Supporting information
Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270108005003/av3138sup1.cif | |
Structure factor file (CIF format) https://doi.org/10.1107/S0108270108005003/av3138Isup2.hkl |
CCDC reference: 686414
Dibromo(1,10-phenanthroline)copper(II), [Cu(phen)Br2], was prepared according to the methods described by Garland et al. (1988). The chocolate-colored precipitates (0.5 mmol) were dissolved in DMSO. Green single crystals were obtained by slow evaporation in DMSO solution for 3 d. Analysis calculated for C14H14Br2CuN2OS: C 34.91, H 2.93, N 5.82%; found C 34.79, H 2.61, N 5.81%.
H atoms were positioned geometrically and constrained to ride on their attached atoms. Their Uiso(H) values were fixed at 1.2 or 1.5 times Ueq of their parent atoms.
Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT (Bruker, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).
[CuBr2(C12H8N2)(C2H6OS)] | F(000) = 940 |
Mr = 481.69 | Dx = 1.947 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ybc | Cell parameters from 2276 reflections |
a = 8.3984 (2) Å | θ = 2.9–23.4° |
b = 14.0857 (3) Å | µ = 6.32 mm−1 |
c = 14.5004 (3) Å | T = 295 K |
β = 106.667 (2)° | Block, green |
V = 1643.29 (6) Å3 | 0.15 × 0.09 × 0.06 mm |
Z = 4 |
Bruker SMART CCD area-detector diffractometer | 3778 independent reflections |
Radiation source: fine-focus sealed tube | 2381 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.074 |
ϕ and ω scans | θmax = 27.5°, θmin = 2.1° |
Absorption correction: multi-scan (SADABS; Bruker, 2002) | h = −10→10 |
Tmin = 0.511, Tmax = 0.685 | k = −18→18 |
22691 measured reflections | l = −18→18 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.038 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.127 | H-atom parameters constrained |
S = 1.06 | w = 1/[σ2(Fo2) + (0.0607P)2 + 0.0896P] where P = (Fo2 + 2Fc2)/3 |
3778 reflections | (Δ/σ)max = 0.001 |
190 parameters | Δρmax = 0.53 e Å−3 |
0 restraints | Δρmin = −0.48 e Å−3 |
[CuBr2(C12H8N2)(C2H6OS)] | V = 1643.29 (6) Å3 |
Mr = 481.69 | Z = 4 |
Monoclinic, P21/c | Mo Kα radiation |
a = 8.3984 (2) Å | µ = 6.32 mm−1 |
b = 14.0857 (3) Å | T = 295 K |
c = 14.5004 (3) Å | 0.15 × 0.09 × 0.06 mm |
β = 106.667 (2)° |
