.8 | C5—C6A—H6B | 109.8 |
C3—O2—Cu2 | 111.5 (5) | C7A—C6A—C5 | 109.5 (18) |
C4—O3—Cu1 | 111.4 (5) | C7A—C6A—H6A | 109.8 |
C2—N1—Cu1 | 128.6 (5) | C7A—C6A—H6B | 109.8 |
C3—N1—C2 | 118.6 (6) | C7A—C6A—H5C | 146.2 |
C3—N1—Cu1 | 112.7 (5) | H5C—C6A—H6A | 82.1 |
C4—N2—C5 | 118.0 (6) | H5C—C6A—H6B | 95.2 |
C4—N2—Cu2 | 113.6 (5) | H6A—C6A—H6B | 108.2 |
C5—N2—Cu2 | 127.9 (5) | N3—C7A—H7A | 108.9 |
C7A—N3—Cu2 | 112.5 (12) | N3—C7A—H7B | 108.9 |
C7B—N3—Cu2 | 115.4 (9) | C6A—C7A—N3 | 113.3 (13) |
C8A—N3—C7A | 108.3 (8) | C6A—C7A—H7A | 108.9 |
C8A—N3—C7B | 87.7 (12) | C6A—C7A—H7B | 108.9 |
C8A—N3—C9A | 106 (2) | H7A—C7A—H7B | 107.7 |
C8A—N3—C9B | 115 (2) | N3—C8A—H8A | 109.5 |
C8A—N3—Cu2 | 117.0 (18) | N3—C8A—H8B | 109.5 |
C8B—N3—C7A | 127.2 (13) | N3—C8A—H8C | 109.5 |
C8B—N3—C7B | 106.5 (7) | N3—C9A—H9A | 109.5 |
C8B—N3—Cu2 | 105.4 (14) | N3—C9A—H9B | 109.5 |
C9A—N3—C7A | 107.1 (8) | N3—C9A—H9C | 109.5 |
C9A—N3—C7B | 124.4 (15) | C5—C6B—H6C | 110.0 |
C9A—N3—C8B | 96.1 (19) | C5—C6B—H6D | 110.0 |
C9A—N3—Cu2 | 105.7 (17) | C6B—C7B—N3 | 110.8 (12) |
C9B—N3—C7A | 88.7 (12) | C6B—C7B—H7C | 109.5 |
C9B—N3—C7B | 107.3 (8) | C6B—C7B—H7D | 109.5 |
C9B—N3—C8B | 109.9 (19) | C7B—C6B—C5 | 108.6 (15) |
C9B—N3—Cu2 | 112.1 (15) | C7B—C6B—H6C | 110.0 |
C10—N4—Cu2 | 171.7 (7) | C7B—C6B—H6D | 110.0 |
C11—N5—Cu2 | 173.1 (8) | H6C—C6B—H6D | 108.3 |
O1—C1—C2 | 114.3 (6) | N3—C7B—H7C | 109.5 |
O1—C1—H1A | 108.7 | N3—C7B—H7D | 109.5 |
O1—C1—H1B | 108.7 | H7C—C7B—H7D | 108.1 |
C2—C1—H1A | 108.7 | N3—C8B—H8D | 109.5 |
C2—C1—H1B | 108.7 | N3—C8B—H8E | 109.5 |
H1A—C1—H1B | 107.6 | N3—C8B—H8F | 109.5 |
N1—C2—C1 | 112.2 (7) | H8D—C8B—H8E | 109.5 |
N1—C2—H2A | 109.2 | H8D—C8B—H8F | 109.5 |
N1—C2—H2B | 109.2 | H8E—C8B—H8F | 109.5 |
C1—C2—H2A | 109.2 | N3—C9B—H9D | 109.5 |
C1—C2—H2B | 109.2 | N3—C9B—H9E | 109.5 |
H2A—C2—H2B | 107.9 | N3—C9B—H9F | 109.5 |
O2—C3—N1 | 129.0 (7) | H9D—C9B—H9E | 109.5 |
O2—C3—C4 | 116.8 (7) | H9D—C9B—H9F | 109.5 |
N1—C3—C4 | 114.2 (6) | H9E—C9B—H9F | 109.5 |
O3—C4—C3 | 116.9 (7) | N4—C10—S1 | 177.0 (8) |
N2—C4—O3 | 128.0 (7) | N5—C11—C12 | 177.5 (10) |
N2—C4—C3 | 115.0 (6) | C11—C12—H12A | 109.5 |
N2—C5—C6A | 111.8 (9) | C11—C12—H12B | 109.5 |
N2—C5—C6B | 110.6 (8) | C11—C12—H12C | 109.5 |
N2—C5—H5A | 109.2 | H12A—C12—H12B | 109.5 |
N2—C5—H5B | 109.2 | H12A—C12—H12C | 109.5 |
N2—C5—H5C | 109.7 | H12B—C12—H12C | 109.5 |
| | | |
