Download citation
Download citation
link to html
Ag3RuO4 is constituted of anionic helical chains of edge-sharing RuO6 octahedra, extending along the c axis. The metal atoms all lie at sites with imposed twofold symmetry. The oxide anions are arranged in an approximate cubic close packing. The Ag atoms occupy the remaining octahedral voids, so that Ag3RuO4 may be regarded as a derivative of the NaCl structure type.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270104030082/bc1060sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270104030082/bc1060Isup2.hkl
Contains datablock I

Comment top

Multinary ruthenium oxides have been investigated intensively, especially for their interesting magnetic and conductive properties. Among the Ru oxides reported to date, only two contain Ag, viz. Ag0.4Na2.3Ca4.3RuO8 (Müller-Buschbaum & Frenzen, 1996) and Ag2RuO4 (Hansen, 2003). We have now obtained crystals of Ag3RuO4 from a reaction of the metal powders under elevated oxygen pressure.

In Ag3RuO4, Ru is coordinated by six O atoms, which form a slightly distorted octahedron. These RuO6 octahedra are linked by two common edges in a skew position, forming helical strings of octahedra running parallel to [001] (Fig. 1). The distortion of the octahedra results from the off-centre shift of the RuV cation towards the two cis-positioned terminal O atoms, so that the terminal Ru—O bonds [1.907 (5) Å] are considerably shorter than the bridging Ru—O bonds (average 1.979 Å; Table 1). As another consequence, the shared octahedral edges are shorter, due to a significant decrease of the respective O—Ru—O angles [78.2 (2)°] compared with the remaining angles [between 87.1 (3) and 95.9 (2)°].

Octahedral coordination is rather common for RuV and has been found, for instance, in Na3RuO4 (Darriet & Galy, 1974) and in the pyrochlore Cd2Ru2O7 (Wang & Sleight, 1998). While the pyrochlore consists of a three-dimensional network of corner-linked octahedra, Na3RuO4 contains edge-sharing RuO6 octahedra which, unlike in Ag3RuO4, form oligomeric [Ru4O16]12− units. Spirals of octahedra similar to those found in Ag3RuO4 [designated as s4 chains in the nomenclature of Müller (1981)] are known in, for example, the tetragonal spinels Li2TeO4 (Daniel et al., 1977) or LiZnNbO4 (Marin et al., 1994), which crystallize in the same tetragonal P4122 space group.

The three crystallographically independent AgI cations in Ag3RuO4 are coordinated in different ways. Cation Ag1 is in a typical, only slightly bent, dumb-bell-like coordination, with two close O ligands at an Ag1—O distance of 2.149 (5) Å, cation Ag2 has a 2 + 2 environment [2 × 2.305 (5) and 2 × 2.483 (5) Å] and cation Ag3 has six nearly equidistant O neighbours forming a skew octahedron (average 2.505 Å). If the more remote neighbours are included for all Ag atoms, they all achieve a distorted octahedral coordination by O (see Fig. 2). In this more general view, the crystal structure of Ag3RuO4 can be traced back to the NaCl structure type, with an approximate cubic close packing of O, where the Ag+ and Ru5+ cations fill all the octahedral voids in an ordered manner.

s.u.s have been added using data in the CIF tables. Please check this has not introduced any errors, and correct as necessary.

Experimental top

Single crystals of Ag3RuO4 were prepared via reaction of silver and ruthenium metal powders in stoichiometric amounts under an elevated oxygen pressure, in the presence of 3 M aqueous KOH solution as an accelerator. The mixture was annealed for 120 h in a gold crucible placed in a stainless steel autoclave (Linke & Jansen, 1997). The reaction temperature and oxygen pressure were 573 K and 200 MPa, respectively.

Refinement top

The crystals are systematically twinned and, during the structure refinement, the Flack parameter (Flack, 1983) tended to be significantly larger than zero. A refinement of the chiral twinning was performed where the volume fractions of the two domains are close to 0.5 (slighlty larger for the reported twin individual). The maximum and minimum in the final electron-density difference map are located 0.47 and 0.75 Å from Ru, respectively.

Computing details top

Data collection: SMART32 (Bruker, 2000); cell refinement: SAINT32 (Bruker, 2000); data reduction: SAINT32; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: DIAMOND (Brandenburg, 2000); software used to prepare material for publication: Please provide missing details.

