Supporting information
Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270102023612/bc1002sup1.cif | |
Structure factor file (CIF format) https://doi.org/10.1107/S0108270102023612/bc1002Isup2.hkl |
In the difference Fourier synthesis, the highest peak (3.22 e Å−1) is at 0.8322, 0.5566, 0.1985 [0.56 Å from La5] and the deepest hole (−3.16 e Å−1) is at 0.3587, 0.4674, 0.1929 [0.59 Å from La4].
Data collection: CAD-4 Software (Enraf-Nonius, 1989); cell refinement: CAD-4 Software; data reduction: HELENA (Spek, 1996); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXL97.
La5Ti5O17 | F(000) = 2124 |
Mr = 1205.90 | Dx = 5.906 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71069 Å |
Hall symbol: -p 2ybc | Cell parameters from 25 reflections |
a = 7.8580 (11) Å | θ = 18.0–22.7° |
b = 5.5281 (9) Å | µ = 18.25 mm−1 |
c = 31.449 (5) Å | T = 293 K |
β = 97.166 (16)° | Irregular plate, dark-blue-black |
V = 1355.5 (4) Å3 | 0.10 × 0.08 × 0.01 mm |
Z = 4 |
Enraf-Nonius MACH3 diffractometer | 5164 reflections with I > 2σ(I) |
Radiation source: Nonius rotating anode generator | Rint = 0.053 |
Graphite monochromator | θmax = 36.9°, θmin = 1.3° |
ω/2θ scans | h = −12→12 |
Absorption correction: ψ scan (Herrendorf, 1992) | k = −7→9 |
Tmin = 0.31, Tmax = 0.89 | l = −53→50 |
21243 measured reflections | 3 standard reflections every 60 min |
6456 independent reflections | intensity decay: none |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.039 | w = 1/[σ2(Fo2) + (0.0238P)2 + 11.7499P] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.082 | (Δ/σ)max = 0.002 |
S = 1.13 | Δρmax = 3.22 e Å−3 |
6456 reflections | Δρmin = −3.16 e Å−3 |
248 parameters | Extinction correction: SHELXL97 (Sheldrick, 1997), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
0 restraints | Extinction coefficient: 0.00024 (2) |
La5Ti5O17 | V = 1355.5 (4) Å3 |
Mr = 1205.90 | Z = 4 |
Monoclinic, P21/c | Mo Kα radiation |
a = 7.8580 (11) Å | µ = 18.25 mm−1 |
b = 5.5281 (9) Å | T = 293 K |
c = 31.449 (5) Å | 0.10 × 0.08 × 0.01 mm |
β = 97.166 (16)° |
Enraf-Nonius MACH3 diffractometer | 5164 reflections with I > 2σ(I) |
Absorption correction: ψ scan (Herrendorf, 1992) | Rint = 0.053 |
Tmin = 0.31, Tmax = 0.89 | 3 standard reflections every 60 min |
21243 measured reflections | intensity decay: none |
6456 independent reflections |
R[F2 > 2σ(F2)] = 0.039 | 0 restraints |
wR(F2) = 0.082 | w = 1/[σ2(Fo2) + (0.0238P)2 + 11.7499P] where P = (Fo2 + 2Fc2)/3 |
S = 1.13 | Δρmax = 3.22 e Å−3 |
6456 reflections | Δρmin = −3.16 e Å−3 |
248 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
La1 | 0.25173 (3) | 0.00052 (5) | 0.502664 (9) | 0.00695 (6) | |
La2 | 0.29695 (3) | −0.00424 (5) | 0.092757 (9) | 0.00526 (6) | |
La3 | 0.79311 (3) | 0.00169 (5) | 0.087115 (9) | 0.00665 (6) | |
La4 | −0.35508 (4) | 0.04768 (6) | 0.294718 (10) | 0.00941 (6) | |
La5 | 0.14382 (3) | 0.08565 (5) | 0.284710 (10) | 0.00608 (6) | |
Ti1 | 0.5000 | 0.0000 | 0.0000 | 0.00393 (19) | |
Ti2 | 0.0000 | 0.0000 | 0.0000 | 0.00390 (19) | |
Ti3 | 0.54528 (10) | 0.50568 (16) | 0.09322 (3) | 0.00388 (13) | |
Ti4 | 0.04726 (10) | 0.50697 (16) | 0.09266 (3) | 0.00387 (13) | |
Ti5 | 0.08704 (11) | 0.03592 (16) | 0.17749 (3) | 0.00440 (14) | |
Ti6 | 0.59026 (11) | 0.03939 (16) | 0.17870 (3) | 0.00419 (14) | |
O1 | 0.5508 (5) | 0.2810 (7) | 0.03715 (12) | 0.0084 (6) | |
O2 | −0.0135 (5) | 0.2795 (7) | 0.03752 (12) | 0.0081 (6) | |
O3 | 0.5060 (5) | 0.7765 (7) | 0.05044 (12) | 0.0072 (6) | |
O4 | 0.0445 (5) | 0.7748 (7) | 0.04998 (13) | 0.0090 (7) | |