Bruker SMART CCD area-detector diffractometer | 3778 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2002) | 2381 reflections with I > 2σ(I) |
Tmin = 0.511, Tmax = 0.685 | Rint = 0.074 |
22691 measured reflections |
R[F2 > 2σ(F2)] = 0.038 | 0 restraints |
wR(F2) = 0.127 | H-atom parameters constrained |
S = 1.06 | Δρmax = 0.53 e Å−3 |
3778 reflections | Δρmin = −0.48 e Å−3 |
190 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Cu | 0.78965 (8) | 0.93879 (4) | 0.23195 (4) | 0.04082 (19) | |
Br1 | 1.02804 (7) | 0.81705 (4) | 0.28156 (4) | 0.0614 (2) | |
Br2 | 0.63347 (8) | 0.93850 (5) | 0.35260 (4) | 0.0573 (2) | |
N1 | 0.7946 (5) | 0.9958 (3) | 0.1011 (3) | 0.0397 (10) | |
C2 | 0.8745 (7) | 1.0708 (4) | 0.0821 (4) | 0.0492 (13) | |
H2 | 0.9389 | 1.1069 | 0.1329 | 0.059* | |
C3 | 0.8648 (8) | 1.0976 (4) | −0.0131 (5) | 0.0613 (17) | |
H3 | 0.9232 | 1.1504 | −0.0240 | 0.074* | |
C4 | 0.7693 (8) | 1.0461 (5) | −0.0900 (5) | 0.0607 (17) | |
H4 | 0.7642 | 1.0630 | −0.1528 | 0.073* | |
C5 | 0.6809 (7) | 0.9685 (4) | −0.0720 (4) | 0.0497 (14) | |
C6 | 0.5693 (8) | 0.9093 (5) | −0.1449 (4) | 0.0589 (17) | |
H6 | 0.5557 | 0.9227 | −0.2096 | 0.071* | |
C7 | 0.4857 (8) | 0.8363 (5) | −0.1220 (4) | 0.0580 (16) | |
H7 | 0.4135 | 0.8017 | −0.1711 | 0.070* | |
C8 | 0.5045 (6) | 0.8101 (4) | −0.0240 (4) | 0.0466 (13) | |
C9 | 0.4236 (7) | 0.7341 (4) | 0.0054 (4) | 0.0546 (15) | |
H9 | 0.3530 | 0.6953 | −0.0404 | 0.066* | |
C10 | 0.4476 (7) | 0.7169 (4) | 0.0995 (4) | 0.0543 (14) | |
H10 | 0.3951 | 0.6660 | 0.1193 | 0.065* | |
C11 | 0.5528 (7) | 0.7766 (4) | 0.1674 (4) | 0.0512 (14) | |
H11 | 0.5676 | 0.7646 | 0.2324 | 0.061* | |
N12 | 0.6320 (5) | 0.8493 (3) | 0.1435 (3) | 0.0389 (9) | |
C13 | 0.6098 (6) | 0.8655 (4) | 0.0488 (3) | 0.0387 (11) | |
C14 | 0.6983 (6) | 0.9451 (4) | 0.0248 (3) | 0.0384 (11) | |
O15 | 0.9210 (5) | 1.0472 (3) | 0.2908 (3) | 0.0587 (11) | |
S16 | 1.04181 (17) | 1.04119 (10) | 0.39217 (9) | 0.0432 (3) | |
C17 | 1.2383 (9) | 1.0542 (5) | 0.3729 (5) | 0.082 (2) | |
H17A | 1.2663 | 0.9969 | 0.3452 | 0.122* | |
H17B | 1.3202 | 1.0663 | 0.4332 | 0.122* | |
H17C | 1.2354 | 1.1063 | 0.3298 | 0.122* | |
C18 | 1.0206 (9) | 1.1531 (4) | 0.4417 (4) | 0.0690 (18) | |
H18A | 0.9162 | 1.1560 | 0.4563 | 0.103* | |