Figures top
[Figure 1] Fig. 1. A perspective view of Ag3RuO4 along [110].
[Figure 2] Fig. 2. The surroundings of the three crystallographically independent AgI cations in Ag3RuO4. Bonds longer than 2.55 Å are drawn as dashed lines and displacement ellipsoids are shown at the 50% probability level. [Symmetry codes: (i) x, −y, 1/2 − z; (ii) −y, x, 1/4 + z; (iii) −y, −x, 1/4 − z; (iv) 1 − y, x − 1, 1/4 + z; (v) 1 − y, 1 − x, 1/4 − z; (vi) −x, y, −z; (vii) y, x, −1/4 − z; (viii) x − 1, y, z; (ix) 1 − x, y, −z; (x) 1 − y, x, 1/4 + z; (xi) x, 1 + y, z; (xii) 1 − x, 1 + y, −z.]
Trisilver oxoruthenate(V) top
Crystal data top
Ag3RuO4Dx = 7.639 Mg m3
Mr = 488.68Mo Kα radiation, λ = 0.71073 Å
Tetragonal, P4122Cell parameters from 4178 reflections
Hall symbol: P 4w 2cθ = 2.9–35.0°
a = 7.0082 (4) ŵ = 16.99 mm1
c = 8.6518 (7) ÅT = 293 K
V = 424.93 (5) Å3Column, black
Z = 40.50 × 0.10 × 0.10 mm
F(000) = 868
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
510 independent reflections
Radiation source: fine-focus sealed tube505 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.059
ω scansθmax = 27.8°, θmin = 2.9°
Absorption correction: empirical (using intensity measurements)
(semi-empirical (using intensity measurements) with SADABS; Sheldrick, 1998)
h = 89
Tmin = 0.028, Tmax = 0.183k = 99
4499 measured reflectionsl = 1111
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.031 w = 1/[σ2(Fo2) + (0.0223P)2 + 3.3199P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.078(Δ/σ)max < 0.001
S = 1.37Δρmax = 2.06 e Å3
510 reflectionsΔρmin = 1.38 e Å3
41 parametersAbsolute structure: Flack (1983), with 173 Friedel pairs
0 restraintsAbsolute structure parameter: 0.6 (2)
Crystal data top
Ag3RuO4Z = 4
Mr = 488.68Mo Kα radiation
Tetragonal, P4122µ = 16.99 mm1
a = 7.0082 (4) ÅT = 293 K
c = 8.6518 (7) Å0.50 × 0.10 × 0.10 mm
V = 424.93 (5) Å3
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
510 independent reflections
Absorption correction: empirical (using intensity measurements)
(semi-empirical (using intensity measurements) with SADABS; Sheldrick, 1998)
505 reflections with I > 2σ(I)
Tmin = 0.028, Tmax = 0.183Rint = 0.059
4499 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0310 restraints
wR(F2) = 0.078Δρmax = 2.06 e Å3
S = 1.37Δρmin = 1.38 e Å3
510 reflectionsAbsolute structure: Flack (1983), with 173 Friedel pairs
41 parametersAbsolute structure parameter: 0.6 (2)
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ag10.25750 (12)0.00000.25000.0277 (3)
Ag20.00000.20859 (18)0.00000.0311 (3)
Ag30.50000.79222 (13)0.00000.0359 (4)
Ru0.50000.28048 (11)0.00000.0107 (2)
O10.6941 (7)0.4872 (7)0.0248 (5)0.0150 (10)
O20.3063 (8)0.0905 (7)0.0159 (6)0.0206 (11)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ag10.0284 (5)0.0289 (7)0.0259 (6)0.0000.0000.0141 (4)
Ag20.0153 (6)0.0551 (7)0.0228 (5)0.0000.0043 (3)0.000