O5 | 0.0914 (4) | 0.2992 (7) | 0.21231 (12) | 0.0063 (6) | |
O6 | 0.6208 (5) | 0.3106 (7) | 0.20898 (14) | 0.0100 (7) | |
O7 | 0.1230 (4) | 0.8153 (7) | 0.22172 (12) | 0.0057 (6) | |
O8 | 0.6013 (4) | 0.8224 (7) | 0.22483 (12) | 0.0057 (6) | |
O9 | 0.0476 (4) | 0.1963 (7) | 0.12086 (12) | 0.0061 (6) | |
O10 | 0.5725 (4) | 0.1943 (6) | 0.12080 (12) | 0.0053 (6) | |
O11 | 0.3366 (4) | 0.0700 (8) | 0.17234 (12) | 0.0095 (7) | |
O12 | 0.8350 (4) | −0.0361 (7) | 0.16952 (12) | 0.0070 (6) | |
O13 | 0.1136 (5) | 0.7135 (7) | 0.13701 (12) | 0.0085 (6) | |
O14 | 0.5240 (5) | 0.7083 (7) | 0.13823 (13) | 0.0093 (7) | |
O15 | 0.7944 (5) | 0.5414 (7) | 0.08964 (13) | 0.0097 (7) | |
O16 | 0.2904 (4) | 0.4432 (7) | 0.08152 (12) | 0.0068 (6) | |
O17 | 0.7499 (4) | 0.9488 (7) | −0.00103 (12) | 0.0080 (6) |
U11 | U22 | U33 | U12 | U13 | U23 | |
La1 | 0.00592 (11) | 0.00706 (12) | 0.00789 (12) | −0.00014 (9) | 0.00090 (8) | −0.00118 (10) |
La2 | 0.00332 (10) | 0.00592 (12) | 0.00659 (11) | −0.00016 (8) | 0.00076 (8) | −0.00086 (9) |
La3 | 0.00390 (11) | 0.00764 (12) | 0.00849 (12) | −0.00017 (9) | 0.00110 (8) | −0.00144 (9) |
La4 | 0.00330 (11) | 0.00955 (13) | 0.01566 (14) | −0.00069 (9) | 0.00225 (9) | −0.00421 (10) |
La5 | 0.00309 (10) | 0.00519 (11) | 0.01000 (12) | −0.00014 (9) | 0.00094 (8) | −0.00143 (9) |
Ti1 | 0.0026 (4) | 0.0045 (5) | 0.0046 (4) | −0.0007 (4) | 0.0001 (3) | 0.0002 (4) |
Ti2 | 0.0028 (4) | 0.0038 (5) | 0.0049 (4) | −0.0007 (4) | 0.0001 (3) | 0.0003 (4) |
Ti3 | 0.0038 (3) | 0.0032 (3) | 0.0047 (3) | 0.0001 (3) | 0.0005 (2) | 0.0006 (3) |
Ti4 | 0.0039 (3) | 0.0032 (3) | 0.0046 (3) | −0.0003 (3) | 0.0005 (2) | 0.0002 (3) |
Ti5 | 0.0044 (3) | 0.0035 (3) | 0.0054 (3) | 0.0005 (3) | 0.0010 (2) | 0.0004 (3) |
Ti6 | 0.0047 (3) | 0.0029 (3) | 0.0049 (3) | −0.0005 (3) | 0.0004 (2) | −0.0001 (3) |
O1 | 0.0083 (15) | 0.0084 (16) | 0.0084 (16) | −0.0001 (12) | 0.0009 (12) | −0.0003 (13) |
O2 | 0.0107 (15) | 0.0073 (16) | 0.0063 (16) | 0.0004 (12) | 0.0005 (12) | −0.0026 (13) |
O3 | 0.0092 (15) | 0.0066 (15) | 0.0059 (15) | 0.0011 (12) | 0.0011 (11) | 0.0006 (13) |
O4 | 0.0089 (15) | 0.0101 (17) | 0.0080 (16) | 0.0001 (13) | 0.0006 (12) | 0.0026 (14) |
O5 | 0.0060 (14) | 0.0036 (15) | 0.0096 (17) | 0.0005 (11) | 0.0018 (11) | −0.0018 (12) |
O6 | 0.0032 (14) | 0.0083 (17) | 0.018 (2) | −0.0021 (12) | −0.0001 (12) | −0.0042 (15) |
O7 | 0.0048 (14) | 0.0059 (15) | 0.0064 (16) | −0.0008 (11) | 0.0001 (11) | −0.0036 (12) |
O8 | 0.0047 (14) | 0.0061 (15) | 0.0065 (16) | 0.0005 (11) | 0.0018 (11) | 0.0009 (12) |
O9 | 0.0050 (14) | 0.0064 (15) | 0.0071 (16) | −0.0018 (11) | 0.0012 (11) | 0.0023 (12) |
O10 | 0.0071 (14) | 0.0010 (13) | 0.0078 (16) | 0.0008 (11) | 0.0011 (11) | 0.0002 (12) |
O11 | 0.0010 (13) | 0.0179 (19) | 0.0093 (16) | −0.0015 (13) | −0.0005 (11) | −0.0003 (14) |
O12 | 0.0019 (13) | 0.0107 (16) | 0.0086 (15) | 0.0010 (12) | 0.0012 (10) | 0.0014 (13) |
O13 | 0.0122 (16) | 0.0064 (15) | 0.0067 (16) | −0.0009 (13) | 0.0005 (12) | −0.0021 (13) |
O14 | 0.0105 (16) | 0.0086 (16) | 0.0088 (17) | 0.0031 (13) | 0.0008 (12) | −0.0003 (13) |
O15 | 0.0054 (14) | 0.0099 (17) | 0.0136 (17) | −0.0013 (12) | 0.0004 (12) | 0.0001 (14) |
O16 | 0.0038 (13) | 0.0079 (16) | 0.0089 (15) | −0.0008 (11) | 0.0015 (11) | −0.0001 (13) |
O17 | 0.0026 (13) | 0.0094 (16) | 0.0119 (17) | −0.0002 (12) | 0.0000 (12) | −0.0010 (14) |
La1—O1i | 2.435 (4) | Ti3—O1 | 2.162 (4) |
La1—O2ii | 2.450 (4) | Ti3—La2xviii | 3.3378 (10) |
La1—O17i | 2.479 (4) | Ti3—La3xviii | 3.3825 (10) |