H18B | 1.0243 | 1.2019 | 0.3961 | 0.103* | |
H18C | 1.1097 | 1.1623 | 0.4996 | 0.103* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cu | 0.0456 (4) | 0.0384 (4) | 0.0355 (3) | −0.0042 (3) | 0.0069 (3) | 0.0016 (3) |
Br1 | 0.0580 (4) | 0.0518 (4) | 0.0641 (4) | 0.0151 (3) | 0.0012 (3) | −0.0045 (3) |
Br2 | 0.0572 (4) | 0.0750 (5) | 0.0423 (3) | 0.0086 (3) | 0.0184 (3) | 0.0036 (3) |
N1 | 0.041 (2) | 0.037 (2) | 0.044 (2) | 0.0076 (19) | 0.0168 (19) | 0.0066 (19) |
C2 | 0.045 (3) | 0.041 (3) | 0.065 (3) | 0.008 (3) | 0.021 (3) | 0.012 (3) |
C3 | 0.065 (4) | 0.049 (4) | 0.083 (4) | 0.019 (3) | 0.043 (4) | 0.027 (3) |
C4 | 0.073 (4) | 0.065 (4) | 0.057 (4) | 0.029 (3) | 0.039 (3) | 0.021 (3) |
C5 | 0.053 (3) | 0.059 (4) | 0.044 (3) | 0.027 (3) | 0.024 (3) | 0.015 (3) |
C6 | 0.064 (4) | 0.082 (5) | 0.029 (3) | 0.027 (4) | 0.010 (3) | 0.002 (3) |
C7 | 0.056 (4) | 0.074 (5) | 0.039 (3) | 0.017 (3) | 0.007 (3) | −0.015 (3) |
C8 | 0.040 (3) | 0.058 (4) | 0.040 (3) | 0.017 (3) | 0.007 (2) | −0.008 (2) |
C9 | 0.045 (3) | 0.049 (4) | 0.064 (4) | 0.003 (3) | 0.005 (3) | −0.014 (3) |
C10 | 0.051 (3) | 0.043 (3) | 0.063 (4) | −0.001 (3) | 0.006 (3) | 0.000 (3) |
C11 | 0.055 (3) | 0.050 (3) | 0.044 (3) | −0.001 (3) | 0.007 (2) | 0.010 (3) |
N12 | 0.044 (2) | 0.036 (2) | 0.035 (2) | 0.0004 (19) | 0.0083 (18) | 0.0042 (18) |
C13 | 0.038 (3) | 0.043 (3) | 0.034 (2) | 0.013 (2) | 0.007 (2) | 0.005 (2) |
C14 | 0.036 (3) | 0.044 (3) | 0.038 (2) | 0.017 (2) | 0.015 (2) | 0.004 (2) |
O15 | 0.072 (3) | 0.044 (2) | 0.048 (2) | −0.017 (2) | −0.0035 (19) | 0.0030 (17) |
S16 | 0.0482 (8) | 0.0414 (8) | 0.0399 (6) | −0.0051 (6) | 0.0124 (5) | 0.0001 (5) |
C17 | 0.066 (4) | 0.117 (7) | 0.068 (4) | −0.024 (4) | 0.028 (4) | −0.019 (4) |
C18 | 0.090 (5) | 0.053 (4) | 0.056 (4) | 0.015 (3) | 0.010 (3) | −0.003 (3) |
Cu—N1 | 2.071 (4) | C8—C9 | 1.398 (8) |
Cu—N12 | 2.003 (4) | C8—C13 | 1.403 (7) |
Cu—Br1 | 2.5769 (8) | C9—C10 | 1.343 (8) |
Cu—Br2 | 2.4692 (8) | C9—H9 | 0.9300 |
Cu—O15 | 1.933 (4) | C10—C11 | 1.400 (7) |
N1—C2 | 1.322 (6) | C10—H10 | 0.9300 |
N1—C14 | 1.370 (6) | C11—N12 | 1.320 (6) |
C2—C3 | 1.411 (8) | C11—H11 | 0.9300 |
C2—H2 | 0.9300 | N12—C13 | 1.351 (6) |
C3—C4 | 1.379 (9) | C13—C14 | 1.442 (7) |
C3—H3 | 0.9300 | O15—S16 | 1.531 (4) |