Ag30.0729 (9)0.0118 (4)0.0228 (5)0.0000.0121 (5)0.000
Ru0.0113 (4)0.0100 (4)0.0109 (4)0.0000.0015 (3)0.000
O10.018 (2)0.013 (2)0.014 (2)0.007 (2)0.0021 (19)0.001 (2)
O20.014 (2)0.025 (3)0.022 (3)0.003 (2)0.001 (2)0.001 (3)
Geometric parameters (Å, º) top
Ru—O21.907 (5)Ag1—Ag3xi3.1124 (7)
Ru—O2i1.907 (5)Ag1—Ag3xii3.1124 (7)
Ru—O1ii1.959 (5)Ag1—Ag23.1736 (7)
Ru—O1iii1.959 (5)Ag1—Ag2xiii3.1736 (7)
Ru—O11.999 (4)Ag1—Ag2vii3.2664 (15)
Ru—O1i1.999 (4)Ag1—Ag1xiv3.3454 (9)
Ru—Ruiv3.0679 (8)Ag1—Ag1vii3.3454 (9)
Ru—Ruiii3.0679 (8)Ag2—Ag2xiv2.9920 (12)
Ag1—O22.149 (5)Ag2—Ag1xv3.1736 (7)
Ag1—O2v2.149 (5)Ag2—Ag1xiv3.2664 (15)
Ag2—O22.305 (5)Ag2—Ag3iv3.3120 (9)
Ag2—O2vi2.305 (5)Ag2—Ag3xvi3.3120 (9)
Ag2—O2vii2.483 (5)Ag3—Ag1x3.1124 (7)
Ag2—O2viii2.483 (5)Ag3—Ag1xvii3.1124 (7)
Ag3—O1viii2.476 (5)Ag3—Ag2xviii3.3120 (9)
Ag3—O1iv2.476 (5)Ag3—Ag2iii3.3120 (9)
Ag3—O2ix2.496 (5)O1—Ruiv1.959 (5)
Ag3—O2x2.496 (5)O1—Ag3iii2.476 (5)
Ag3—O1i2.543 (5)O2—Ag2xiv2.483 (5)
Ag3—O12.543 (5)O2—Ag3xi2.496 (5)
Ag2—Ag2vii2.9920 (12)
O2v—Ag1—O2161.7 (3)Ag3iv—Ag2—Ag3xvi103.86 (4)
O2v—Ag1—Ag3xii52.87 (14)O1viii—Ag3—O1iv147.8 (2)
O2—Ag1—Ag3xii115.46 (14)O1viii—Ag3—O2ix101.48 (16)
O2v—Ag1—Ag3xi115.46 (14)O1iv—Ag3—O2ix105.41 (17)
O2—Ag1—Ag3xi52.87 (14)O1viii—Ag3—O2x105.41 (17)
Ag3xii—Ag1—Ag3xi113.81 (3)O1iv—Ag3—O2x101.48 (16)
O2v—Ag1—Ag2150.28 (14)O2ix—Ag3—O2x66.3 (2)
O2—Ag1—Ag246.56 (14)O1viii—Ag3—O1i70.51 (14)
Ag3xii—Ag1—Ag2124.65 (3)O1iv—Ag3—O1i82.36 (17)
Ag3xi—Ag1—Ag293.002 (14)O2ix—Ag3—O1i171.98 (17)
O2v—Ag1—Ag2xiii46.56 (14)O2x—Ag3—O1i114.68 (17)
O2—Ag1—Ag2xiii150.28 (14)O1viii—Ag3—O182.36 (17)
Ag3xii—Ag1—Ag2xiii93.002 (14)O1iv—Ag3—O170.51 (14)
Ag3xi—Ag1—Ag2xiii124.65 (3)O2ix—Ag3—O1114.68 (17)
Ag2—Ag1—Ag2xiii110.69 (3)O2x—Ag3—O1171.98 (17)
O2v—Ag1—Ag2vii99.15 (14)O1i—Ag3—O165.6 (2)
O2—Ag1—Ag2vii99.15 (14)O1viii—Ag3—Ag1x141.01 (12)
Ag3xii—Ag1—Ag2vii123.096 (13)O1iv—Ag3—Ag1x58.84 (10)
Ag3xi—Ag1—Ag2vii123.096 (13)O2ix—Ag3—Ag1x86.77 (12)
Ag2—Ag1—Ag2vii55.346 (14)O2x—Ag3—Ag1x43.35 (12)
Ag2xiii—Ag1—Ag2vii55.346 (14)O1i—Ag3—Ag1x99.19 (11)
O2v—Ag1—Ag1xiv122.40 (14)O1—Ag3—Ag1x128.82 (11)
O2—Ag1—Ag1xiv68.64 (14)O1viii—Ag3—Ag1xvii58.84 (10)
Ag3xii—Ag1—Ag1xiv175.034 (17)O1iv—Ag3—Ag1xvii141.01 (12)
Ag3xi—Ag1—Ag1xiv65.975 (8)O2ix—Ag3—Ag1xvii43.35 (12)
Ag2—Ag1—Ag1xiv60.07 (2)O2x—Ag3—Ag1xvii86.77 (12)
Ag2xiii—Ag1—Ag1xiv83.42 (2)O1i—Ag3—Ag1xvii128.82 (11)
Ag2vii—Ag1—Ag1xiv57.355 (7)O1—Ag3—Ag1xvii99.19 (11)
O2v—Ag1—Ag1vii68.64 (14)Ag1x—Ag3—Ag1xvii124.21 (3)
O2—Ag1—Ag1vii122.40 (14)O1viii—Ag3—Ag2xviii140.48 (11)
Ag3xii—Ag1—Ag1vii65.975 (8)O1iv—Ag3—Ag2xviii58.18 (12)
Ag3xi—Ag1—Ag1vii175.034 (17)O2ix—Ag3—Ag2xviii48.13 (12)
Ag2—Ag1—Ag1vii83.42 (2)O2x—Ag3—Ag2xviii86.05 (12)
Ag2xiii—Ag1—Ag1vii60.07 (2)O1i—Ag3—Ag2xviii138.99 (11)
Ag2vii—Ag1—Ag1vii57.355 (7)O1—Ag3—Ag2xviii89.12 (10)
Ag1xiv—Ag1—Ag1vii114.710 (14)Ag1x—Ag3—Ag2xviii71.17 (2)
O2vi—Ag2—O2137.9 (3)Ag1xvii—Ag3—Ag2xviii84.92 (2)