La1—O16iii | 2.480 (4) | Ti3—La1xiv | 3.4343 (11) |
La1—O1iii | 2.743 (4) | Ti3—La1v | 3.5832 (10) |
La1—O2iii | 2.756 (4) | Ti4—O13 | 1.827 (4) |
La1—O4iii | 2.791 (4) | Ti4—O9 | 1.932 (4) |
La1—O3iii | 2.801 (4) | Ti4—O15xii | 1.987 (4) |
La1—O15i | 2.889 (4) | Ti4—O4 | 1.997 (4) |
La1—O17iv | 3.050 (4) | Ti4—O16 | 2.016 (4) |
La1—O4ii | 3.081 (4) | Ti4—O2 | 2.147 (4) |
La1—O3i | 3.088 (4) | Ti4—La2xviii | 3.3391 (10) |
La1—Ti1v | 3.3879 (5) | Ti4—La3xix | 3.3781 (10) |
La1—Ti2vi | 3.3915 (5) | Ti4—La1xiv | 3.4248 (10) |
La1—Ti1i | 3.3926 (5) | Ti4—La3xii | 3.4256 (10) |
La2—O10 | 2.489 (4) | Ti4—La1vi | 3.5709 (11) |
La2—O16 | 2.498 (4) | Ti5—O5 | 1.819 (4) |
La2—O9 | 2.506 (4) | Ti5—O7vii | 1.845 (4) |
La2—O11 | 2.517 (4) | Ti5—O9 | 1.979 (4) |
La2—O3vii | 2.547 (4) | Ti5—O11 | 1.996 (4) |
La2—O4vii | 2.564 (4) | Ti5—O12xii | 2.005 (4) |
La2—O13vii | 2.636 (4) | Ti5—O13vii | 2.215 (4) |
La2—O14vii | 2.668 (4) | Ti5—La5ii | 3.3820 (10) |
La2—O17viii | 2.879 (4) | Ti5—La3xii | 3.4366 (11) |
La2—O16vii | 3.075 (4) | Ti5—La4ii | 3.4678 (10) |
La2—O2 | 3.221 (4) | Ti5—La4vi | 3.5700 (10) |
La2—O1 | 3.224 (4) | Ti6—O6 | 1.776 (4) |
La2—Ti5 | 3.3117 (10) | Ti6—O8vii | 1.876 (4) |
La2—Ti6 | 3.3350 (11) | Ti6—O11 | 1.986 (4) |
La2—Ti3vii | 3.3378 (10) | Ti6—O10 | 2.001 (4) |
La3—O10 | 2.391 (3) | Ti6—O12 | 2.024 (3) |
La3—O9ix | 2.399 (4) | Ti6—O14vii | 2.253 (4) |
La3—O15vii | 2.546 (4) | Ti6—La5i | 3.3737 (10) |
La3—O12 | 2.580 (4) | Ti6—La4ii | 3.4479 (10) |
La3—O3vii | 2.705 (4) | Ti6—La4vi | 3.5206 (10) |
La3—O4x | 2.723 (4) | Ti6—La4ix | 3.6204 (11) |
La3—O17vii | 2.766 (4) | O1—La1v | 2.435 (4) |
La3—O2ix | 2.773 (4) | O1—La1xiv | 2.743 (4) |
La3—O1 | 2.781 (4) | O2—La1vi | 2.450 (4) |
La3—O15 | 2.985 (4) | O2—La1xiv | 2.756 (4) |
La3—O13x | 3.218 (4) | O2—La3xii | 2.773 (4) |
La3—O14vii | 3.246 (4) | O3—Ti1xviii | 2.007 (4) |
La3—Ti1 | 3.3521 (7) | O3—La2xviii | 2.547 (4) |
La3—Ti2ix | 3.3557 (6) | O3—La3xviii | 2.705 (4) |
La3—Ti4x | 3.3781 (10) | O3—La1xiv | 2.801 (4) |
La4—O7ii | 2.453 (4) | O3—La1v | 3.088 (4) |
La4—O6ii | 2.456 (4) | O4—Ti2xviii | 2.001 (4) |
La4—O8ii | 2.476 (4) | O4—La2xviii | 2.564 (4) |
La4—O8xi | 2.512 (4) | O4—La3xix | 2.723 (4) |
La4—O5ii | 2.519 (4) | O4—La1xiv | 2.791 (4) |
La4—O14ii | 2.774 (4) | O4—La1vi | 3.081 (4) |
La4—O11ii | 2.834 (4) | O5—La5vi | 2.445 (4) |
La4—O13ii | 2.834 (4) | O5—La4vi | 2.519 (4) |
La4—O6xii | 3.048 (4) | O5—La5ii | 4.362 (4) |
La4—O11vi | 3.065 (4) | O6—La5v | 2.384 (4) |
La4—Ti6vi | 3.4479 (10) | O6—La4vi | 2.456 (4) |
La4—Ti5vi | 3.4678 (10) | O6—La4ix | 3.048 (4) |
La4—Ti6ii | 3.5206 (10) | O6—La5i | 4.408 (4) |
La4—Ti5ii | 3.5700 (10) | O7—Ti5xviii | 1.845 (4) |
La4—Ti6xii | 3.6204 (11) | O7—La5vi | 2.438 (4) |
La5—O6i | 2.384 (4) | O7—La4vi | 2.453 (4) |
La5—O7ii | 2.438 (4) | O7—La5xviii | 2.471 (4) |
La5—O8i | 2.442 (3) | O8—Ti6xviii | 1.876 (4) |
La5—O5ii | 2.445 (4) | O8—La5v | 2.442 (3) |
La5—O7vii | 2.471 (4) | O8—La4vi | 2.476 (4) |
La5—O12v | 2.532 (4) | O8—La4xx | 2.512 (4) |
La5—O5 | 2.552 (4) | O9—La3xii | 2.399 (4) |
La5—Ti5 | 3.3572 (10) | O9—La4vi | 3.880 (4) |
La5—Ti6v | 3.3737 (10) | O9—La5vi | 4.102 (4) |
La5—Ti5vi | 3.3820 (10) | O10—La4vi | 3.864 (4) |
La5—O14i | 3.401 (4) | O10—La5v | 4.102 (4) |
La5—O13ii | 3.449 (4) | O11—La4vi | 2.834 (4) |
La5—O12i | 3.722 (4) | O11—La4ii | 3.065 (4) |
La5—Ti6i | 3.7696 (10) | O11—La4ix | 4.286 (4) |
La5—Ti5ii | 3.8050 (10) | O12—Ti5ix | 2.005 (3) |
Ti1—O1xiii | 1.955 (4) | O12—La5i | 2.532 (4) |
Ti1—O1 | 1.955 (4) | O12—La5v | 3.722 (4) |