N2—Cu2—O2—C3 | −4.9 (5) | C3—N1—C2—C1 | −98.3 (8) |
N3—Cu2—O2—C3 | −82.7 (13) | Cu1—N1—C2—C1 | 85.7 (8) |
N4—Cu2—O2—C3 | −175.9 (5) | O1—C1—C2—N1 | −77.0 (9) |
N5—Cu2—O2—C3 | 92.0 (5) | Cu2—O2—C3—N1 | −171.8 (6) |
N1i—Cu1—O3—C4 | 177.2 (5) | Cu2—O2—C3—C4 | 6.7 (8) |
N1—Cu1—O3—C4 | −2.8 (5) | C2—N1—C3—O2 | 2.6 (12) |
O3—Cu1—N1—C3 | 1.1 (5) | Cu1—N1—C3—O2 | 179.2 (7) |
O3i—Cu1—N1—C3 | −178.9 (5) | C2—N1—C3—C4 | −175.9 (6) |
O3—Cu1—N1—C2 | 177.3 (6) | Cu1—N1—C3—C4 | 0.7 (8) |
O3i—Cu1—N1—C2 | −2.7 (6) | C5—N2—C4—O3 | 4.2 (12) |
N4—Cu2—N2—C4 | 49.5 (16) | Cu2—N2—C4—O3 | 177.0 (6) |
O2—Cu2—N2—C4 | 1.8 (5) | C5—N2—C4—C3 | −171.7 (7) |
N3—Cu2—N2—C4 | 171.2 (5) | Cu2—N2—C4—C3 | 1.1 (8) |
N5—Cu2—N2—C4 | −88.7 (6) | Cu1—O3—C4—N2 | −171.9 (7) |
N4—Cu2—N2—C5 | −138.5 (13) | Cu1—O3—C4—C3 | 3.9 (8) |
O2—Cu2—N2—C5 | 173.8 (7) | O2—C3—C4—N2 | −5.6 (10) |
N3—Cu2—N2—C5 | −16.8 (7) | N1—C3—C4—N2 | 173.2 (6) |
N5—Cu2—N2—C5 | 83.3 (7) | O2—C3—C4—O3 | 178.1 (6) |
N4—Cu2—N3—C8A | 68.7 (15) | N1—C3—C4—O3 | −3.2 (10) |
N2—Cu2—N3—C8A | −101.0 (15) | C4—N2—C5—C6A | −152.1 (10) |
O2—Cu2—N3—C8A | −24 (2) | Cu2—N2—C5—C6A | 36.2 (13) |
N5—Cu2—N3—C8A | 161.0 (15) | C4—N2—C5—C6B | 159.0 (9) |
N4—Cu2—N3—C9B | −66.9 (10) | Cu2—N2—C5—C6B | −12.7 (12) |
N2—Cu2—N3—C9B | 123.4 (10) | N2—C5—C6A—C7A | −63.9 (16) |
O2—Cu2—N3—C9B | −159.8 (13) | C6B—C5—C6A—C7A | 33.9 (11) |
N5—Cu2—N3—C9B | 25.5 (10) | C5—C6A—C7A—N3 | 82 (2) |
N4—Cu2—N3—C9A | −48.5 (11) | C8A—N3—C7A—C6A | 71 (3) |
N2—Cu2—N3—C9A | 141.8 (11) | C9B—N3—C7A—C6A | −173 (2) |
O2—Cu2—N3—C9A | −141.4 (14) | C9A—N3—C7A—C6A | −176 (3) |
N5—Cu2—N3—C9A | 43.8 (11) | C8B—N3—C7A—C6A | 72 (3) |
N4—Cu2—N3—C8B | 52.6 (12) | C7B—N3—C7A—C6A | 42 (3) |
N2—Cu2—N3—C8B | −117.1 (12) | Cu2—N3—C7A—C6A | −60 (2) |
O2—Cu2—N3—C8B | −40.3 (18) | N2—C5—C6B—C7B | 65.9 (14) |
N5—Cu2—N3—C8B | 145.0 (12) | C6A—C5—C6B—C7B | −34.9 (11) |
N4—Cu2—N3—C7A | −165.0 (8) | C5—C6B—C7B—N3 | −86.4 (18) |
N2—Cu2—N3—C7A | 25.3 (8) | C8A—N3—C7B—C6B | 164 (2) |
O2—Cu2—N3—C7A | 102.0 (14) | C9B—N3—C7B—C6B | −80.6 (19) |
N5—Cu2—N3—C7A | −72.7 (8) | C9A—N3—C7B—C6B | −88 (3) |
N4—Cu2—N3—C7B | 169.8 (8) | C8B—N3—C7B—C6B | 162 (2) |
N2—Cu2—N3—C7B | 0.1 (8) | C7A—N3—C7B—C6B | −43 (3) |
O2—Cu2—N3—C7B | 76.9 (15) | Cu2—N3—C7B—C6B | 45.2 (18) |
N5—Cu2—N3—C7B | −97.8 (8) | | |
Symmetry code: (i) −x, −y, −z. |
Hydrogen-bond geometry (Å, º) top