C4—C5 | 1.388 (8) | S16—C17 | 1.760 (7) |
C4—H4 | 0.9300 | S16—C18 | 1.762 (6) |
C5—C14 | 1.408 (7) | C17—H17A | 0.9600 |
C5—C6 | 1.457 (8) | C17—H17B | 0.9600 |
C6—C7 | 1.339 (9) | C17—H17C | 0.9600 |
C6—H6 | 0.9300 | C18—H18A | 0.9600 |
C7—C8 | 1.433 (8) | C18—H18B | 0.9600 |
C7—H7 | 0.9300 | C18—H18C | 0.9600 |
N1—Cu—N12 | 80.84 (16) | C10—C9—C8 | 120.2 (5) |
N1—Cu—Br1 | 107.20 (11) | C10—C9—H9 | 119.9 |
N1—Cu—Br2 | 143.48 (11) | C8—C9—H9 | 119.9 |
N1—Cu—O15 | 86.51 (17) | C9—C10—C11 | 119.1 (6) |
N12—Cu—Br1 | 94.47 (12) | C9—C10—H10 | 120.4 |
N12—Cu—Br2 | 93.71 (12) | C11—C10—H10 | 120.4 |
N12—Cu—O15 | 165.55 (16) | N12—C11—C10 | 123.1 (5) |
Br1—Cu—O15 | 95.93 (13) | N12—C11—H11 | 118.5 |
Br2—Cu—O15 | 92.31 (13) | C10—C11—H11 | 118.5 |
Br2—Cu—Br1 | 109.22 (3) | C11—N12—C13 | 117.7 (4) |
C2—N1—C14 | 117.7 (4) | C11—N12—Cu | 127.6 (3) |
C2—N1—Cu | 130.2 (4) | C13—N12—Cu | 114.7 (3) |
C14—N1—Cu | 112.0 (3) | N12—C13—C8 | 122.9 (5) |
N1—C2—C3 | 121.9 (6) | N12—C13—C14 | 116.5 (4) |
N1—C2—H2 | 119.1 | C8—C13—C14 | 120.6 (4) |
C3—C2—H2 | 119.1 | N1—C14—C5 | 123.5 (5) |
C4—C3—C2 | 120.5 (6) | N1—C14—C13 | 115.9 (4) |
C4—C3—H3 | 119.7 | C5—C14—C13 | 120.6 (5) |
C2—C3—H3 | 119.7 | S16—O15—Cu | 121.2 (2) |
C3—C4—C5 | 118.7 (5) | O15—S16—C17 | 103.6 (3) |
C3—C4—H4 | 120.7 | O15—S16—C18 | 103.0 (3) |
C5—C4—H4 | 120.7 | C17—S16—C18 | 100.4 (3) |
C4—C5—C14 | 117.7 (6) | S16—C17—H17A | 109.5 |
C4—C5—C6 | 125.5 (5) | S16—C17—H17B | 109.5 |
C14—C5—C6 | 116.8 (5) | H17A—C17—H17B | 109.5 |
C7—C6—C5 | 122.2 (5) | S16—C17—H17C | 109.5 |
C7—C6—H6 | 118.9 | H17A—C17—H17C | 109.5 |
C5—C6—H6 | 118.9 | H17B—C17—H17C | 109.5 |
C6—C7—C8 | 121.9 (5) | S16—C18—H18A | 109.5 |
C6—C7—H7 | 119.1 | S16—C18—H18B | 109.5 |
C8—C7—H7 | 119.1 | H18A—C18—H18B | 109.5 |
C9—C8—C13 | 117.0 (5) | S16—C18—H18C | 109.5 |
C9—C8—C7 | 125.1 (5) | H18A—C18—H18C | 109.5 |
C13—C8—C7 | 117.9 (5) | H18B—C18—H18C | 109.5 |
O15—Cu—N1—C2 | 5.2 (4) | N1—Cu—N12—C13 | 1.8 (3) |
N12—Cu—N1—C2 | 178.2 (5) | Br2—Cu—N12—C13 | 145.5 (3) |
Br2—Cu—N1—C2 | 94.4 (5) | Br1—Cu—N12—C13 | −104.9 (3) |
Br1—Cu—N1—C2 | −89.9 (4) | C11—N12—C13—C8 | 1.5 (7) |
O15—Cu—N1—C14 | −175.0 (3) | Cu—N12—C13—C8 | 179.9 (4) |
N12—Cu—N1—C14 | −2.0 (3) | C11—N12—C13—C14 | −179.8 (4) |
