Supporting information
Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270105036644/bc1078sup1.cif | |
Structure factor file (CIF format) https://doi.org/10.1107/S0108270105036644/bc1078Isup2.hkl | |
Text file https://doi.org/10.1107/S0108270105036644/bc1078hklsup3.txt |
A cylindrical rod of single-crystalline Eu0.6Sr0.4MnO3 was grown by the floating zone technique with radiation heating (Mukovskii et al., 2001). Feed rods were prepared from Mn3O4, SrCO3 and Eu2O3 powders, which were mixed in accordance with the desired metal composition Eu0.6Sr0.4Mn1.0. The metal composition of the single-crystalline sample from same batch was determined by electron microprobe analysis. SrSO4, MnTiO3 and a glass containing 12 wt% of Eu2O3 (P&H Developments Ltd, England) were used as standards for Sr, Mn and Eu, respectively. The analytical result is in good agreement with the nominal metal composition Eu:Sr:Mn = 0.590 (7):0.406 (8):1.004 (8).
All reflections found by the SEARCH procedure of CAD-4 Software (Enraf–Nonius, 1988) were indexed in the pseudocubic eightfold 2ac × 2ac × 2ac perovskite unit cell. The crystal quality was tested by rotation photographs along the three crystallographic directions of the related perovskite lattice and by performing ω scans on selected Bragg reflections. They showed splitting, hinting at possible twinning. The diffraction pattern indexed on the basis of the 2ac × 2ac × 2ac unit cell may be interpreted as being a result of overlapping of diffraction patterns from three orthorhombic structures with 21/2ac × 21/2ac × 2ac unit cells related to each other by the threefold symmetry axis of the pseudocubic unit cell. The axial mirror planes of the pseudocubic lattice may become twinning operators too, increasing the number of possible twin components to 6. The 21/2ac × 21/2ac × 2ac orthorhombic unit cell has been observed for many Ln1 - xMxMnO3 compounds. The space group Pbnm was used to describe the structures of these compounds. For the structure determination integrated intensity of Bragg reflections were collected in half a sphere of reciprocal space. The common symmetry of overlapped orthorhombic diffraction patterns determining the Laue symmetry is -1. Refinement confirms the six-component twin model described above. The following twin matrices have been applied to the Miller indices (hkl are multiplied from the left): M1 = (100/010/001), M2 = (010/100/001), M3 = (1/2 1/2 1/2 / 1/2 1/2 1/2 / 110), M4 = (1/2 1/2 1/2 / 1/2 1/2 1/2 / 110), M5 = (1/2 1/2 1/2 / 1/2 1/2 1/2 / 110), M6 = (1/2 1/2 1/2 / 1/2 1/2 1/2| 1 1 0). Initially, the same positional and displacement parameters were refined for both Eu and Sr, but difference Fourier maps showed that they do not occupy the same position (Fig. 3a). The refinement of separate positions reduced the R value from 0.048 to 0.040, and features in the difference Fourier map were considerably reduced as well (Fig. 3b). Because of large correlations, it was not possible to refine anisotropic displacement parameters for Sr. The relatively large isotropic displacement parameter of Sr is believed to reflect disorder (shift of Sr from mirror plane) giving rise to correlation between the y coordinate and the displacement parameter. The Eu/Sr ratio was refined by restraining the sum of occupancies of the Eu and Sr positions to 1. The refined values [0.589 (7) Eu + 0.411 (7) Sr] are in excellent agreement with the results of the microprobe analysis. The maximum and minimum values in the final electron density difference map were observed near the Eu/Sr positions at (0.04; 0.35)/4 and (0.06; 0.47)/4, respectively.
The Ln1 - xMxMnO3 manganites, where Ln is a trivalent rare earth element and M is a divalent element (Ca, Sr or Ba) are of interest because colossal magnetoresistance (CMR) has been observed for this class of compounds (Jonker & van Santen, 1950). Depending on the value of x and temperature, they display different crystal structures as well as different magnetic and transport properties. The physical properties of these compounds also depend on the rare earth element. The structural data on these compounds available in the literature are mainly obtained from powder diffraction data, and only a limited number of structure determinations and refinements are based on single-crystal diffraction data (Tamazyan et al., 2002). In this paper, we describe the results of a structural investigation based on single-crystal X-ray diffraction on twinned crystals of Eu0.6Sr0.4MnO3.