Ti1—O17viii | 1.989 (3) | O12—La5ix | 4.156 (4) |
Ti1—O17vii | 1.989 (3) | O12—La4ix | 4.407 (4) |
Ti1—O3vii | 2.007 (4) | O13—Ti5xviii | 2.215 (4) |
Ti1—O3viii | 2.007 (4) | O13—La2xviii | 2.636 (4) |
Ti1—La3xiii | 3.3521 (7) | O13—La4vi | 2.834 (4) |
Ti1—La1i | 3.3879 (5) | O13—La3xix | 3.218 (4) |
Ti1—La1xiv | 3.3879 (5) | O13—La5vi | 3.449 (4) |
Ti1—La1v | 3.3926 (5) | O14—Ti6xviii | 2.253 (4) |
Ti1—La1xv | 3.3926 (5) | O14—La2xviii | 2.668 (4) |
Ti2—O2 | 1.955 (4) | O14—La4vi | 2.774 (4) |
Ti2—O2xvi | 1.955 (4) | O14—La3xviii | 3.246 (4) |
Ti2—O17xi | 1.982 (3) | O14—La5v | 3.401 (4) |
Ti2—O17viii | 1.982 (3) | O15—Ti4ix | 1.987 (4) |
Ti2—O4vii | 2.001 (4) | O15—La3xviii | 2.546 (4) |
Ti2—O4xvii | 2.001 (4) | O15—La1v | 2.889 (4) |
Ti2—La3xii | 3.3557 (6) | O15—La5v | 3.928 (4) |
Ti2—La3xiii | 3.3557 (6) | O16—La1xiv | 2.480 (4) |
Ti2—La1xiv | 3.3915 (5) | O16—La2xviii | 3.075 (4) |
Ti2—La1ii | 3.3915 (5) | O16—La4vi | 3.905 (4) |
Ti2—La1xv | 3.3962 (5) | O17—Ti2xx | 1.982 (3) |
Ti2—La1vi | 3.3962 (5) | O17—Ti1xviii | 1.989 (3) |
Ti3—O14 | 1.829 (4) | O17—La1v | 2.479 (4) |
Ti3—O10 | 1.927 (4) | O17—La3xviii | 2.766 (4) |
Ti3—O15 | 1.984 (4) | O17—La2viii | 2.879 (4) |
Ti3—O3 | 2.011 (4) | O17—La1xxi | 3.050 (4) |
Ti3—O16 | 2.021 (4) | ||
O1i—La1—O2ii | 88.92 (13) | O17viii—Ti2—O4vii | 90.03 (15) |
O1i—La1—O17i | 119.30 (12) | O2—Ti2—O4xvii | 88.00 (17) |
O2ii—La1—O17i | 119.09 (12) | O2xvi—Ti2—O4xvii | 92.00 (17) |
O1i—La1—O16iii | 124.76 (12) | O17xi—Ti2—O4xvii | 90.03 (15) |
O2ii—La1—O16iii | 124.66 (12) | O17viii—Ti2—O4xvii | 89.97 (15) |
O17i—La1—O16iii | 83.98 (12) | O4vii—Ti2—O4xvii | 180.00 (15) |
O1i—La1—O1iii | 81.56 (14) | O14—Ti3—O10 | 102.39 (17) |
O2ii—La1—O1iii | 170.17 (12) | O14—Ti3—O15 | 99.73 (17) |
O17i—La1—O1iii | 64.54 (12) | O10—Ti3—O15 | 93.40 (16) |
O16iii—La1—O1iii | 63.73 (12) | O14—Ti3—O3 | 92.33 (17) |
O1i—La1—O2iii | 170.48 (12) | O10—Ti3—O3 | 164.85 (16) |
O2ii—La1—O2iii | 81.85 (13) | O15—Ti3—O3 | 87.59 (16) |
O17i—La1—O2iii | 64.20 (11) | O14—Ti3—O16 | 93.53 (16) |
O16iii—La1—O2iii | 63.34 (12) | O10—Ti3—O16 | 88.93 (15) |
O1iii—La1—O2iii | 107.56 (12) | O15—Ti3—O16 | 165.70 (17) |
O1i—La1—O4iii | 117.00 (13) | O3—Ti3—O16 | 86.53 (15) |
O2ii—La1—O4iii | 62.86 (12) | O14—Ti3—O1 | 175.03 (17) |
O17i—La1—O4iii | 123.67 (12) | O10—Ti3—O1 | 80.89 (15) |
O16iii—La1—O4iii | 62.75 (12) | O15—Ti3—O1 | 83.71 (16) |
O1iii—La1—O4iii | 123.89 (12) | O3—Ti3—O1 | 84.20 (16) |
O2iii—La1—O4iii | 60.52 (11) | O16—Ti3—O1 | 82.74 (15) |
O1i—La1—O3iii | 62.99 (12) | O13—Ti4—O9 | 102.77 (17) |
O2ii—La1—O3iii | 116.87 (12) | O13—Ti4—O15xii | 99.51 (17) |
O17i—La1—O3iii | 124.01 (11) | O9—Ti4—O15xii | 92.94 (16) |
O16iii—La1—O3iii | 62.74 (11) | O13—Ti4—O4 | 91.61 (17) |
O1iii—La1—O3iii | 60.65 (11) | O9—Ti4—O4 | 165.15 (17) |
O2iii—La1—O3iii | 123.52 (11) | O15xii—Ti4—O4 | 88.27 (16) |
O4iii—La1—O3iii | 80.83 (11) | O13—Ti4—O16 | 93.18 (16) |
O1i—La1—O15i | 61.99 (12) | O9—Ti4—O16 | 88.69 (15) |
O2ii—La1—O15i | 61.89 (12) | O15xii—Ti4—O16 | 166.50 (17) |
O17i—La1—O15i | 84.33 (12) | O4—Ti4—O16 | 86.79 (16) |
O16iii—La1—O15i | 168.31 (12) | O13—Ti4—O2 | 174.82 (16) |
O1iii—La1—O15i | 110.90 (11) | O9—Ti4—O2 | 80.65 (16) |
O2iii—La1—O15i | 111.04 (11) | O15xii—Ti4—O2 | 84.09 (16) |
O4iii—La1—O15i | 124.75 (11) | O4—Ti4—O2 | 84.75 (16) |
O3iii—La1—O15i | 124.98 (11) | O16—Ti4—O2 | 82.95 (15) |
O10—La2—O16 | 67.37 (12) | O5—Ti5—O7vii | 94.89 (17) |
O10—La2—O9 | 111.33 (12) | O5—Ti5—O9 | 99.93 (17) |
O16—La2—O9 | 66.96 (11) | O7vii—Ti5—O9 | 165.18 (17) |