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H1···O3i | 0.85 | 2.15 | 2.985 (8) | 168 |
C12—H12C···O1ii | 0.96 | 2.39 | 3.320 (11) | 163 |
Symmetry codes: (i) −x, −y, −z; (ii) −x, −y+1, −z. |
Experimental details
Crystal data |
Chemical formula | [Cu3(C9H17N3O3)2(NCS)2(C2H3N)2] |
Mr | 819.45 |
Crystal system, space group | Triclinic, P1 |
Temperature (K) | 298 |
a, b, c (Å) | 6.040 (5), 8.262 (6), 17.256 (13) |
α, β, γ (°) | 91.999 (10), 97.831 (10), 96.185 (10) |
V (Å3) | 847.1 (11) |
Z | 1 |
Radiation type | Mo Kα |
µ (mm−1) | 2.04 |
Crystal size (mm) | 0.19 × 0.12 × 0.08 |
|
Data collection |
Diffractometer | Bruker APEX area-detector diffractometer |
Absorption correction | Multi-scan (SADABS; Sheldrick, 2003) |
Tmin, Tmax | 0.698, 0.854 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 4458, 2987, 1649 |
Rint | 0.048 |
(sin θ/λ)max (Å−1) | 0.600 |
|
Refinement |
R[F2 > 2σ(F2)], wR(F2), S | 0.063, 0.175, 1.00 |
No. of reflections | 2987 |
No. of parameters | 247 |
No. of restraints | 19 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.63, −0.49 |
Selected geometric parameters (Å, º) topCu1—N1 | 1.954 (6) | Cu2—N4 | 1.948 (7) |
Cu1—O3 | 1.964 (5) | Cu2—N5 | 2.390 (9) |
Cu2—N2 | 1.972 (6) | Cu2—O2 | 2.015 (6) |
Cu2—N3 | 2.052 (7) | | |
| | | |
O3—Cu1—O3i | 180 | N4—Cu2—N3 | 91.5 (3) |
N1i—Cu1—N1 | 180 | N4—Cu2—N5 | 92.1 (3) |
N1i—Cu1—O3 | 95.2 (2) | N4—Cu2—O2 | 89.1 (2) |
N1—Cu1—O3 | 84.8 (2) | N4—Cu2—N3 | 91.5 (3) |
O2—Cu2—N3 | 169.2 (2) | C2—N1—Cu1 | 128.6 (5) |
O2—Cu2—N5 | 91.4 (3) | C3—N1—C2 | 118.6 (6) |
N2—Cu2—N3 | 95.0 (3) | C3—N1—Cu1 | 112.7 (5) |
N2—Cu2—N5 | 97.0 (3) | C4—N2—C5 | 118.0 (6) |
N2—Cu2—O2 | 82.7 (2) | C4—N2—Cu2 | 113.6 (5) |
N3—Cu2—N5 | 99.3 (3) | C5—N2—Cu2 | 127.9 (5) |
N4—Cu2—N2 | 167.9 (3) | | |
Symmetry code: (i) −x, −y, −z. |
Hydrogen-bond geometry (Å, º) top
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H1···O3i | 0.85 | 2.15 | 2.985 (8) | 168 |
C12—H12C···O1ii | 0.96 | 2.39 | 3.320 (11) | 163 |
Symmetry codes: (i) −x, −y, −z; (ii) −x, −y+1, −z. |
The 11 previously reported complexes bridged by asymmetrical
N,N'-bis(substituted)oxamides topComplex | CSD refcode | Substituent 1 of the oxamide ligand | Substituent 2 of the oxamide ligand |
[MnCu(obzp)(H2O)3]n.nH2O (a) | JASNOG | benzoate | propionate |
[MnCu(obze)(H2O)4].2H2O (b) | KOCYUW | benzoate | ethanoate |