The structures of the Ln1 - xMxMnO3 compounds are distorted derivatives of the cubic perovskite structure type (ac = 3.8 Å, space group Pm3m). Depending on the Ln and M elements, the x parameter and the temperature, rhombohedral, tetragonal, orthorhombic and monoclinic distortions have been observed (Dabrowski et al., 1999; Jirak et al., 2000; Urushibara et al., 1995; Cox et al., 2001). Symmetry elements of the m3m cubic point group which are not symmetry elements of the derivative structures become twinning operators. For Eu0.6Sr0.4MnO3, we find that the symmetry is orthorhombic (space group Pbnm) with a 21/2ac × 21/2ac × 2ac supercell of the cubic perovskite cell. Hence, six twin components can be expected. The results of refinements show that all six twin components are present in the sample, with the twin volume ratios given in Table 2. Structural distortions corresponding to the lowering of symmetry from cubic to orthorhombic are Jahn–Teller (JT) distortions of the MnO6 octahedra and tiltings of these octahedra (Fig.1). In contrast to other orthorhombic distorted perovskite structures, where the JT distortions of MnO6 correspond to three different lengths for Mn—O bonds, the JT distortions in this struture are almost tetragonal, with nearly equal Mn—O bond lengths [1.949 (1) Å for Mn—O1 and 1.949 (6) Å for Mn—O2A]. However, the MnO6 octahedra tilting scheme reduces the symmetry to orthorhombic instead of tetragonal. A perspective view of the structure is shown in Fig. 1. In the ideal cubic perovskite structure, the Ln atoms are surrounded by 12 O atoms in a cuboctahedral coordination. Mismatch of Ln—O and Mn—O bond lengths causes tilting of the octahedra and deforms the cuboctahedron, making it suitable to accommodate smaller Ln cations. Their coordination numbers might be reduced from 12 to 7 depending on the Ln ionic radii. In Eu0.6Sr0.4MnO3, the ionic radii of the Eu3+ and Sr2+ ions differ by a large amount. The smaller Eu3+ ions prefer sixfold or sevenfold coordination, while the larger Sr2+ ions prefer tenfold or twelvefold coordination. This is probably the reason why the Eu and Sr atoms do not occupy the same crystallographic position. The Eu3+ ions are shifted from the center of the distorted cuboctahedron, resulting in a reduced coordination number of 8 (Fig. 2 and Table 1). The Sr2+ ions have a small shift in a direction perpendicular to the mirror plane, but remain close to the center of twelvefold coordinated polyhedron. Their coordination numbers can be considered as 12, with two relatively long Sr—O distances (Fig. 2 and Table 1). The distance between the Eu and Sr positions is 0.307 (6) Å. It is assumed that the replacement of Eu3+ by Sr2+ transforms the same amount of Mn3+ into Mn4+. The calculation of bond valence sums (BVS; Brown & Altermatt, 1985) yields a value of 3.58 for the Mn site. This value differs from the expected value, 3.4, on ~5%. The BVS values for Eu3+ and Sr2+ are 2.46 and 2.98, respectively. Such a large deviation of BVS from the expected values shows that the coordination polyhedron around the Eu/Sr position is too large for Eu3+ and too small for Sr2+. Accordingly, an Eu/Sr ordering could be expected but was not detected. We believe that the observed splitting of of the Eu and Sr positions partially reduces local deformations caused by the difference in ionic radii. On the other hand, these local deformations may cause local stresses on the MnO6 octahedra, which may play an essential role in determining the physical properties of this material.
Data collection: CAD-4 Software (Enraf–Nonius, 1988); cell refinement: CAD-4 Software; data reduction: HELENA (Spek, 1997); program(s) used to solve structure: JANA2000 (Petricek & Dusek, 2000); program(s) used to refine structure: JANA2000; molecular graphics: DIAMOND (Brandenburg, 1999); software used to prepare material for publication: JANA2000.
Eu0.59Sr0.41MnO4 | F(000) = 407 |
Mr = 228.50 | Dx = 6.700 Mg m−3 |
Orthorhombic, Pbnm | Mo Kα radiation, λ = 0.71069 Å |
Hall symbol: -P 2c 2ab | Cell parameters from 25 reflections |
a = 5.429 (1) Å | θ = 18.7–23.1° |
b = 5.443 (1) Å | µ = 31.12 mm−1 |
c = 7.660 (2) Å | T = 293 K |
V = 226.35 (8) Å3 | Prism, black |
Z = 4 | 0.08 × 0.05 × 0.02 mm |
MACH3 diffractometer | Rint = 0.000 |
Graphite monochromator | θmax = 30.1°, θmin = 4.6° |
ω/2θ scans | h = −7→7 |
Absorption correction: numerical (HABITUS; Herrendorf & Bärnighausen, 1997) | k = −7→7 |
Tmin = 0.150, Tmax = 0.603 | l = −10→10 |
2578 measured reflections | 3 standard reflections every 60 min |
2578 independent reflections | intensity decay: none |
1539 reflections with I > 3σ(I) |
Refinement on F | Weighting scheme based on measured s.u.'s w = 1/[σ2(F) + 0.0001F2] |
Least-squares matrix: full | (Δ/σ)max = 0.0001 |
R[F > 3σ(F)] = 0.040 | Δρmax = 2.05 e Å−3 |
wR(F) = 0.044 | Δρmin = −2.85 e Å−3 |
S = 1.28 | Extinction correction: B-C type 1 Gaussian isotropic (Becker & Coppens, 1974) |
2574 reflections | Extinction coefficient: 0.0011 (2) |
38 parameters |
Eu0.59Sr0.41MnO4 | V = 226.35 (8) Å3 |
Mr = 228.50 | Z = 4 |
Orthorhombic, Pbnm | Mo Kα radiation |
a = 5.429 (1) Å | µ = 31.12 mm−1 |
b = 5.443 (1) Å | T = 293 K |
c = 7.660 (2) Å | 0.08 × 0.05 × 0.02 mm |
MACH3 diffractometer | 1539 reflections with I > 3σ(I) |
Absorption correction: numerical (HABITUS; Herrendorf & Bärnighausen, 1997) | Rint = 0.000 |
Tmin = 0.150, Tmax = 0.603 | 3 standard reflections every 60 min |
2578 measured reflections | intensity decay: none |
2578 independent reflections |
R[F > 3σ(F)] = 0.040 | 38 parameters |
wR(F) = 0.044 | Δρmax = 2.05 e Å−3 |
S = 1.28 | Δρmin = −2.85 e Å−3 |
2574 reflections |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
Mn | 0.5 | 0.5 | 0.5 | 0.0045 (2) | |
Eu | 0.0074 (3) | 0.4639 (4) | 0.25 | 0.0029 (2) | 0.589 (7) |