O2vi—Ag2—O2vii85.2 (2)O1viii—Ag3—Ag2iii58.18 (12)
O2—Ag2—O2vii106.34 (19)O1iv—Ag3—Ag2iii140.48 (11)
O2vi—Ag2—O2viii106.34 (19)O2ix—Ag3—Ag2iii86.05 (12)
O2—Ag2—O2viii85.2 (2)O2x—Ag3—Ag2iii48.13 (12)
O2vii—Ag2—O2viii148.0 (3)O1i—Ag3—Ag2iii89.12 (10)
O2vi—Ag2—Ag2xiv103.67 (13)O1—Ag3—Ag2iii138.99 (11)
O2—Ag2—Ag2xiv54.04 (13)Ag1x—Ag3—Ag2iii84.92 (2)
O2vii—Ag2—Ag2xiv158.34 (13)Ag1xvii—Ag3—Ag2iii71.17 (2)
O2viii—Ag2—Ag2xiv48.70 (12)Ag2xviii—Ag3—Ag2iii127.84 (3)
O2vi—Ag2—Ag2vii54.04 (13)O2—Ru—O2i91.4 (3)
O2—Ag2—Ag2vii103.67 (13)O2—Ru—O1ii91.4 (2)
O2vii—Ag2—Ag2vii48.70 (12)O2i—Ru—O1ii95.9 (2)
O2viii—Ag2—Ag2vii158.34 (13)O2—Ru—O1iii95.9 (2)
Ag2xiv—Ag2—Ag2vii121.51 (3)O2i—Ru—O1iii91.4 (2)
O2vi—Ag2—Ag1xv42.62 (13)O1ii—Ru—O1iii169.6 (3)
O2—Ag2—Ag1xv113.89 (13)O2—Ru—O1169.4 (2)
O2vii—Ag2—Ag1xv127.83 (12)O2i—Ru—O191.7 (2)
O2viii—Ag2—Ag1xv68.94 (12)O1ii—Ru—O178.2 (2)
Ag2xiv—Ag2—Ag1xv63.901 (14)O1iii—Ru—O194.1 (2)
Ag2vii—Ag2—Ag1xv89.42 (4)O2—Ru—O1i91.7 (2)
O2vi—Ag2—Ag1113.89 (13)O2i—Ru—O1i169.4 (2)
O2—Ag2—Ag142.62 (13)O1ii—Ru—O1i94.1 (2)
O2vii—Ag2—Ag168.94 (12)O1iii—Ru—O1i78.2 (2)
O2viii—Ag2—Ag1127.83 (12)O1—Ru—O1i87.1 (3)
Ag2xiv—Ag2—Ag189.42 (4)O2—Ru—Ruiv131.02 (16)
Ag2vii—Ag2—Ag163.901 (14)O2i—Ru—Ruiv92.53 (16)
Ag1xv—Ag2—Ag1125.15 (4)O1ii—Ru—Ruiv39.65 (13)
O2vi—Ag2—Ag1xiv68.95 (13)O1iii—Ru—Ruiv132.75 (15)
O2—Ag2—Ag1xiv68.95 (13)O1—Ru—Ruiv38.71 (14)
O2vii—Ag2—Ag1xiv106.00 (13)O1i—Ru—Ruiv93.07 (14)
O2viii—Ag2—Ag1xiv106.00 (13)O2—Ru—Ruiii92.53 (16)
Ag2xiv—Ag2—Ag1xiv60.753 (14)O2i—Ru—Ruiii131.02 (16)
Ag2vii—Ag2—Ag1xiv60.753 (14)O1ii—Ru—Ruiii132.75 (15)
Ag1xv—Ag2—Ag1xiv62.57 (2)O1iii—Ru—Ruiii39.65 (13)
Ag1—Ag2—Ag1xiv62.57 (2)O1—Ru—Ruiii93.07 (14)
O2vi—Ag2—Ag3iv132.07 (13)O1i—Ru—Ruiii38.71 (14)
O2—Ag2—Ag3iv76.87 (13)Ruiv—Ru—Ruiii119.806 (17)
O2vii—Ag2—Ag3iv48.48 (12)Ruiv—O1—Ru101.6 (2)
O2viii—Ag2—Ag3iv108.84 (13)Ruiv—O1—Ag3iii158.1 (2)
Ag2xiv—Ag2—Ag3iv123.96 (2)Ru—O1—Ag3iii96.44 (18)
Ag2vii—Ag2—Ag3iv92.521 (17)Ruiv—O1—Ag395.39 (19)
Ag1xv—Ag2—Ag3iv168.27 (4)Ru—O1—Ag3103.7 (2)
Ag1—Ag2—Ag3iv65.729 (8)Ag3iii—O1—Ag392.12 (16)
Ag1xiv—Ag2—Ag3iv128.069 (18)Ru—O2—Ag1112.8 (2)
O2vi—Ag2—Ag3xvi76.87 (13)Ru—O2—Ag2114.1 (2)
O2—Ag2—Ag3xvi132.07 (13)Ag1—O2—Ag290.82 (19)
O2vii—Ag2—Ag3xvi108.84 (13)Ru—O2—Ag2xiv107.9 (2)
O2viii—Ag2—Ag3xvi48.48 (12)Ag1—O2—Ag2xiv138.9 (2)
Ag2xiv—Ag2—Ag3xvi92.520 (17)Ag2—O2—Ag2xiv77.26 (16)
Ag2vii—Ag2—Ag3xvi123.96 (2)Ru—O2—Ag3xi101.2 (2)
Ag1xv—Ag2—Ag3xvi65.729 (8)Ag1—O2—Ag3xi83.77 (17)
Ag1—Ag2—Ag3xvi168.27 (4)Ag2—O2—Ag3xi143.5 (2)
Ag1xiv—Ag2—Ag3xvi128.069 (18)Ag2xiv—O2—Ag3xi83.39 (16)
Symmetry codes: (i) x+1, y, z; (ii) y+1, x+1, z+1/4; (iii) y, x+1, z1/4; (iv) y+1, x, z+1/4; (v) x, y, z+1/2; (vi) x, y, z; (vii) y, x, z+1/4; (viii) y, x, z1/4; (ix) x+1, y+1, z; (x) x, y+1, z; (xi) x, y1, z; (xii) x+1, y+1, z+1/2; (xiii) x, y, z+1/2; (xiv) y, x, z1/4; (xv) x, y, z1/2; (xvi) y1, x+1, z1/4; (xvii) x+1, y+1, z1/2; (xviii) y+1, x+1, z+1/4.