[CoCu(obze)(H2O)4].2H2O (c) | PIWZOK | benzoate | ethanoate |
{[Cu2(oxbe)2(DMF)]Mn(H2O)}n.nDMF.nH2O (d) | TUSWOT | benzoate | 2-aminoethyl |
{[Cu(oxbe)]2Co(H2O)2}.2DMF.DMA (e) | BAZDIQ | benzoate | 2-aminoethyl |
{[Ni(oxbe)]2Ni(H2O)2}.2.5DMF (f) | ULOQIV | benzoate | 2-aminoethyl |
{[Cu(oxbe)(py)]2Ni(py)2}.2DMF (g) | ABOCAW | benzoate | 2-aminoethyl |
{[Ni(oxbe)]2Cu(H2O)2}.2.5DMF (h) | OBUCIY | benzoate | 2-aminoethyl |
{[Cu(oxbp)]2Co(H2O)2}.1.5DMF.0.5H2O (i) | IYEWIS | benzoate | 3-aminopropyl |
{Na2[Cu(oxbp)]2(H2O)}n.nH2O (j) | NAQWAE | benzoate | 3-aminopropyl |
[Sn2(oxhh)(phenyl)4] (k) | QEHNIB | 2-hydroxy-phenyl | 2-hydroxy-1-methyl-2-phenyl-ethyl |
Notes:
(a) Pei et al. (1989) (obzp is
Oxamido-N-benzoato-N'-propionate);
(b) Pei et al. (1991) (obze is Oxamido-N-benzoato-N'-ethanoate);
(c) Larionova et al. (1997);
(d) Zang et al. (2003)
[oxbe is N-benzoato-N'-(2-aminoethyl)oxamide, DMF is dimethylformamide];
(e) Tao, Zang, Hu et al. (2003) (DMA is dimethylamine);
(f) Tao, Zang, Cheng et al. (2003);
(g) Tao, Zang et al. (2004) (py is pyridine);
(h) Tao, Mei et al. (2004);
(i) Tao, Zang, Mei et al. (2003)
[oxbp is N-benzoato-N'-(3-aminopropyl)oxamide];
(j) Matović et al. (2005);
(k) Jiménez-Pérez et al. (2006)
{H4oxhh is
(1S,2R)-(-)-[N-(2-hydroxy-1-methyl-2-phenylethyl)-N'-(2-hydroxyphenyl)oxamide}. |
Symmetrical N,N'-bis(substituent)oxamides have been fully studied and are known to be versatile organic ligands which can both chelate and bridge metal ions to construct discrete and extended structures (Bencini et al., 1986; Dominguez-Vera et al., 1996; Real et al., 1994; Sanz et al., 1996). Compared with the large number of complexes bridged by symmetrical N,N'-bis(substituted)oxamides, only 11 complexes bridged by asymmetrical N,N'-bis(substituted)oxamides have been characterized to date by single-crystal X-ray diffraction (Table 3) [Cambridge Structural Database (CSD), Version 5.28; Allen, 2002]. In these complexes, all the asymmetrical ligands contain aromatic structure moieties as terminal groups, while no asymmetrical N,N'-bis(aminoalkyl)oxamide has been found. Taking the above facts into account, we synthesized a novel asymmetrical ligand, N-[3-(dimethylamino)propyl]-N'-(2-hydroxyethyl)oxamide (H2dmapheoxd), and its tricopper complex, the title compound, [Cu3(dmapheoxd)2(MeCN)2(NCS)2] (I), and report the crystal structure of the complex here.