Sr | 0.0015 (13) | 0.5165 (11) | 0.2357 (8) | 0.0162 (14)* | 0.206 (3) |
O1 | 0.4340 (12) | 0.4907 (8) | 0.75 | 0.018 (2) | |
O2 | 0.2782 (10) | 0.2210 (11) | 0.4659 (5) | 0.0209 (17) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Mn | 0.0038 (4) | 0.0042 (4) | 0.0054 (5) | −0.0003 (15) | −0.0001 (4) | −0.00026 (17) |
Eu | 0.0044 (3) | 0.0020 (5) | 0.0022 (2) | −0.0004 (6) | 0 | 0 |
O1 | 0.024 (3) | 0.020 (5) | 0.010 (2) | 0.0022 (15) | 0 | 0 |
O2 | 0.015 (3) | 0.024 (3) | 0.024 (2) | −0.0080 (17) | −0.0040 (19) | 0.000 (2) |
Mn—O1 | 1.9489 (12) | Sr—O1vii | 2.713 (7) |
Mn—O1i | 1.9489 (12) | Sr—O2 | 2.819 (8) |
Mn—O2 | 1.954 (6) | Sr—O2v | 3.093 (8) |
Mn—O2i | 1.954 (6) | Sr—O2ii | 2.405 (8) |
Mn—O2ii | 1.949 (6) | Sr—O2vi | 2.892 (8) |
Mn—O2iii | 1.949 (6) | Sr—O2viii | 2.722 (8) |
Eu—Sr | 0.307 (6) | Sr—O2ix | 2.250 (8) |
Eu—Sriv | 0.307 (6) | Sr—O2x | 2.935 (8) |
Eu—O1v | 2.409 (7) | Sr—O2iv | 2.688 (8) |
Eu—O1i | 3.043 (7) | O1—O2 | 2.756 (6) |
Eu—O1vi | 2.504 (5) | O1—O2i | 2.765 (7) |
Eu—O1vii | 2.998 (5) | O1—O2ii | 2.764 (6) |
Eu—O2 | 2.578 (5) | O1—O2iii | 2.749 (7) |
Eu—O2ii | 2.460 (5) | O1—O2xi | 2.749 (7) |
Eu—O2vi | 2.701 (5) | O1—O2xii | 2.764 (6) |
Eu—O2viii | 2.701 (5) | O1—O2xiii | 2.765 (7) |
Eu—O2ix | 2.460 (5) | O1—O2xiv | 2.756 (6) |
Eu—O2iv | 2.578 (5) | O2—O2xv | 2.739 (9) |
Sr—Sriv | 0.219 (8) | O2—O2ii | 2.739 (9) |
Sr—O1v | 2.367 (10) | O2—O2vi | 2.782 (8) |
Sr—O1i | 3.067 (10) | O2—O2iii | 2.782 (8) |
Sr—O1vi | 2.784 (7) | ||
O1—Mn—O1i | 180 | Mn—O1—Euiii | 89.87 (14) |
O1—Mn—O2 | 89.8 (2) | Mn—O1—Euxvi | 87.05 (13) |
O1—Mn—O2i | 90.2 (2) | Mn—O1—Srv | 103.3 (2) |
O1—Mn—O2ii | 90.3 (2) | Mn—O1—Sri | 81.5 (2) |
O1—Mn—O2iii | 89.7 (2) | Mn—O1—Sriii | 92.38 (18) |
O2—Mn—O2i | 180 | Mn—O1—Srxvi | 89.30 (19) |
O2—Mn—O2ii | 89.1 (2) | Mn—O1—Srxi | 87.95 (18) |
O2—Mn—O2iii | 90.9 (2) | Mn—O1—Srxvii | 84.75 (18) |
O1v—Eu—O1i | 169.35 (16) | Mn—O1—Srxviii | 98.0 (2) |
O1v—Eu—O1vi | 86.79 (19) | Mn—O1—Srxiii | 77.4 (2) |
O1v—Eu—O1vii | 76.41 (17) | Mnxiii—O1—Mn | 158.6 (4) |
O1v—Eu—O2 | 128.35 (14) | Mnxiii—O1—Euv | 100.37 (19) |
O1v—Eu—O2ii | 114.29 (16) | Mnxiii—O1—Eui | 79.31 (19) |
O1v—Eu—O2vi | 65.20 (13) | Mnxiii—O1—Euiii | 89.87 (14) |
O1i—Eu—O1vi | 103.87 (18) | Mnxiii—O1—Euxvi | 87.05 (13) |
O1i—Eu—O1vii | 92.93 (16) | Mnxiii—O1—Srv | 98.0 (2) |
O1vi—Eu—O1v | 86.79 (19) | Mnxiii—O1—Sri | 77.4 (2) |
O1vi—Eu—O1i | 103.87 (18) | Mnxiii—O1—Sriii | 87.95 (18) |
O1vi—Eu—O1vii | 163.2 (2) | Mnxiii—O1—Srxvi | 84.75 (18) |
O1vii—Eu—O1v | 76.41 (17) | Mnxiii—O1—Srxi | 92.38 (18) |
O1i—Eu—O2 | 58.23 (14) | Mnxiii—O1—Srxvii | 89.30 (19) |
O1i—Eu—O2ii | 58.80 (14) | Mnxiii—O1—Srxviii | 103.3 (2) |
O1i—Eu—O2vi | 119.32 (12) | Mnxiii—O1—Srxiii | 81.5 (2) |
O1vi—Eu—O2 | 65.47 (17) | Euv—O1—Eui | 169.3 (2) |
O1vi—Eu—O2ii | 129.59 (16) | Euv—O1—Euiii | 105.1 (2) |
O1vi—Eu—O2vi | 63.80 (14) | Euv—O1—Euxvi | 91.69 (17) |
O1vii—Eu—O2 | 125.72 (16) | Eui—O1—Euv | 169.3 (2) |
O1vii—Eu—O2ii | 59.91 (16) | Eui—O1—Euiii | 85.55 (18) |
O1vii—Eu—O2vi | 107.97 (15) | Eui—O1—Euxvi | 77.65 (14) |
O2—Eu—O2ii | 65.82 (19) | Euiii—O1—Euv | 105.1 (2) |
O2—Eu—O2vi | 63.55 (16) | Euiii—O1—Eui | 85.55 (18) |
O2—Eu—O2viii | 126.05 (19) | Euiii—O1—Euxvi | 163.2 (3) |
O2—Eu—O2ix | 116.97 (18) | Euxvi—O1—Euv | 91.69 (17) |
O2—Eu—O2iv | 79.86 (16) | Euxvi—O1—Eui | 77.65 (14) |
O2ii—Eu—O2vi | 83.60 (16) | Euxvi—O1—Euiii | 163.2 (3) |
O2ii—Eu—O2viii | 166.37 (19) | Srv—O1—Sri | 175.07 (19) |
O2ii—Eu—O2ix | 84.52 (17) | Srv—O1—Sriii | 96.6 (3) |
O2ii—Eu—O2iv | 116.97 (18) | Srv—O1—Srxvi | 98.5 (3) |
O2vi—Eu—O2 | 63.55 (16) | Srv—O1—Srxi | 96.8 (3) |
O2vi—Eu—O2ii | 83.60 (16) | Srv—O1—Srxvii | 98.7 (3) |
O2vi—Eu—O2viii | 107.30 (17) | Srv—O1—Srxiii | 178.4 (3) |
O2vi—Eu—O2ix | 166.37 (19) | Sri—O1—Srv | 175.07 (19) |
O2vi—Eu—O2iv | 126.05 (19) | Sri—O1—Sriii | 81.7 (2) |
O2viii—Eu—O2 | 126.05 (19) | Sri—O1—Srxvi | 82.8 (2) |
O2viii—Eu—O2ii | 166.37 (19) | Sri—O1—Srxi | 81.9 (2) |
O2viii—Eu—O2vi | 107.30 (17) | Sri—O1—Srxvii | 83.0 (2) |
O2viii—Eu—O2ix | 83.60 (16) | Sri—O1—Srxviii | 178.4 (3) |
O2viii—Eu—O2iv | 63.55 (16) | Sriii—O1—Srv | 96.6 (3) |
O2ix—Eu—O2 | 116.97 (18) | Sriii—O1—Sri | 81.7 (2) |
O2ix—Eu—O2ii | 84.52 (17) | Sriii—O1—Srxvi | 164.0 (3) |
O2ix—Eu—O2vi | 166.37 (19) | Sriii—O1—Srxvii | 164.7 (3) |
O2ix—Eu—O2viii | 83.60 (16) | Sriii—O1—Srxviii | 96.8 (3) |
O2ix—Eu—O2iv | 65.82 (19) | Sriii—O1—Srxiii | 81.9 (2) |
O2iv—Eu—O2 | 79.86 (16) | Srxvi—O1—Srv | 98.5 (3) |
O2iv—Eu—O2ii | 116.97 (18) | Srxvi—O1—Sri | 82.8 (2) |
O2iv—Eu—O2vi | 126.05 (19) | Srxvi—O1—Sriii | 164.0 (3) |
O2iv—Eu—O2viii | 63.55 (16) | Srxvi—O1—Srxi | 164.7 (3) |
O2iv—Eu—O2ix | 65.82 (19) | Srxvi—O1—Srxviii | 98.7 (3) |
O1v—Sr—O1i | 175.1 (3) | Srxvi—O1—Srxiii | 83.0 (2) |
O1v—Sr—O1vi | 81.5 (3) | Srxi—O1—Srv | 96.8 (3) |
O1v—Sr—O1vii | 83.0 (3) | Srxi—O1—Sri | 81.9 (2) |
O1i—Sr—O1v | 175.1 (3) | Srxi—O1—Srxvi | 164.7 (3) |
O1i—Sr—O1vi | 96.8 (2) | Srxi—O1—Srxvii | 164.0 (3) |
O1i—Sr—O1vii | 98.3 (3) | Srxi—O1—Srxviii | 96.6 (3) |
O1vi—Sr—O1v | 81.5 (3) | Srxi—O1—Srxiii | 81.7 (2) |
O1vi—Sr—O1i | 96.8 (2) | Srxvii—O1—Srv | 98.7 (3) |
O1vi—Sr—O1vii | 164.0 (3) | Srxvii—O1—Sri | 83.0 (2) |
O1vii—Sr—O1i | 98.3 (3) | Srxvii—O1—Sriii | 164.7 (3) |
O1vii—Sr—O1vi | 164.0 (3) | Srxvii—O1—Srxi | 164.0 (3) |
O1v—Sr—O2 | 119.7 (3) | Srxvii—O1—Srxviii | 98.5 (3) |
O1v—Sr—O2v | 58.83 (18) | Srxvii—O1—Srxiii | 82.8 (2) |
O1v—Sr—O2ii | 118.0 (3) | Srxviii—O1—Sri | 178.4 (3) |
O1v—Sr—O2vi | 62.49 (19) | Srxviii—O1—Sriii | 96.8 (3) |
O1v—Sr—O2viii | 65.4 (2) | Srxviii—O1—Srxvi | 98.7 (3) |
O1v—Sr—O2ix | 124.8 (3) | Srxviii—O1—Srxi | 96.6 (3) |
O1v—Sr—O2x | 61.52 (19) | Srxviii—O1—Srxvii | 98.5 (3) |
O1v—Sr—O2iv | 125.2 (3) | Srxviii—O1—Srxiii | 175.07 (19) |
O1i—Sr—O2 | 55.84 (17) | Srxiii—O1—Srv | 178.4 (3) |
O1i—Sr—O2v | 118.0 (2) | Srxiii—O1—Sriii | 81.9 (2) |