O10—La2—O11 | 65.26 (12) | O5—Ti5—O11 | 91.63 (16) |
O16—La2—O11 | 88.68 (13) | O7vii—Ti5—O11 | 93.66 (16) |
O9—La2—O11 | 65.31 (12) | O9—Ti5—O11 | 85.96 (15) |
O10—La2—O3vii | 78.78 (12) | O5—Ti5—O12xii | 100.27 (16) |
O16—La2—O3vii | 113.61 (12) | O7vii—Ti5—O12xii | 91.09 (16) |
O9—La2—O3vii | 168.12 (12) | O9—Ti5—O12xii | 86.29 (15) |
O11—La2—O3vii | 126.12 (12) | O11—Ti5—O12xii | 166.77 (17) |
O10—La2—O4vii | 168.01 (12) | O5—Ti5—O13vii | 173.51 (15) |
O16—La2—O4vii | 113.36 (12) | O7vii—Ti5—O13vii | 83.39 (16) |
O9—La2—O4vii | 78.93 (12) | O9—Ti5—O13vii | 81.88 (15) |
O11—La2—O4vii | 126.24 (12) | O11—Ti5—O13vii | 82.26 (16) |
O3vii—La2—O4vii | 90.37 (12) | O12xii—Ti5—O13vii | 86.03 (15) |
O10—La2—O13vii | 125.63 (12) | O6—Ti6—O8vii | 97.77 (19) |
O16—La2—O13vii | 131.14 (12) | O6—Ti6—O11 | 92.80 (17) |
O9—La2—O13vii | 64.72 (12) | O8vii—Ti6—O11 | 94.68 (16) |
O11—La2—O13vii | 65.13 (12) | O6—Ti6—O10 | 96.66 (18) |
O3vii—La2—O13vii | 115.15 (12) | O8vii—Ti6—O10 | 165.56 (16) |
O4vii—La2—O13vii | 63.70 (12) | O11—Ti6—O10 | 85.22 (15) |
O10—La2—O14vii | 65.08 (12) | O6—Ti6—O12 | 100.57 (16) |
O16—La2—O14vii | 131.78 (12) | O8vii—Ti6—O12 | 91.45 (15) |
O9—La2—O14vii | 125.07 (12) | O11—Ti6—O12 | 164.41 (17) |
O11—La2—O14vii | 64.70 (12) | O10—Ti6—O12 | 85.29 (15) |
O3vii—La2—O14vii | 64.19 (12) | O6—Ti6—O14vii | 174.17 (16) |
O4vii—La2—O14vii | 114.80 (12) | O8vii—Ti6—O14vii | 84.40 (16) |
O13vii—La2—O14vii | 74.77 (12) | O11—Ti6—O14vii | 81.61 (16) |
O10—La2—O17viii | 107.76 (11) | O10—Ti6—O14vii | 81.29 (15) |
O16—La2—O17viii | 75.82 (12) | O12—Ti6—O14vii | 84.75 (15) |
O9—La2—O17viii | 107.36 (11) | Ti1—O1—Ti3 | 157.0 (2) |
O11—La2—O17viii | 164.50 (13) | Ti1—O1—La1v | 100.63 (16) |
O3vii—La2—O17viii | 62.43 (11) | Ti3—O1—La1v | 102.25 (15) |
O4vii—La2—O17viii | 62.02 (11) | Ti1—O1—La1xiv | 90.71 (14) |
O13vii—La2—O17viii | 125.60 (11) | Ti3—O1—La1xiv | 88.06 (13) |
O14vii—La2—O17viii | 126.44 (11) | La1v—O1—La1xiv | 98.44 (13) |
O10—La3—O9ix | 102.40 (12) | Ti1—O1—La3 | 88.33 (14) |
O10—La3—O15vii | 115.56 (12) | Ti3—O1—La3 | 86.56 (13) |
O9ix—La3—O15vii | 115.77 (12) | La1v—O1—La3 | 97.59 (12) |
O10—La3—O12 | 66.41 (12) | La1xiv—O1—La3 | 163.84 (16) |
O9ix—La3—O12 | 66.24 (12) | Ti2—O2—Ti4 | 158.0 (2) |
O15vii—La3—O12 | 83.57 (13) | Ti2—O2—La1vi | 100.27 (16) |
O10—La3—O3vii | 77.40 (12) | Ti4—O2—La1vi | 101.72 (15) |
O9ix—La3—O3vii | 178.87 (12) | Ti2—O2—La1xiv | 90.46 (13) |
O15vii—La3—O3vii | 63.46 (12) | Ti4—O2—La1xiv | 87.69 (13) |
O12—La3—O3vii | 112.72 (11) | La1vi—O2—La1xiv | 98.15 (13) |
O10—La3—O4x | 178.81 (12) | Ti2—O2—La3xii | 88.66 (14) |
O9ix—La3—O4x | 77.70 (12) | Ti4—O2—La3xii | 87.27 (13) |
O15vii—La3—O4x | 63.43 (12) | La1vi—O2—La3xii | 97.43 (12) |
O12—La3—O4x | 112.64 (11) | La1xiv—O2—La3xii | 164.30 (16) |
O3vii—La3—O4x | 102.48 (12) | Ti1xviii—O3—Ti3 | 166.9 (2) |
O10—La3—O17vii | 119.08 (11) | Ti1xviii—O3—La2xviii | 99.61 (15) |
O9ix—La3—O17vii | 118.82 (11) | Ti3—O3—La2xviii | 93.43 (14) |
O15vii—La3—O17vii | 85.71 (12) | Ti1xviii—O3—La3xviii | 89.43 (13) |
O12—La3—O17vii | 169.28 (12) | Ti3—O3—La3xviii | 90.41 (14) |
O3vii—La3—O17vii | 62.13 (11) | La2xviii—O3—La3xviii | 96.68 (13) |
O4x—La3—O17vii | 61.72 (11) | Ti1xviii—O3—La1xiv | 88.14 (13) |
O10—La3—O2ix | 118.74 (12) | Ti3—O3—La1xiv | 89.51 (13) |
O9ix—La3—O2ix | 61.01 (12) | La2xviii—O3—La1xiv | 94.41 (11) |
O15vii—La3—O2ix | 124.80 (12) | La3xviii—O3—La1xiv | 168.90 (15) |
O12—La3—O2ix | 126.84 (11) | Ti4—O4—Ti2xviii | 167.3 (2) |
O3vii—La3—O2ix | 120.08 (11) | Ti4—O4—La2xviii | 93.30 (15) |
O4x—La3—O2ix | 62.37 (11) | Ti2xviii—O4—La2xviii | 99.41 (15) |
O17vii—La3—O2ix | 60.14 (11) | Ti4—O4—La3xix | 90.05 (14) |
O10—La3—O1 | 61.32 (12) | Ti2xviii—O4—La3xix | 89.16 (14) |
O9ix—La3—O1 | 118.37 (12) | La2xviii—O4—La3xix | 96.35 (13) |
O15vii—La3—O1 | 124.92 (12) | Ti4—O4—La1xiv | 89.77 (14) |
O12—La3—O1 | 127.25 (11) | Ti2xviii—O4—La1xiv | 88.67 (14) |
O3vii—La3—O1 | 62.54 (11) | La2xviii—O4—La1xiv | 94.28 (12) |
O4x—La3—O1 | 119.71 (11) | La3xix—O4—La1xiv | 169.35 (16) |
O17vii—La3—O1 | 60.17 (11) | Ti5—O5—La5vi | 125.72 (18) |
O2ix—La3—O1 | 76.07 (11) | Ti5—O5—La4vi | 109.71 (16) |
O10—La3—O15 | 62.82 (11) | La5vi—O5—La4vi | 106.52 (14) |
O9ix—La3—O15 | 62.61 (11) | Ti5—O5—La5 | 98.97 (16) |
O15vii—La3—O15 | 176.71 (17) | La5vi—O5—La5 | 107.71 (13) |
O12—La3—O15 | 93.14 (12) | La4vi—O5—La5 | 106.71 (14) |
O3vii—La3—O15 | 118.10 (11) | Ti6—O6—La5v | 129.39 (19) |
O4x—La3—O15 | 118.15 (11) | Ti6—O6—La4vi | 111.59 (17) |
O17vii—La3—O15 | 97.58 (11) | La5v—O6—La4vi | 108.05 (16) |
O2ix—La3—O15 | 57.40 (11) | Ti5xviii—O7—La5vi | 103.43 (15) |
O1—La3—O15 | 57.29 (11) | Ti5xviii—O7—La4vi | 106.73 (16) |
O7ii—La4—O6ii | 164.16 (13) | La5vi—O7—La4vi | 108.84 (14) |
O7ii—La4—O8ii | 98.99 (12) | Ti5xviii—O7—La5xviii | 101.14 (16) |
O6ii—La4—O8ii | 71.46 (13) | La5vi—O7—La5xviii | 110.59 (13) |
O7ii—La4—O8xi | 97.95 (12) | La4vi—O7—La5xviii | 123.88 (14) |
O6ii—La4—O8xi | 70.83 (13) | Ti6xviii—O8—La5v | 101.96 (14) |
O8ii—La4—O8xi | 94.00 (7) | Ti6xviii—O8—La4vi | 103.93 (15) |
O7ii—La4—O5ii | 70.67 (12) | La5v—O8—La4vi | 105.56 (14) |
O6ii—La4—O5ii | 114.12 (13) | Ti6xviii—O8—La4xx | 110.34 (17) |
O8ii—La4—O5ii | 159.82 (12) | La5v—O8—La4xx | 110.41 (13) |
O8xi—La4—O5ii | 71.14 (12) | La4vi—O8—La4xx | 122.57 (14) |
O7ii—La4—O14ii | 113.96 (12) | Ti4—O9—Ti5 | 143.3 (2) |
O6ii—La4—O14ii | 73.87 (13) | Ti4—O9—La3xii | 104.01 (16) |
O8ii—La4—O14ii | 63.85 (12) | Ti5—O9—La3xii | 103.01 (15) |
O8xi—La4—O14ii | 142.91 (11) | Ti4—O9—La2 | 100.83 (14) |
O5ii—La4—O14ii | 135.91 (12) | Ti5—O9—La2 | 94.45 (14) |
O7ii—La4—O11ii | 129.31 (11) | La3xii—O9—La2 | 106.91 (14) |
O6ii—La4—O11ii | 61.61 (12) | Ti3—O10—Ti6 | 141.5 (2) |
O8ii—La4—O11ii | 131.69 (11) | Ti3—O10—La3 | 104.15 (15) |
O8xi—La4—O11ii | 81.55 (12) | Ti6—O10—La3 | 103.92 (15) |
O5ii—La4—O11ii | 61.22 (11) | Ti3—O10—La2 | 101.04 (15) |
O14ii—La4—O11ii | 91.60 (11) | Ti6—O10—La2 | 95.30 (14) |
O7ii—La4—O13ii | 61.29 (12) | La3—O10—La2 | 107.06 (14) |
O6ii—La4—O13ii | 133.89 (13) | Ti6—O11—Ti5 | 165.4 (2) |
O8ii—La4—O13ii | 114.72 (12) | Ti6—O11—La2 | 94.84 (14) |
O8xi—La4—O13ii | 145.94 (11) | Ti5—O11—La2 | 93.69 (14) |
O5ii—La4—O13ii | 76.27 (12) | Ti6—O11—La4vi | 92.15 (14) |
O14ii—La4—O13ii | 70.08 (11) | Ti5—O11—La4vi | 93.70 (15) |
O11ii—La4—O13ii | 91.46 (11) | La2—O11—La4vi | 120.66 (16) |
O6i—La5—O7ii | 171.72 (13) | Ti5ix—O12—Ti6 | 152.0 (2) |
O6i—La5—O8i | 73.28 (13) | Ti5ix—O12—La5i | 95.70 (14) |
O7ii—La5—O8i | 114.89 (13) | Ti6—O12—La5i | 94.89 (14) |
O6i—La5—O5ii | 99.56 (13) | Ti5ix—O12—La3 | 96.31 (14) |
O7ii—La5—O5ii | 72.17 (12) | Ti6—O12—La3 | 97.02 (14) |
O8i—La5—O5ii | 170.91 (13) | La5i—O12—La3 | 128.99 (16) |
O6i—La5—O7vii | 69.75 (14) | Ti4—O13—Ti5xviii | 154.5 (2) |
O7ii—La5—O7vii | 106.16 (7) | Ti4—O13—La2xviii | 95.14 (15) |
O8i—La5—O7vii | 101.47 (12) | Ti5xviii—O13—La2xviii | 85.65 (13) |
O5ii—La5—O7vii | 70.37 (12) | Ti4—O13—La4vi | 118.45 (18) |
O6i—La5—O12v | 118.96 (13) | Ti5xviii—O13—La4vi | 85.82 (12) |
O7ii—La5—O12v | 67.17 (12) | La2xviii—O13—La4vi | 103.49 (12) |
O8i—La5—O12v | 68.33 (12) | Ti3—O14—Ti6xviii | 153.9 (2) |
O5ii—La5—O12v | 120.63 (12) | Ti3—O14—La2xviii | 93.99 (16) |
O7vii—La5—O12v | 161.52 (12) | Ti6xviii—O14—La2xviii | 84.88 (13) |
O6i—La5—O5 | 113.99 (13) | Ti3—O14—La4vi | 119.40 (18) |
O7ii—La5—O5 | 69.12 (11) | Ti6xviii—O14—La4vi | 85.94 (12) |
O8i—La5—O5 | 71.71 (12) | La2xviii—O14—La4vi | 104.28 (12) |
O5ii—La5—O5 | 107.16 (8) | Ti3—O15—Ti4ix | 167.3 (2) |
O7vii—La5—O5 | 65.00 (12) | Ti3—O15—La3xviii | 95.81 (15) |
O12v—La5—O5 | 96.73 (12) | Ti4ix—O15—La3xviii | 95.57 (15) |
O1xiii—Ti1—O1 | 180.00 (19) | Ti3—O15—La1v | 92.77 (14) |
O1xiii—Ti1—O17viii | 89.67 (15) | Ti4ix—O15—La1v | 92.28 (14) |
O1—Ti1—O17viii | 90.33 (15) | La3xviii—O15—La1v | 92.71 (13) |
O1xiii—Ti1—O17vii | 90.33 (15) | Ti3—O15—La3 | 84.38 (13) |
O1—Ti1—O17vii | 89.67 (15) | Ti4ix—O15—La3 | 84.58 (14) |
O17viii—Ti1—O17vii | 180.0 | La3xviii—O15—La3 | 176.71 (17) |
O1xiii—Ti1—O3vii | 88.06 (16) | La1v—O15—La3 | 84.00 (11) |
O1—Ti1—O3vii | 91.94 (16) | Ti4—O16—Ti3 | 151.4 (2) |
O17viii—Ti1—O3vii | 90.05 (15) | Ti4—O16—La1xiv | 98.71 (15) |
O17vii—Ti1—O3vii | 89.95 (15) | Ti3—O16—La1xiv | 98.96 (14) |
O1xiii—Ti1—O3viii | 91.94 (16) | Ti4—O16—La2 | 98.73 (14) |
O1—Ti1—O3viii | 88.06 (16) | Ti3—O16—La2 | 98.10 (15) |
O17viii—Ti1—O3viii | 89.95 (15) | La1xiv—O16—La2 | 105.27 (14) |
O17vii—Ti1—O3viii | 90.05 (15) | Ti2xx—O17—Ti1xviii | 163.5 (2) |
O3vii—Ti1—O3viii | 180.00 (13) | Ti2xx—O17—La1v | 98.38 (14) |
O2—Ti2—O2xvi | 180.0 (3) | Ti1xviii—O17—La1v | 98.05 (14) |
O2—Ti2—O17xi | 89.67 (16) | Ti2xx—O17—La3xviii | 88.35 (13) |
O2xvi—Ti2—O17xi | 90.33 (16) | Ti1xviii—O17—La3xviii | 88.09 (13) |
O2—Ti2—O17viii | 90.33 (16) | La1v—O17—La3xviii | 97.25 (13) |
O2xvi—Ti2—O17viii | 89.67 (16) | Ti2xx—O17—La2viii | 90.22 (13) |
O17xi—Ti2—O17viii | 180.0 (2) | Ti1xviii—O17—La2viii | 89.88 (13) |
O2—Ti2—O4vii | 92.00 (17) | La1v—O17—La2viii | 94.93 (12) |
O2xvi—Ti2—O4vii | 88.00 (17) | La3xviii—O17—La2viii | 167.82 (16) |
O17xi—Ti2—O4vii | 89.97 (15) |
Symmetry codes: (i) −x+1, y−1/2, −z+1/2; (ii) −x, y−1/2, −z+1/2; (iii) x, −y+1/2, z+1/2; (iv) −x+1, y−3/2, −z+1/2; (v) −x+1, y+1/2, −z+1/2; (vi) −x, y+1/2, −z+1/2; (vii) x, y−1, z; (viii) −x+1, −y+1, −z; (ix) x+1, y, z; (x) x+1, y−1, z; (xi) x−1, y−1, z; (xii) x−1, y, z; (xiii) −x+1, −y, −z; (xiv) x, −y+1/2, z−1/2; (xv) x, −y−1/2, z−1/2; (xvi) −x, −y, −z; (xvii) −x, −y+1, −z; (xviii) x, y+1, z; (xix) x−1, y+1, z; (xx) x+1, y+1, z; (xxi) −x+1, y+3/2, −z+1/2. |
Experimental details
Crystal data | |
Chemical formula | La5Ti5O17 |
Mr | 1205.90 |
Crystal system, space group | Monoclinic, P21/c |
Temperature (K) | 293 |
a, b, c (Å) | 7.8580 (11), 5.5281 (9), 31.449 (5) |
β (°) | 97.166 (16) |
V (Å3) | 1355.5 (4) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 18.25 |
Crystal size (mm) | 0.10 × 0.08 × 0.01 |
Data collection | |
Diffractometer | Enraf-Nonius MACH3 diffractometer |
Absorption correction | ψ scan (Herrendorf, 1992) |
Tmin, Tmax | 0.31, 0.89 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 21243, 6456, 5164 |
Rint | 0.053 |
(sin θ/λ)max (Å−1) | 0.845 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.039, 0.082, 1.13 |
No. of reflections | 6456 |
No. of parameters | 248 |
w = 1/[σ2(Fo2) + (0.0238P)2 + 11.7499P] where P = (Fo2 + 2Fc2)/3 | |
Δρmax, Δρmin (e Å−3) | 3.22, −3.16 |
Computer programs: CAD-4 Software (Enraf-Nonius, 1989), CAD-4 Software, HELENA (Spek, 1996), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), ORTEP-3 for Windows (Farrugia, 1997), SHELXL97.
<Ti1-O> | 1.983 (26) |
<Ti2-O> | 1.979 (22) |
<Ti3-O> | 1.989 (110) |
<Ti4-O> | 1.985 (105) |
<Ti5-O> | 1.977 (141) |
<Ti6-O> | 1.986 (161) |
<La1-O> | 2.754 (247) |
<La2-O> | 2.735 (287) |
<La3-O> | 2.759 (277) |
<La4-O> | 2.697 (244) |
<La5-O> | 2.784 (520) |
<O-Ti1-O> | 90.00 (119) |
<O-Ti2-O> | 90.00 (122) |
<O-Ti3-O> | 89.66 (677) |
<O-Ti4-O> | 89.68 (666) |
<O-Ti5-O> | 89.77 (647) |
<O-Ti6-O> | 89.71 (673) |
A group of compounds with the chemical formula AnBnO3n+2 (A is Sr, La or Ca, and B is Nb or Ti) have been studied recently because of their interesting electronic properties (Lichtenberg et al., 2001; Kuntscher, Schuppler et al., 2002; Kuntscher, van der Marel et al., 2002). The crystal structures of the members of this family consist of (110) slabs of the perovskite structure that are separated by layers of additional O atoms. The width of the slabs in terms of the number of octahedra corresponds to the value of n in the chemical formula. The ideal formula of the n = 5 member in the LaTiOx system is La5Ti5O17, or LaTiO3.40, but this compound exists in the homogeneity range 3.40 < x < 3.42, as revealed by powder X-ray diffraction, high-resolution electron microscopy and thermogravimetry (Lichtenberg et al., 1991). The composition of the title compound, LaTiO3.41 (0.3% oxygen excess), has been determined by thermogravimetric oxidation (Lichtenberg et al., 2001). It is not clear if this nonstoichiometry corresponds to cation deficiency or oxygen excess, but there are indications for the latter in related niobates with n = 4 (Lichtenberg et al., 2001).
The single-crystal used for the present X-ray diffraction data collection was broken off a larger piece of material synthesized by floating zone melting, with a composition of LaTiO3.41 (Lichtenberg et al., 2001). Due to its layered structure, the material shows a perfect (001) cleavage, leading to the production of extremely thin plates when preparing single crystals. This property makes the correction for absorption effects indispensable and leads to an increased mosaic spread of crystals. In conjunction with the large cell dimension in the c direction, the mosaic spread limits the number of scans useful for obtaining integrated intensities. Depending on the scan direction in reciprocal space, some scans contained intensity from more than one reflection. These scans were recognized and discarded.
The chemical composition of the compound is slightly non-stoichiometric, but the presence of cation vacancies, or alternatively of excess oxygen, could not be analyzed with the data presented here. The anisotropic displacement parameters describe very oblate ellipsoids, which is due either to the absence of some reflections or to insufficient absorption correction. Hence, the physical meaning of the displacement parameters cannot be discussed. Their strong correlation with occupancy parameters also prohibits the refinement of the latter.
The refinement of the crystal structure shows that it consists of perovskite-type slabs five octahedra wide (Fig. 1). The topology proposed by Williams et al. (1991), based on electron microscopic observations, is confirmed, and the position estimates of Williams et al. (1991) are replaced by more precise values referring to the correct unit cell and symmetry. The unit-cell volume of LaTiO3.41 is approximately twice as large as that of SrNbO3.41 (Abrahams et al., 1998), while the symmetry is monoclinic for the former compared with orthorhombic for the latter. The differences between these two isotypic structures can be understood from the different chemical compositions. Divalent Sr is replaced by trivalent La, and nearly tetravalent Ti replaces approximately pentavalent Nb, thus transferring bond strength from the octahedral sites to the A sites. This substitution, in conjunction with differences in radii, distorts the oxygen environment of the metal atoms, causing local strain. This strain, in turn, is relieved by a commensurate modulation of the structure, leading to a twofold superstructure in the [100] direction of LaTiO3.41 as compared with SrNbO3.41. Indeed, the reflections with odd h indices have only 20% of the intensities of the reflections with even h indices. This is reflected by the atomic coordinates, whereby a counterpart near (x + 1/2, y, z) can be found for every atom site at (x, y, z).
The difference between orthorhombic SrNbO3.41 and monoclinic LaTiO3.41 can best be seen in the coordination of the A sites. Surprisingly, the major differences are not found for atoms near the additional oxygen layer, but for those in positions intermediate between the oxygen layer and the centre of the octahedral slab, i.e. atoms La2 and La3 (Fig. 1). While in SrNbO3.41 the Sr atoms in this position are all symmetry equivalent and occupy the centre of the coordinating cuboctahedron (Fig. 2a), atoms La2 and La3 in LaTiO3.41 are shifted away from the centres of their coordination polyhedra (Fig. 2 b). The shifts of the La2 and La3 positions are accompanied by rotations of the octahedra, in agreement with the lower symmetry of the La compound.
The distortions of the coordination polyhedra can be analyzed in terms of average metal-oxygen bond lengths and angles and their standard deviations (Table 1). The TiO6 octahedra in the centre of the perovskite slabs are virtually undistorted with respect to bond lengths and angles. The distortion grows as the octahedra approach the rim of the slab, as shown by the increasing standard deviations of the mean Ti—O bond lengths (Table 1). No such significant difference can be found with respect to the average O—Ti—O angles. This agrees well with the situation found in SrNbO3.41 (Abrahams et al., 1998), where the bond-length distortion of the corresponding NbO6 octahedra is almost identical and the angular distortion grows only by a small amount when approaching the rim of the perovskite slab. While the La sites within the octahedral slabs (La1, La2, and La3) allow the description of their coordination by a distorted cuboctahedron, such a description is useless for La4 and La5. The latter are at the rim of the slabs, and consequently, two of the twelve O atoms of the cuboctahedron are missing. The actual positions of La4 and La5 are shifted away from the would be centre of the cuboctahedron into the direction of the opposite slab. The resulting irregular coordination is similar to that of Sr in Sr2Nb2O7 (Daniels et al., 2002) and is tenfold for La4 and [seven + three]-fold for La5.