The molecular structure of complex (I) is illustrated in Fig. 1. Selected bond lengths and angles are listed in Table 1. Compound (I), a trinuclear CuII complex, is formed by two trans-oxamidate-chelated [Cu(dmapheoxd)(MeCN)(NCS)]- units as ligands coordinating another CuII ion (Cu1) sitting on a crystallographic inversion center. The central CuII atom (Cu1) is in a square-planar environment, while in the complex ligand the CuII ion (Cu2) has a slightly distorted [CuN4O] square-pyramidal coordination geometry. The basal plane is defined by the atom N4 of the SCN- ligand and three atoms (O2, N2 and N3) from the dmapheoxd ligand, with a maximum deviation of 0.013 (3) Å for atom O2 from the least-squares plane. The apical position is occupied by atom N5 of a coordinated acetonitrile molecule. In the basal plane, the Cu2—N2(amide) bond [1.972 (6) Å] is shorter than the Cu2—N3(amine) bond [2.052 (9) Å], which is consistent with the stronger donor ability of the deprotonated amide N atom compared with the amine N atom (Jubert et al., 2002). The axial Cu—N bond length [Cu2—N5 = 2.390 (9) Å] is significantly longer than those in the basal plane, from which atom Cu2 is displaced by 0.177 (3) Å towards the apex. The Cu1···Cu2 distance is 5.248 (3) Å.
Although several examples have been observed of cis-oxamide bridging ligands chelating two metal ions with different coordination numbers (Cronin et al., 1999; Sun et al., 2007; Tao, Zang, Cheng et al., 2003), for transoid ligands the metal ions usually have equal ligancy, such as both five or four in general (denoted [5 + 5] or [4 + 4], respectively). Among the reported crystal structures of trans-oxamide bridging complexes, only two two-dimensional complexes have the styles of [4 + 5] (Chen et al., 1998) and [5 + 6] (Chen et al., 1994). The title compound also has the style of [4 + 5], and this is the first instance of this for a zero-dimensional complex with different ligancies. The hydroxyl group in the dmapheoxd ligand acts as a donor of the intramolecular hydrogen bond O1—H1···O3i [symmetry code: (i) -x, -y, -z; Table 2] and a seven-membered hydrogen-bonding circuit is formed (Fig. 1), folding at C2—O3i with a dihedral angle of 59.2 (3)°.
The distances C3—N1 [1.307 (9) Å] and C4—N2 [1.275 (9) Å] have typical values for C═N. Whereas the bond lengths of C3—O2 [1.262 (9) Å] and C4—O3 [1.291 (8) Å] are well in accordance with those of (O═)C—O- fragments in many complexes (Berg et al., 2002; Delgado et al., 2006; Nash & Schaefer, 1969), the oximade fragment is best described as N═ C—O- rather than delocalized.
The dimethylaminopropyl group in the dmapheoxd ligand is disordered over two positions (C6A–C9A and C6B–C9B), with occupancy factors of 0.55 and 0.45, respectively (Fig. 2). The puckering parameters (Cremer & Pople, 1975) of the corresponding six-membered chelating rings around Cu2 are Q = 0.575 (19) Å, θ = 142.7 (14)° and ϕ = 26 (2)°, and Q = 0.698 (15) Å, θ = 68.5 (10)° and ϕ = 196.5 (11)°, respectively.
In the crystal structure, only one classical hydrogen bond is observed, as noted above (Table 2). For all that, due to the activation of the methyl group by the cyano group of the acetonitrile ligand, the methyl interacts with the O atom of the hydroxyl group of a neighboring molecule, forming a non-classical C—H···O hydrogen bond (Fig. 3), via which a one-dimensional chain extending in the b direction is formed.