O1i—Sr—O2ii | 58.8 (2) | Srxiii—O1—Srxvi | 83.0 (2) |
O1i—Sr—O2vi | 112.7 (2) | Srxiii—O1—Srxi | 81.7 (2) |
O1i—Sr—O2viii | 117.8 (2) | Srxiii—O1—Srxvii | 82.8 (2) |
O1i—Sr—O2ix | 59.9 (2) | Srxiii—O1—Srxviii | 175.07 (19) |
O1i—Sr—O2x | 123.2 (2) | Mn—O2—Mnxv | 159.9 (3) |
O1i—Sr—O2iv | 56.97 (18) | Mn—O2—Eu | 92.2 (2) |
O1vi—Sr—O2 | 58.75 (19) | Mn—O2—Euxv | 103.9 (2) |
O1vi—Sr—O2v | 111.3 (2) | Mn—O2—Euiii | 84.17 (17) |
O1vi—Sr—O2ii | 119.7 (3) | Mn—O2—Sr | 88.2 (2) |
O1vi—Sr—O2vi | 58.06 (17) | Mn—O2—Srv | 81.1 (2) |
O1vi—Sr—O2viii | 60.05 (18) | Mn—O2—Srxv | 98.7 (3) |
O1vi—Sr—O2ix | 126.0 (3) | Mn—O2—Sriii | 89.1 (2) |
O1vi—Sr—O2x | 116.2 (3) | Mn—O2—Srxi | 89.6 (2) |
O1vi—Sr—O2iv | 60.3 (2) | Mn—O2—Srxix | 98.6 (3) |
O1vii—Sr—O1v | 83.0 (3) | Mn—O2—Srxviii | 81.2 (2) |
O1vii—Sr—O2 | 127.6 (3) | Mn—O2—Sriv | 87.5 (2) |
O1vii—Sr—O2v | 56.41 (17) | Mnxv—O2—Mn | 159.9 (3) |
O1vii—Sr—O2ii | 65.1 (2) | Mnxv—O2—Eu | 87.72 (19) |
O1vii—Sr—O2vi | 110.7 (2) | Mnxv—O2—Euxv | 96.0 (2) |
O1vii—Sr—O2viii | 116.2 (3) | Mnxv—O2—Euiii | 91.08 (19) |
O1vii—Sr—O2ix | 67.0 (2) | Mnxv—O2—Sr | 91.3 (2) |
O1vii—Sr—O2x | 58.45 (18) | Mnxv—O2—Srv | 78.81 (19) |
O1vii—Sr—O2iv | 133.7 (3) | Mnxv—O2—Srxv | 101.4 (3) |
O2—Sr—O2v | 93.6 (2) | Mnxv—O2—Sriii | 86.7 (2) |
O2—Sr—O2ii | 62.6 (2) | Mnxv—O2—Srxi | 87.1 (2) |
O2—Sr—O2vi | 58.28 (19) | Mnxv—O2—Srxix | 101.4 (3) |
O2—Sr—O2viii | 116.2 (3) | Mnxv—O2—Srxviii | 78.8 (2) |
O2—Sr—O2ix | 115.4 (3) | Mnxv—O2—Sriv | 90.7 (2) |
O2—Sr—O2x | 173.4 (3) | Eu—O2—Euxv | 97.47 (14) |
O2—Sr—O2iv | 73.8 (2) | Eu—O2—Euiii | 166.1 (2) |
O2v—Sr—O2 | 93.6 (2) | Euxv—O2—Eu | 97.47 (14) |
O2v—Sr—O2ii | 59.2 (2) | Euxv—O2—Euiii | 96.4 (2) |
O2v—Sr—O2vi | 54.34 (19) | Euiii—O2—Eu | 166.1 (2) |
O2v—Sr—O2viii | 124.2 (3) | Euiii—O2—Euxv | 96.4 (2) |
O2v—Sr—O2ix | 122.6 (3) | Sr—O2—Srv | 86.4 (2) |
O2v—Sr—O2x | 92.4 (2) | Sr—O2—Srxv | 94.0 (2) |
O2v—Sr—O2iv | 167.2 (3) | Sr—O2—Sriii | 166.5 (3) |
O2ii—Sr—O2 | 62.6 (2) | Sr—O2—Srxi | 169.3 (3) |
O2ii—Sr—O2v | 59.2 (2) | Sr—O2—Srxix | 97.8 (2) |
O2ii—Sr—O2vi | 80.6 (2) | Sr—O2—Srxviii | 83.5 (2) |
O2ii—Sr—O2viii | 176.6 (3) | Srv—O2—Sr | 86.4 (2) |
O2ii—Sr—O2ix | 90.5 (3) | Srv—O2—Srxv | 179.5 (3) |
O2ii—Sr—O2x | 123.2 (3) | Srv—O2—Sriii | 80.1 (2) |
O2ii—Sr—O2iv | 114.9 (3) | Srv—O2—Srxi | 82.9 (2) |
O2vi—Sr—O2 | 58.28 (19) | Srv—O2—Srxix | 175.8 (3) |
O2vi—Sr—O2v | 54.34 (19) | Srv—O2—Sriv | 82.8 (2) |
O2vi—Sr—O2ii | 80.6 (2) | Srxv—O2—Sr | 94.0 (2) |
O2vi—Sr—O2viii | 101.6 (3) | Srxv—O2—Srv | 179.5 (3) |
O2vi—Sr—O2ix | 170.8 (3) | Srxv—O2—Sriii | 99.4 (3) |
O2vi—Sr—O2x | 123.9 (3) | Srxv—O2—Srxi | 96.6 (3) |
O2vi—Sr—O2iv | 114.9 (3) | Srxv—O2—Srxviii | 177.6 (3) |
O2viii—Sr—O2 | 116.2 (3) | Srxv—O2—Sriv | 97.7 (2) |
O2viii—Sr—O2v | 124.2 (3) | Sriii—O2—Sr | 166.5 (3) |
O2viii—Sr—O2ii | 176.6 (3) | Sriii—O2—Srv | 80.1 (2) |
O2viii—Sr—O2vi | 101.6 (3) | Sriii—O2—Srxv | 99.4 (3) |
O2viii—Sr—O2ix | 87.2 (2) | Sriii—O2—Srxix | 95.6 (3) |
O2viii—Sr—O2x | 57.8 (2) | Sriii—O2—Srxviii | 83.0 (2) |
O2viii—Sr—O2iv | 61.9 (2) | Sriii—O2—Sriv | 162.9 (3) |
O2ix—Sr—O2 | 115.4 (3) | Srxi—O2—Sr | 169.3 (3) |
O2ix—Sr—O2v | 122.6 (3) | Srxi—O2—Srv | 82.9 (2) |
O2ix—Sr—O2ii | 90.5 (3) | Srxi—O2—Srxv | 96.6 (3) |
O2ix—Sr—O2vi | 170.8 (3) | Srxi—O2—Srxix | 92.8 (3) |
O2ix—Sr—O2viii | 87.2 (2) | Srxi—O2—Srxviii | 85.8 (2) |
O2ix—Sr—O2x | 63.3 (2) | Srxi—O2—Sriv | 165.7 (3) |
O2ix—Sr—O2iv | 66.7 (3) | Srxix—O2—Sr | 97.8 (2) |
O2x—Sr—O2 | 173.4 (3) | Srxix—O2—Srv | 175.8 (3) |
O2x—Sr—O2v | 92.4 (2) | Srxix—O2—Sriii | 95.6 (3) |
O2x—Sr—O2ii | 123.2 (3) | Srxix—O2—Srxi | 92.8 (3) |
O2x—Sr—O2vi | 123.9 (3) | Srxix—O2—Srxviii | 178.6 (3) |
O2x—Sr—O2viii | 57.8 (2) | Srxix—O2—Sriv | 101.5 (3) |
O2x—Sr—O2ix | 63.3 (2) | Srxviii—O2—Sr | 83.5 (2) |
O2x—Sr—O2iv | 100.1 (2) | Srxviii—O2—Srxv | 177.6 (3) |
O2iv—Sr—O2 | 73.8 (2) | Srxviii—O2—Sriii | 83.0 (2) |
O2iv—Sr—O2v | 167.2 (3) | Srxviii—O2—Srxi | 85.8 (2) |
O2iv—Sr—O2ii | 114.9 (3) | Srxviii—O2—Srxix | 178.6 (3) |
O2iv—Sr—O2vi | 114.9 (3) | Srxviii—O2—Sriv | 79.9 (2) |
O2iv—Sr—O2viii | 61.9 (2) | Sriv—O2—Srv | 82.8 (2) |
O2iv—Sr—O2ix | 66.7 (3) | Sriv—O2—Srxv | 97.7 (2) |
O2iv—Sr—O2x | 100.1 (2) | Sriv—O2—Sriii | 162.9 (3) |
Mn—O1—Mnxiii | 158.6 (4) | Sriv—O2—Srxi | 165.7 (3) |
Mn—O1—Euv | 100.37 (19) | Sriv—O2—Srxix | 101.5 (3) |
Mn—O1—Eui | 79.31 (19) | Sriv—O2—Srxviii | 79.9 (2) |
Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) −x+1/2, y+1/2, z; (iii) x+1/2, −y+1/2, −z+1; (iv) x, y, −z+1/2; (v) −x, −y+1, −z+1; (vi) x−1/2, −y+1/2, −z+1; (vii) x−1/2, −y+3/2, −z+1; (viii) x−1/2, −y+1/2, z−1/2; (ix) −x+1/2, y+1/2, −z+1/2; (x) −x, −y+1, z−1/2; (xi) x+1/2, −y+1/2, z+1/2; (xii) −x+1/2, y+1/2, −z+3/2; (xiii) −x+1, −y+1, z+1/2; (xiv) x, y, −z+3/2; (xv) −x+1/2, y−1/2, z; (xvi) x+1/2, −y+3/2, −z+1; (xvii) x+1/2, −y+3/2, z+1/2; (xviii) −x, −y+1, z+1/2; (xix) −x+1/2, y−1/2, −z+1/2. |
Experimental details
Crystal data | |
Chemical formula | Eu0.59Sr0.41MnO4 |
Mr | 228.50 |
Crystal system, space group | Orthorhombic, Pbnm |
Temperature (K) | 293 |
a, b, c (Å) | 5.429 (1), 5.443 (1), 7.660 (2) |
V (Å3) | 226.35 (8) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 31.12 |
Crystal size (mm) | 0.08 × 0.05 × 0.02 |
Data collection | |
Diffractometer | MACH3 |
Absorption correction | Numerical (HABITUS; Herrendorf & Bärnighausen, 1997) |
Tmin, Tmax | 0.150, 0.603 |
No. of measured, independent and observed [I > 3σ(I)] reflections | 2578, 2578, 1539 |
Rint | 0.000 |
(sin θ/λ)max (Å−1) | 0.705 |
Refinement | |
R[F > 3σ(F)], wR(F), S | 0.040, 0.044, 1.28 |
No. of reflections | 2574 |
No. of parameters | 38 |
No. of restraints | ? |
Δρmax, Δρmin (e Å−3) | 2.05, −2.85 |
Computer programs: CAD-4 Software (Enraf–Nonius, 1988), CAD-4 Software, HELENA (Spek, 1997), JANA2000 (Petricek & Dusek, 2000), JANA2000, DIAMOND (Brandenburg, 1999).