Experimental details

Crystal data
Chemical formulaAg3RuO4
Mr488.68
Crystal system, space groupTetragonal, P4122
Temperature (K)293
a, c (Å)7.0082 (4), 8.6518 (7)
V3)424.93 (5)
Z4
Radiation typeMo Kα
µ (mm1)16.99
Crystal size (mm)0.50 × 0.10 × 0.10
Data collection
DiffractometerBruker SMART APEX CCD area-detector
diffractometer
Absorption correctionEmpirical (using intensity measurements)
(semi-empirical (using intensity measurements) with SADABS; Sheldrick, 1998)
Tmin, Tmax0.028, 0.183
No. of measured, independent and
observed [I > 2σ(I)] reflections
4499, 510, 505
Rint0.059
(sin θ/λ)max1)0.656
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.031, 0.078, 1.37
No. of reflections510
No. of parameters41
Δρmax, Δρmin (e Å3)2.06, 1.38
Absolute structureFlack (1983), with 173 Friedel pairs
Absolute structure parameter0.6 (2)

Computer programs: SMART32 (Bruker, 2000), SAINT32 (Bruker, 2000), SAINT32, SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), DIAMOND (Brandenburg, 2000), Please provide missing details.

Selected bond lengths (Å) top
Ru—O21.907 (5)Ag2—O2ii2.483 (5)
Ru—O1i1.959 (5)Ag3—O1iii2.476 (5)
Ru—O11.999 (4)Ag3—O2iv2.496 (5)
Ag1—O22.149 (5)Ag3—O12.543 (5)
Ag2—O22.305 (5)
Symmetry codes: (i) y+1, x+1, z+1/4; (ii) y, x, z+1/4; (iii) y+1, x, z+1/4; (iv) x, y+1, z.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds