Supporting information
Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270104030082/bc1060sup1.cif | |
Structure factor file (CIF format) https://doi.org/10.1107/S0108270104030082/bc1060Isup2.hkl |
Single crystals of Ag3RuO4 were prepared via reaction of silver and ruthenium metal powders in stoichiometric amounts under an elevated oxygen pressure, in the presence of 3 M aqueous KOH solution as an accelerator. The mixture was annealed for 120 h in a gold crucible placed in a stainless steel autoclave (Linke & Jansen, 1997). The reaction temperature and oxygen pressure were 573 K and 200 MPa, respectively.
The crystals are systematically twinned and, during the structure refinement, the Flack parameter (Flack, 1983) tended to be significantly larger than zero. A refinement of the chiral twinning was performed where the volume fractions of the two domains are close to 0.5 (slighlty larger for the reported twin individual). The maximum and minimum in the final electron-density difference map are located 0.47 and 0.75 Å from Ru, respectively.
Data collection: SMART32 (Bruker, 2000); cell refinement: SAINT32 (Bruker, 2000); data reduction: SAINT32; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: DIAMOND (Brandenburg, 2000); software used to prepare material for publication: Please provide missing details.
Ag3RuO4 | Dx = 7.639 Mg m−3 |
Mr = 488.68 | Mo Kα radiation, λ = 0.71073 Å |
Tetragonal, P4122 | Cell parameters from 4178 reflections |
Hall symbol: P 4w 2c | θ = 2.9–35.0° |
a = 7.0082 (4) Å | µ = 16.99 mm−1 |
c = 8.6518 (7) Å | T = 293 K |
V = 424.93 (5) Å3 | Column, black |
Z = 4 | 0.50 × 0.10 × 0.10 mm |
F(000) = 868 |
Bruker SMART APEX CCD area-detector diffractometer | 510 independent reflections |
Radiation source: fine-focus sealed tube | 505 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.059 |
ω scans | θmax = 27.8°, θmin = 2.9° |
Absorption correction: empirical (using intensity measurements) (semi-empirical (using intensity measurements) with SADABS; Sheldrick, 1998) | h = −8→9 |
Tmin = 0.028, Tmax = 0.183 | k = −9→9 |
4499 measured reflections | l = −11→11 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.031 | w = 1/[σ2(Fo2) + (0.0223P)2 + 3.3199P] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.078 | (Δ/σ)max < 0.001 |
S = 1.37 | Δρmax = 2.06 e Å−3 |
510 reflections | Δρmin = −1.38 e Å−3 |
41 parameters | Absolute structure: Flack (1983), with 173 Friedel pairs |
0 restraints | Absolute structure parameter: 0.6 (2) |
Ag3RuO4 | Z = 4 |
Mr = 488.68 | Mo Kα radiation |
Tetragonal, P4122 | µ = 16.99 mm−1 |
a = 7.0082 (4) Å | T = 293 K |
c = 8.6518 (7) Å | 0.50 × 0.10 × 0.10 mm |
V = 424.93 (5) Å3 |
Bruker SMART APEX CCD area-detector diffractometer | 510 independent reflections |
Absorption correction: empirical (using intensity measurements) (semi-empirical (using intensity measurements) with SADABS; Sheldrick, 1998) | 505 reflections with I > 2σ(I) |
Tmin = 0.028, Tmax = 0.183 | Rint = 0.059 |
4499 measured reflections |
R[F2 > 2σ(F2)] = 0.031 | 0 restraints |
wR(F2) = 0.078 | Δρmax = 2.06 e Å−3 |
S = 1.37 | Δρmin = −1.38 e Å−3 |
510 reflections | Absolute structure: Flack (1983), with 173 Friedel pairs |
41 parameters | Absolute structure parameter: 0.6 (2) |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Ag1 | 0.25750 (12) | 0.0000 | 0.2500 | 0.0277 (3) | |
Ag2 | 0.0000 | 0.20859 (18) | 0.0000 | 0.0311 (3) | |
Ag3 | 0.5000 | 0.79222 (13) | 0.0000 | 0.0359 (4) | |
Ru | 0.5000 | 0.28048 (11) | 0.0000 | 0.0107 (2) | |
O1 | 0.6941 (7) | 0.4872 (7) | 0.0248 (5) | 0.0150 (10) | |
O2 | 0.3063 (8) | 0.0905 (7) | 0.0159 (6) | 0.0206 (11) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Ag1 | 0.0284 (5) | 0.0289 (7) | 0.0259 (6) | 0.000 | 0.000 | 0.0141 (4) |
Ag2 | 0.0153 (6) | 0.0551 (7) | 0.0228 (5) | 0.000 | 0.0043 (3) | 0.000 |
Ag3 | 0.0729 (9) | 0.0118 (4) | 0.0228 (5) | 0.000 | −0.0121 (5) | 0.000 |
Ru | 0.0113 (4) | 0.0100 (4) | 0.0109 (4) | 0.000 | −0.0015 (3) | 0.000 |
O1 | 0.018 (2) | 0.013 (2) | 0.014 (2) | −0.007 (2) | 0.0021 (19) | −0.001 (2) |
O2 | 0.014 (2) | 0.025 (3) | 0.022 (3) | −0.003 (2) | −0.001 (2) | −0.001 (3) |
Ru—O2 | 1.907 (5) | Ag1—Ag3xi | 3.1124 (7) |
Ru—O2i | 1.907 (5) | Ag1—Ag3xii | 3.1124 (7) |
Ru—O1ii | 1.959 (5) | Ag1—Ag2 | 3.1736 (7) |
Ru—O1iii | 1.959 (5) | Ag1—Ag2xiii | 3.1736 (7) |
Ru—O1 | 1.999 (4) | Ag1—Ag2vii | 3.2664 (15) |
Ru—O1i | 1.999 (4) | Ag1—Ag1xiv | 3.3454 (9) |
Ru—Ruiv | 3.0679 (8) | Ag1—Ag1vii | 3.3454 (9) |
Ru—Ruiii | 3.0679 (8) | Ag2—Ag2xiv | 2.9920 (12) |
Ag1—O2 | 2.149 (5) | Ag2—Ag1xv | 3.1736 (7) |
Ag1—O2v | 2.149 (5) | Ag2—Ag1xiv | 3.2664 (15) |
Ag2—O2 | 2.305 (5) | Ag2—Ag3iv | 3.3120 (9) |
Ag2—O2vi | 2.305 (5) | Ag2—Ag3xvi | 3.3120 (9) |
Ag2—O2vii | 2.483 (5) | Ag3—Ag1x | 3.1124 (7) |
Ag2—O2viii | 2.483 (5) | Ag3—Ag1xvii | 3.1124 (7) |
Ag3—O1viii | 2.476 (5) | Ag3—Ag2xviii | 3.3120 (9) |
Ag3—O1iv | 2.476 (5) | Ag3—Ag2iii | 3.3120 (9) |
Ag3—O2ix | 2.496 (5) | O1—Ruiv | 1.959 (5) |
Ag3—O2x | 2.496 (5) | O1—Ag3iii | 2.476 (5) |
Ag3—O1i | 2.543 (5) | O2—Ag2xiv | 2.483 (5) |
Ag3—O1 | 2.543 (5) | O2—Ag3xi | 2.496 (5) |
Ag2—Ag2vii | 2.9920 (12) | ||
O2v—Ag1—O2 | 161.7 (3) | Ag3iv—Ag2—Ag3xvi | 103.86 (4) |
O2v—Ag1—Ag3xii | 52.87 (14) | O1viii—Ag3—O1iv | 147.8 (2) |
O2—Ag1—Ag3xii | 115.46 (14) | O1viii—Ag3—O2ix | 101.48 (16) |
O2v—Ag1—Ag3xi | 115.46 (14) | O1iv—Ag3—O2ix | 105.41 (17) |
O2—Ag1—Ag3xi | 52.87 (14) | O1viii—Ag3—O2x | 105.41 (17) |
Ag3xii—Ag1—Ag3xi | 113.81 (3) | O1iv—Ag3—O2x | 101.48 (16) |
O2v—Ag1—Ag2 | 150.28 (14) | O2ix—Ag3—O2x | 66.3 (2) |
O2—Ag1—Ag2 | 46.56 (14) | O1viii—Ag3—O1i | 70.51 (14) |
Ag3xii—Ag1—Ag2 | 124.65 (3) | O1iv—Ag3—O1i | 82.36 (17) |
Ag3xi—Ag1—Ag2 | 93.002 (14) | O2ix—Ag3—O1i | 171.98 (17) |
O2v—Ag1—Ag2xiii | 46.56 (14) | O2x—Ag3—O1i | 114.68 (17) |
O2—Ag1—Ag2xiii | 150.28 (14) | O1viii—Ag3—O1 | 82.36 (17) |
Ag3xii—Ag1—Ag2xiii | 93.002 (14) | O1iv—Ag3—O1 | 70.51 (14) |
Ag3xi—Ag1—Ag2xiii | 124.65 (3) | O2ix—Ag3—O1 | 114.68 (17) |
Ag2—Ag1—Ag2xiii | 110.69 (3) | O2x—Ag3—O1 | 171.98 (17) |
O2v—Ag1—Ag2vii | 99.15 (14) | O1i—Ag3—O1 | 65.6 (2) |
O2—Ag1—Ag2vii | 99.15 (14) | O1viii—Ag3—Ag1x | 141.01 (12) |
Ag3xii—Ag1—Ag2vii | 123.096 (13) | O1iv—Ag3—Ag1x | 58.84 (10) |
Ag3xi—Ag1—Ag2vii | 123.096 (13) | O2ix—Ag3—Ag1x | 86.77 (12) |
Ag2—Ag1—Ag2vii | 55.346 (14) | O2x—Ag3—Ag1x | 43.35 (12) |
Ag2xiii—Ag1—Ag2vii | 55.346 (14) | O1i—Ag3—Ag1x | 99.19 (11) |
O2v—Ag1—Ag1xiv | 122.40 (14) | O1—Ag3—Ag1x | 128.82 (11) |
O2—Ag1—Ag1xiv | 68.64 (14) | O1viii—Ag3—Ag1xvii | 58.84 (10) |
Ag3xii—Ag1—Ag1xiv | 175.034 (17) | O1iv—Ag3—Ag1xvii | 141.01 (12) |
Ag3xi—Ag1—Ag1xiv | 65.975 (8) | O2ix—Ag3—Ag1xvii | 43.35 (12) |
Ag2—Ag1—Ag1xiv | 60.07 (2) | O2x—Ag3—Ag1xvii | 86.77 (12) |
Ag2xiii—Ag1—Ag1xiv | 83.42 (2) | O1i—Ag3—Ag1xvii | 128.82 (11) |
Ag2vii—Ag1—Ag1xiv | 57.355 (7) | O1—Ag3—Ag1xvii | 99.19 (11) |
O2v—Ag1—Ag1vii | 68.64 (14) | Ag1x—Ag3—Ag1xvii | 124.21 (3) |
O2—Ag1—Ag1vii | 122.40 (14) | O1viii—Ag3—Ag2xviii | 140.48 (11) |
Ag3xii—Ag1—Ag1vii | 65.975 (8) | O1iv—Ag3—Ag2xviii | 58.18 (12) |
Ag3xi—Ag1—Ag1vii | 175.034 (17) | O2ix—Ag3—Ag2xviii | 48.13 (12) |
Ag2—Ag1—Ag1vii | 83.42 (2) | O2x—Ag3—Ag2xviii | 86.05 (12) |
Ag2xiii—Ag1—Ag1vii | 60.07 (2) | O1i—Ag3—Ag2xviii | 138.99 (11) |
Ag2vii—Ag1—Ag1vii | 57.355 (7) | O1—Ag3—Ag2xviii | 89.12 (10) |
Ag1xiv—Ag1—Ag1vii | 114.710 (14) | Ag1x—Ag3—Ag2xviii | 71.17 (2) |
O2vi—Ag2—O2 | 137.9 (3) | Ag1xvii—Ag3—Ag2xviii | 84.92 (2) |
O2vi—Ag2—O2vii | 85.2 (2) | O1viii—Ag3—Ag2iii | 58.18 (12) |
O2—Ag2—O2vii | 106.34 (19) | O1iv—Ag3—Ag2iii | 140.48 (11) |
O2vi—Ag2—O2viii | 106.34 (19) | O2ix—Ag3—Ag2iii | 86.05 (12) |
O2—Ag2—O2viii | 85.2 (2) | O2x—Ag3—Ag2iii | 48.13 (12) |
O2vii—Ag2—O2viii | 148.0 (3) | O1i—Ag3—Ag2iii | 89.12 (10) |
O2vi—Ag2—Ag2xiv | 103.67 (13) | O1—Ag3—Ag2iii | 138.99 (11) |
O2—Ag2—Ag2xiv | 54.04 (13) | Ag1x—Ag3—Ag2iii | 84.92 (2) |
O2vii—Ag2—Ag2xiv | 158.34 (13) | Ag1xvii—Ag3—Ag2iii | 71.17 (2) |
O2viii—Ag2—Ag2xiv | 48.70 (12) | Ag2xviii—Ag3—Ag2iii | 127.84 (3) |
O2vi—Ag2—Ag2vii | 54.04 (13) | O2—Ru—O2i | 91.4 (3) |
O2—Ag2—Ag2vii | 103.67 (13) | O2—Ru—O1ii | 91.4 (2) |
O2vii—Ag2—Ag2vii | 48.70 (12) | O2i—Ru—O1ii | 95.9 (2) |
O2viii—Ag2—Ag2vii | 158.34 (13) | O2—Ru—O1iii | 95.9 (2) |
Ag2xiv—Ag2—Ag2vii | 121.51 (3) | O2i—Ru—O1iii | 91.4 (2) |
O2vi—Ag2—Ag1xv | 42.62 (13) | O1ii—Ru—O1iii | 169.6 (3) |
O2—Ag2—Ag1xv | 113.89 (13) | O2—Ru—O1 | 169.4 (2) |
O2vii—Ag2—Ag1xv | 127.83 (12) | O2i—Ru—O1 | 91.7 (2) |
O2viii—Ag2—Ag1xv | 68.94 (12) | O1ii—Ru—O1 | 78.2 (2) |
Ag2xiv—Ag2—Ag1xv | 63.901 (14) | O1iii—Ru—O1 | 94.1 (2) |
Ag2vii—Ag2—Ag1xv | 89.42 (4) | O2—Ru—O1i | 91.7 (2) |
O2vi—Ag2—Ag1 | 113.89 (13) | O2i—Ru—O1i | 169.4 (2) |
O2—Ag2—Ag1 | 42.62 (13) | O1ii—Ru—O1i | 94.1 (2) |
O2vii—Ag2—Ag1 | 68.94 (12) | O1iii—Ru—O1i | 78.2 (2) |
O2viii—Ag2—Ag1 | 127.83 (12) | O1—Ru—O1i | 87.1 (3) |
Ag2xiv—Ag2—Ag1 | 89.42 (4) | O2—Ru—Ruiv | 131.02 (16) |
Ag2vii—Ag2—Ag1 | 63.901 (14) | O2i—Ru—Ruiv | 92.53 (16) |
Ag1xv—Ag2—Ag1 | 125.15 (4) | O1ii—Ru—Ruiv | 39.65 (13) |
O2vi—Ag2—Ag1xiv | 68.95 (13) | O1iii—Ru—Ruiv | 132.75 (15) |
O2—Ag2—Ag1xiv | 68.95 (13) | O1—Ru—Ruiv | 38.71 (14) |
O2vii—Ag2—Ag1xiv | 106.00 (13) | O1i—Ru—Ruiv | 93.07 (14) |
O2viii—Ag2—Ag1xiv | 106.00 (13) | O2—Ru—Ruiii | 92.53 (16) |
Ag2xiv—Ag2—Ag1xiv | 60.753 (14) | O2i—Ru—Ruiii | 131.02 (16) |
Ag2vii—Ag2—Ag1xiv | 60.753 (14) | O1ii—Ru—Ruiii | 132.75 (15) |
Ag1xv—Ag2—Ag1xiv | 62.57 (2) | O1iii—Ru—Ruiii | 39.65 (13) |
Ag1—Ag2—Ag1xiv | 62.57 (2) | O1—Ru—Ruiii | 93.07 (14) |
O2vi—Ag2—Ag3iv | 132.07 (13) | O1i—Ru—Ruiii | 38.71 (14) |
O2—Ag2—Ag3iv | 76.87 (13) | Ruiv—Ru—Ruiii | 119.806 (17) |
O2vii—Ag2—Ag3iv | 48.48 (12) | Ruiv—O1—Ru | 101.6 (2) |
O2viii—Ag2—Ag3iv | 108.84 (13) | Ruiv—O1—Ag3iii | 158.1 (2) |
Ag2xiv—Ag2—Ag3iv | 123.96 (2) | Ru—O1—Ag3iii | 96.44 (18) |
Ag2vii—Ag2—Ag3iv | 92.521 (17) | Ruiv—O1—Ag3 | 95.39 (19) |
Ag1xv—Ag2—Ag3iv | 168.27 (4) | Ru—O1—Ag3 | 103.7 (2) |
Ag1—Ag2—Ag3iv | 65.729 (8) | Ag3iii—O1—Ag3 | 92.12 (16) |
Ag1xiv—Ag2—Ag3iv | 128.069 (18) | Ru—O2—Ag1 | 112.8 (2) |
O2vi—Ag2—Ag3xvi | 76.87 (13) | Ru—O2—Ag2 | 114.1 (2) |
O2—Ag2—Ag3xvi | 132.07 (13) | Ag1—O2—Ag2 | 90.82 (19) |
O2vii—Ag2—Ag3xvi | 108.84 (13) | Ru—O2—Ag2xiv | 107.9 (2) |
O2viii—Ag2—Ag3xvi | 48.48 (12) | Ag1—O2—Ag2xiv | 138.9 (2) |
Ag2xiv—Ag2—Ag3xvi | 92.520 (17) | Ag2—O2—Ag2xiv | 77.26 (16) |
Ag2vii—Ag2—Ag3xvi | 123.96 (2) | Ru—O2—Ag3xi | 101.2 (2) |
Ag1xv—Ag2—Ag3xvi | 65.729 (8) | Ag1—O2—Ag3xi | 83.77 (17) |
Ag1—Ag2—Ag3xvi | 168.27 (4) | Ag2—O2—Ag3xi | 143.5 (2) |
Ag1xiv—Ag2—Ag3xvi | 128.069 (18) | Ag2xiv—O2—Ag3xi | 83.39 (16) |
Symmetry codes: (i) −x+1, y, −z; (ii) −y+1, −x+1, −z+1/4; (iii) y, −x+1, z−1/4; (iv) −y+1, x, z+1/4; (v) x, −y, −z+1/2; (vi) −x, y, −z; (vii) −y, x, z+1/4; (viii) y, x, −z−1/4; (ix) −x+1, y+1, −z; (x) x, y+1, z; (xi) x, y−1, z; (xii) −x+1, −y+1, z+1/2; (xiii) −x, −y, z+1/2; (xiv) y, −x, z−1/4; (xv) −x, −y, z−1/2; (xvi) y−1, −x+1, z−1/4; (xvii) −x+1, −y+1, z−1/2; (xviii) −y+1, x+1, z+1/4. |
Experimental details
Crystal data | |
Chemical formula | Ag3RuO4 |
Mr | 488.68 |
Crystal system, space group | Tetragonal, P4122 |
Temperature (K) | 293 |
a, c (Å) | 7.0082 (4), 8.6518 (7) |
V (Å3) | 424.93 (5) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 16.99 |
Crystal size (mm) | 0.50 × 0.10 × 0.10 |
Data collection | |
Diffractometer | Bruker SMART APEX CCD area-detector diffractometer |
Absorption correction | Empirical (using intensity measurements) (semi-empirical (using intensity measurements) with SADABS; Sheldrick, 1998) |
Tmin, Tmax | 0.028, 0.183 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 4499, 510, 505 |
Rint | 0.059 |
(sin θ/λ)max (Å−1) | 0.656 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.031, 0.078, 1.37 |
No. of reflections | 510 |
No. of parameters | 41 |
Δρmax, Δρmin (e Å−3) | 2.06, −1.38 |
Absolute structure | Flack (1983), with 173 Friedel pairs |
Absolute structure parameter | 0.6 (2) |
Computer programs: SMART32 (Bruker, 2000), SAINT32 (Bruker, 2000), SAINT32, SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), DIAMOND (Brandenburg, 2000), Please provide missing details.
Ru—O2 | 1.907 (5) | Ag2—O2ii | 2.483 (5) |
Ru—O1i | 1.959 (5) | Ag3—O1iii | 2.476 (5) |
Ru—O1 | 1.999 (4) | Ag3—O2iv | 2.496 (5) |
Ag1—O2 | 2.149 (5) | Ag3—O1 | 2.543 (5) |
Ag2—O2 | 2.305 (5) |
Symmetry codes: (i) −y+1, −x+1, −z+1/4; (ii) −y, x, z+1/4; (iii) −y+1, x, z+1/4; (iv) x, y+1, z. |
Multinary ruthenium oxides have been investigated intensively, especially for their interesting magnetic and conductive properties. Among the Ru oxides reported to date, only two contain Ag, viz. Ag0.4Na2.3Ca4.3RuO8 (Müller-Buschbaum & Frenzen, 1996) and Ag2RuO4 (Hansen, 2003). We have now obtained crystals of Ag3RuO4 from a reaction of the metal powders under elevated oxygen pressure.
In Ag3RuO4, Ru is coordinated by six O atoms, which form a slightly distorted octahedron. These RuO6 octahedra are linked by two common edges in a skew position, forming helical strings of octahedra running parallel to [001] (Fig. 1). The distortion of the octahedra results from the off-centre shift of the RuV cation towards the two cis-positioned terminal O atoms, so that the terminal Ru—O bonds [1.907 (5) Å] are considerably shorter than the bridging Ru—O bonds (average 1.979 Å; Table 1). As another consequence, the shared octahedral edges are shorter, due to a significant decrease of the respective O—Ru—O angles [78.2 (2)°] compared with the remaining angles [between 87.1 (3) and 95.9 (2)°].
Octahedral coordination is rather common for RuV and has been found, for instance, in Na3RuO4 (Darriet & Galy, 1974) and in the pyrochlore Cd2Ru2O7 (Wang & Sleight, 1998). While the pyrochlore consists of a three-dimensional network of corner-linked octahedra, Na3RuO4 contains edge-sharing RuO6 octahedra which, unlike in Ag3RuO4, form oligomeric [Ru4O16]12− units. Spirals of octahedra similar to those found in Ag3RuO4 [designated as s4 chains in the nomenclature of Müller (1981)] are known in, for example, the tetragonal spinels Li2TeO4 (Daniel et al., 1977) or LiZnNbO4 (Marin et al., 1994), which crystallize in the same tetragonal P4122 space group.
The three crystallographically independent AgI cations in Ag3RuO4 are coordinated in different ways. Cation Ag1 is in a typical, only slightly bent, dumb-bell-like coordination, with two close O ligands at an Ag1—O distance of 2.149 (5) Å, cation Ag2 has a 2 + 2 environment [2 × 2.305 (5) and 2 × 2.483 (5) Å] and cation Ag3 has six nearly equidistant O neighbours forming a skew octahedron (average 2.505 Å). If the more remote neighbours are included for all Ag atoms, they all achieve a distorted octahedral coordination by O (see Fig. 2). In this more general view, the crystal structure of Ag3RuO4 can be traced back to the NaCl structure type, with an approximate cubic close packing of O, where the Ag+ and Ru5+ cations fill all the octahedral voids in an ordered manner.
s.u.s have been added using data in the CIF tables. Please check this has not introduced any errors, and correct as necessary.