Mn—O1 | 1.9489 (12) | Sr—O1ii | 2.367 (10) |
Mn—O2 | 1.954 (6) | Sr—O1vii | 3.067 (10) |
Mn—O2i | 1.949 (6) | Sr—O1iii | 2.784 (7) |
Eu—Sr | 0.307 (6) | Sr—O1viii | 2.713 (7) |
Eu—O1ii | 2.409 (7) | Sr—O2 | 2.819 (8) |
Eu—O1iii | 2.504 (5) | Sr—O2ii | 3.093 (8) |
Eu—O2 | 2.578 (5) | Sr—O2i | 2.405 (8) |
Eu—O2i | 2.460 (5) | Sr—O2iii | 2.892 (8) |
Eu—O2iii | 2.701 (5) | Sr—O2iv | 2.722 (8) |
Eu—O2iv | 2.701 (5) | Sr—O2v | 2.250 (8) |
Eu—O2v | 2.460 (5) | Sr—O2ix | 2.935 (8) |
Eu—O2vi | 2.578 (5) | Sr—O2vi | 2.688 (8) |
O1—Mn—O2vii | 90.2 (2) | Mnxi—O1—Mn | 158.6 (4) |
O1—Mn—O2i | 90.3 (2) | Mnxii—O2—Mn | 159.9 (3) |
O2—Mn—O2x | 90.9 (2) |
Symmetry codes: (i) −x+1/2, y+1/2, z; (ii) −x, −y+1, −z+1; (iii) x−1/2, −y+1/2, −z+1; (iv) x−1/2, −y+1/2, z−1/2; (v) −x+1/2, y+1/2, −z+1/2; (vi) x, y, −z+1/2; (vii) −x+1, −y+1, −z+1; (viii) x−1/2, −y+3/2, −z+1; (ix) −x, −y+1, z−1/2; (x) x+1/2, −y+1/2, −z+1; (xi) −x+1, −y+1, z+1/2; (xii) −x+1/2, y−1/2, z. |
Twin domain | V1 | V2 | V3 | V4 | V5 | V6 | |
Volume fraction | 0.417 (3) | 0.212 (2) | 0.098 (1) | 0.140 (1) | 0.079 (1) | 0.054 (1) |
The Ln1 - xMxMnO3 manganites, where Ln is a trivalent rare earth element and M is a divalent element (Ca, Sr or Ba) are of interest because colossal magnetoresistance (CMR) has been observed for this class of compounds (Jonker & van Santen, 1950). Depending on the value of x and temperature, they display different crystal structures as well as different magnetic and transport properties. The physical properties of these compounds also depend on the rare earth element. The structural data on these compounds available in the literature are mainly obtained from powder diffraction data, and only a limited number of structure determinations and refinements are based on single-crystal diffraction data (Tamazyan et al., 2002). In this paper, we describe the results of a structural investigation based on single-crystal X-ray diffraction on twinned crystals of Eu0.6Sr0.4MnO3.
The structures of the Ln1 - xMxMnO3 compounds are distorted derivatives of the cubic perovskite structure type (ac = 3.8 Å, space group Pm3m). Depending on the Ln and M elements, the x parameter and the temperature, rhombohedral, tetragonal, orthorhombic and monoclinic distortions have been observed (Dabrowski et al., 1999; Jirak et al., 2000; Urushibara et al., 1995; Cox et al., 2001). Symmetry elements of the m3m cubic point group which are not symmetry elements of the derivative structures become twinning operators. For Eu0.6Sr0.4MnO3, we find that the symmetry is orthorhombic (space group Pbnm) with a 21/2ac × 21/2ac × 2ac supercell of the cubic perovskite cell. Hence, six twin components can be expected. The results of refinements show that all six twin components are present in the sample, with the twin volume ratios given in Table 2. Structural distortions corresponding to the lowering of symmetry from cubic to orthorhombic are Jahn–Teller (JT) distortions of the MnO6 octahedra and tiltings of these octahedra (Fig.1). In contrast to other orthorhombic distorted perovskite structures, where the JT distortions of MnO6 correspond to three different lengths for Mn—O bonds, the JT distortions in this struture are almost tetragonal, with nearly equal Mn—O bond lengths [1.949 (1) Å for Mn—O1 and 1.949 (6) Å for Mn—O2A]. However, the MnO6 octahedra tilting scheme reduces the symmetry to orthorhombic instead of tetragonal. A perspective view of the structure is shown in Fig. 1. In the ideal cubic perovskite structure, the Ln atoms are surrounded by 12 O atoms in a cuboctahedral coordination. Mismatch of Ln—O and Mn—O bond lengths causes tilting of the octahedra and deforms the cuboctahedron, making it suitable to accommodate smaller Ln cations. Their coordination numbers might be reduced from 12 to 7 depending on the Ln ionic radii. In Eu0.6Sr0.4MnO3, the ionic radii of the Eu3+ and Sr2+ ions differ by a large amount. The smaller Eu3+ ions prefer sixfold or sevenfold coordination, while the larger Sr2+ ions prefer tenfold or twelvefold coordination. This is probably the reason why the Eu and Sr atoms do not occupy the same crystallographic position. The Eu3+ ions are shifted from the center of the distorted cuboctahedron, resulting in a reduced coordination number of 8 (Fig. 2 and Table 1). The Sr2+ ions have a small shift in a direction perpendicular to the mirror plane, but remain close to the center of twelvefold coordinated polyhedron. Their coordination numbers can be considered as 12, with two relatively long Sr—O distances (Fig. 2 and Table 1). The distance between the Eu and Sr positions is 0.307 (6) Å. It is assumed that the replacement of Eu3+ by Sr2+ transforms the same amount of Mn3+ into Mn4+. The calculation of bond valence sums (BVS; Brown & Altermatt, 1985) yields a value of 3.58 for the Mn site. This value differs from the expected value, 3.4, on ~5%. The BVS values for Eu3+ and Sr2+ are 2.46 and 2.98, respectively. Such a large deviation of BVS from the expected values shows that the coordination polyhedron around the Eu/Sr position is too large for Eu3+ and too small for Sr2+. Accordingly, an Eu/Sr ordering could be expected but was not detected. We believe that the observed splitting of of the Eu and Sr positions partially reduces local deformations caused by the difference in ionic radii. On the other hand, these local deformations may cause local stresses on the MnO6 octahedra, which may play an essential role in determining the physical properties of this material.