Br2—Cu—N1—C14 | −85.8 (3) | Cu—N12—C13—C14 | −1.4 (5) |
Br1—Cu—N1—C14 | 89.9 (3) | C9—C8—C13—N12 | −1.5 (7) |
C14—N1—C2—C3 | −1.1 (7) | C7—C8—C13—N12 | 177.5 (5) |
Cu—N1—C2—C3 | 178.6 (4) | C9—C8—C13—C14 | 179.8 (4) |
N1—C2—C3—C4 | 0.5 (9) | C7—C8—C13—C14 | −1.1 (7) |
C2—C3—C4—C5 | 1.1 (9) | C2—N1—C14—C5 | 0.2 (7) |
C3—C4—C5—C14 | −1.9 (8) | Cu—N1—C14—C5 | −179.6 (4) |
C3—C4—C5—C6 | 177.3 (5) | C2—N1—C14—C13 | −178.4 (4) |
C4—C5—C6—C7 | −178.8 (5) | Cu—N1—C14—C13 | 1.8 (5) |
C14—C5—C6—C7 | 0.4 (8) | C4—C5—C14—N1 | 1.4 (7) |
C5—C6—C7—C8 | −1.8 (9) | C6—C5—C14—N1 | −177.9 (4) |
C6—C7—C8—C9 | −178.9 (6) | C4—C5—C14—C13 | 179.8 (4) |
C6—C7—C8—C13 | 2.1 (8) | C6—C5—C14—C13 | 0.5 (7) |
C13—C8—C9—C10 | 0.3 (8) | N12—C13—C14—N1 | −0.3 (6) |
C7—C8—C9—C10 | −178.6 (5) | C8—C13—C14—N1 | 178.4 (4) |
C8—C9—C10—C11 | 0.7 (9) | N12—C13—C14—C5 | −178.9 (4) |
C9—C10—C11—N12 | −0.7 (9) | C8—C13—C14—C5 | −0.2 (7) |
C10—C11—N12—C13 | −0.4 (8) | N12—Cu—O15—S16 | 179.6 (6) |
C10—C11—N12—Cu | −178.5 (4) | N1—Cu—O15—S16 | −151.5 (3) |
O15—Cu—N12—C11 | −150.8 (7) | Br2—Cu—O15—S16 | 65.0 (3) |
N1—Cu—N12—C11 | 180.0 (5) | Br1—Cu—O15—S16 | −44.6 (3) |
Br2—Cu—N12—C11 | −36.4 (4) | Cu—O15—S16—C17 | 113.5 (4) |
Br1—Cu—N12—C11 | 73.3 (4) | Cu—O15—S16—C18 | −142.2 (3) |
O15—Cu—N12—C13 | 31.1 (9) |
Experimental details
Crystal data | |
Chemical formula | [CuBr2(C12H8N2)(C2H6OS)] |
Mr | 481.69 |
Crystal system, space group | Monoclinic, P21/c |
Temperature (K) | 295 |
a, b, c (Å) | 8.3984 (2), 14.0857 (3), 14.5004 (3) |
β (°) | 106.667 (2) |
V (Å3) | 1643.29 (6) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 6.32 |
Crystal size (mm) | 0.15 × 0.09 × 0.06 |
Data collection | |
Diffractometer | Bruker SMART CCD area-detector diffractometer |
Absorption correction | Multi-scan (SADABS; Bruker, 2002) |
Tmin, Tmax | 0.511, 0.685 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 22691, 3778, 2381 |
Rint | 0.074 |
(sin θ/λ)max (Å−1) | 0.650 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.038, 0.127, 1.06 |
No. of reflections | 3778 |
No. of parameters | 190 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.53, −0.48 |
Computer programs: SMART (Bruker, 2002), SAINT (Bruker, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).
Cu—N1 | 2.071 (4) | Cu—Br2 | 2.4692 (8) |
Cu—N12 | 2.003 (4) | Cu—O15 | 1.933 (4) |
Cu—Br1 | 2.5769 (8) | ||
N1—Cu—N12 | 80.84 (16) | N12—Cu—Br2 | 93.71 (12) |
N1—Cu—Br1 | 107.20 (11) | N12—Cu—O15 | 165.55 (16) |
N1—Cu—Br2 | 143.48 (11) | Br1—Cu—O15 | 95.93 (13) |
N1—Cu—O15 | 86.51 (17) | Br2—Cu—O15 | 92.31 (13) |
N12—Cu—Br1 | 94.47 (12) | Br2—Cu—Br1 | 109.22 (3) |
The polymeric [Cu(phen)Br2]∞ (phen is 1,10-phenanthroline) is produced when anhydrous CuBr2 reacts with an equimolar amount of 1,10-phenanthroline in ethanol. This polymer consists of chains linked by Cu—Br bonds, in which the Cu atom displays tetragonally elongated (4 + 2)-coordination (Garland et al., 1988). However, the same reaction proceeded in dimethylsulfoxide (DMSO), a coordinating solvent, produces the monomeric and five-coordinate title CuII complex, [Cu(phen)Br2(DMSO)], (I). In this work, we report the preparation of (I) and the determination of its single-crystal structure. Selected bond distances and angles for (I) are listed in Table 1.
The coordination geometry around the Cu atom is best described as trigonal–bipyramidal distorted square-based pyramidal, with a τ value of 0.37 (Addison et al., 1984; Harrison et al., 1981; Nagle et al., 1990); two N atoms of the 1,10-phenanthroline molecule, one Br atom and one O atom of DMSO occupy the four basal positions, while the other Br atom occupies the axial position. The basal bond distance Cu—Br2 is considerably shorter than the axial bond distance Cu—Br1, but both distances are longer than the terminal Cu—Br distances observed in the polymeric [Cu(phen)Br2]∞ compound. The unequal Cu—N bond distances (Table 1) and distortion of the normally symmetric 1,10-phenanthroline ligand in (I) is attributable to the coordination of the large DMSO molecule to the Cu atom. The Cu—ODMSO (Cu—O15) distance in (I) is similar to those in [Cu(DMSO)4](ClO4)2 [1.934 (6)–1.954 (6) Å; Blake et al., 1996], but is significantly shorter than those in [Cu(C9H5N2O3)(DMSO)2] [2.336 (5) or 2.418 (7) Å; Popović et al., 2007] or the Zn—ODMSO distances in a similar Zn–DMSO complex [2.045 (5) and 2.066 (5) Å; Che et al., 2006]. The intermolecular distance between the two parallel aromatic rings N1/C2–C5/C14 and C5i–C8i/C13i/C14i [symmetry code: (i) -x + 1, -y + 2, -z] of the coordinated 1,10-phenanthroline ligands in the packing structure [3.4 (s.u. value available?) Å] is much shorter than 4.11 Å, indicating the existence of significant π–π interactions between them (Fig. 2).
Magnetic data of (I) were collected as a function of temperature (2–300 K). Fig. 3 shows a plot of magnetic susceptibility versus temperature. The room-temperature magnetic moment of (I), estimated from ueff = 2.828(χM)1/2, is 1.9 B·M. [define units] and the Neel temperature TN is observed at 4.0 K, indicating the presence of a very weak antiferromagnetic interaction between paramagnetic CuII centers. The distance between the two nearest Cu atoms in the packing structure is 7.228 (s.u. value?) Å, which is too long for a pair of CuII centers to interact magnetically. In view of the magnetic exchange mechanism of the monomeric copper(II)–bromide system, the `bromide–bromide contact' or Cu—Br···Br—Cu contact is known to be an important pathway for antiferromagnetic interaction (Dyrek et al., 1987; Bond et al., 1995). The Br···Br intermolecular contact distance in (I) is 5.180 (s.u.?) Å. This contact distance is considerably longer than the sum of the van der Walls radii of two Br atoms (3.90 Å), but is in the range of the typical Br···Br contact distances (3.90–5.61 Å) observed for many di- and tetrabromocuprate compounds that exhibit the antiferromagnetisn at low temperature (Kang et al., 2004; Van der Bilt et al., 1981). The observed weak antiferromagnetism of the title compound in the crystalline state is most probably due to magnetic exchange via the `Cu—Br···Br—Cu contact' pathway.