Download citation
Download citation
link to html
The title compound, C11H14Br2N2O3, was synthesized by condensation of methyl l-2-amino-3-methyl­butanoate with 4,5-dibromo-2-trichloro­acetyl­pyrrole at room temperature. In the crystal structure, inter­molecular N—H...O hydrogen-bonding inter­actions link the mol­ecules, forming extended chains parallel to [010]. Bioactivity tests show that the title compound inhibits bacteria and also exhibits cytotoxicity.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536805040547/bd6020sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536805040547/bd6020Isup2.hkl
Contains datablock I

CCDC reference: 296519

Key indicators

  • Single-crystal X-ray study
  • T = 293 K
  • Mean [sigma](C-C) = 0.005 Å
  • R factor = 0.033
  • wR factor = 0.075
  • Data-to-parameter ratio = 19.1

checkCIF/PLATON results

No syntax errors found



Alert level C PLAT066_ALERT_1_C Predicted and Reported Transmissions Identical . ? PLAT125_ALERT_4_C No _symmetry_space_group_name_Hall Given ....... ? PLAT199_ALERT_1_C Check the Reported _cell_measurement_temperature 293 K PLAT200_ALERT_1_C Check the Reported _diffrn_ambient_temperature . 293 K PLAT220_ALERT_2_C Large Non-Solvent C Ueq(max)/Ueq(min) ... 2.68 Ratio PLAT222_ALERT_3_C Large Non-Solvent H Ueq(max)/Ueq(min) ... 3.08 Ratio
Alert level G REFLT03_ALERT_4_G Please check that the estimate of the number of Friedel pairs is correct. If it is not, please give the correct count in the _publ_section_exptl_refinement section of the submitted CIF. From the CIF: _diffrn_reflns_theta_max 27.01 From the CIF: _reflns_number_total 3112 Count of symmetry unique reflns 1799 Completeness (_total/calc) 172.98% TEST3: Check Friedels for noncentro structure Estimate of Friedel pairs measured 1313 Fraction of Friedel pairs measured 0.730 Are heavy atom types Z>Si present yes
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 6 ALERT level C = Check and explain 1 ALERT level G = General alerts; check 3 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 1 ALERT type 2 Indicator that the structure model may be wrong or deficient 1 ALERT type 3 Indicator that the structure quality may be low 2 ALERT type 4 Improvement, methodology, query or suggestion

Comment top

Pyrrole derivatives are well known in many marine organisms (Faulkner, 2001), and some are known to be bioactive (Tasdemir et al., 2002). In our search for bioactive compounds, a series of brominated pyrrole(2-carbonyl)-amino acid esters, including the title compound, (I), has been synthesized by the reaction of amino acid esters with brominated 2-trichloroacetylpyrrole or with brominated 1-methyl-2-trichloroacetylpyrrole. Here we report the crystal structure of (I) and its bioactivity in pharmacological studies.

Bond lengths and angles are unexceptional and are in good agreement with the corresponding values in 4,5-dibromo-1-methyl-1H-pyrrole-2-carbonyl-amino-acetic acid methyl ester (Zeng et al., 2004) and in (s)-methyl-4-methyl-2-(1H-pyrrole-2-carboxamido)pentanoate (Zeng et al., 2005).

In the crystal structure of the title compound there are two kinds of intermolecular hydrogen bonds (Table 1). Each molecule is connected to two other molecules by N—H···O hydrogen-bonded interactions, forming extended chains parallel to [010] (Fig. 2). This packing mode is dissimilar to that in the crystal structure of (s)-methyl-4-methyl-2-(1H-pyrrole-2-carboxamido)pentanoate (MMP) which contains four unique intermolecular hydrogen bonds.

Preliminary antibiotic tests performed in vitro and determined by the agar dilution method (Feng, 2000) indicate that the title compound inhibits five bacteria. Antibiotic activities against these bacteria (determined as minimum inhibitory concentration (mg ml−1) values) are as the following: Streptococcus faecalis, 0.078; Salmonella choleraesu, 0.156; Micrococcus luteus, 0.156; Staphylococcus aureus, 0.156; and Escherichia coli, 0.156. The bioactivities are promising and warrant further studies of this type of compound.

Experimental top

A hydrochloride salt of l-valine methyl ester (0.84 g, 5 mmol) and 4,5-dibromo-2-trichloroacetylpyrrole (1.85 g, 5 mmol) were added to 12 ml acetonitrile, followed by the dropwise addition of triethylamine (1.4 ml). The mixture was stirred at room temperature for 8 h and then poured into water. After filtration, the precipitate was collected as a pale yellow solid. The impure product was dissolved in ethanol at room temperature. Colorless plate suitable for X-ray analysis (m. p. 179°C, in 80.9% yield) crystallized over a period of 7 days. 1H NMR (DMSO-d6, 300 Hz): 11.13 (brs, 1H), 6.65 (d, 1H), 6.44 (d, 1H), 4.74–4.70 (m, 1H), 3.70 (s, 3H), 2.24–2.13 (m, 1H), 0.94–0.88 (m, 6H); IR(KBr): 3378, 3277, 3116, 1724, 1635, 1559, 1518, 1319, 1216, 1150; Elemental analysis calculated for C11H14Br2N2O3: C 34.58, H 3.69, N 7.33%; found: C 34.35, H 3.77, N 7.52%.

Refinement top

All non-H atoms were refined with anisotropic displacement parameters. The H atoms were positioned geometrically (C—H = 0.98 Å for CH, 0.96 Å for CH3, C—H = 0.93 Å for CH(aromatic), and N—H = 0.86 Å) and refined using a riding model, with Uiso = 1.2Ueq (1.5Ueq for the methyl group) of the parent atom.

Computing details top

Data collection: SMART (Bruker,1999); cell refinement: SAINT-Plus (Bruker, 1999); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXTL (Bruker,1997); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), showing the atomic numbering scheme. Displacement ellipsoids are shown at the 30% probability level.
[Figure 2] Fig. 2. The packing of (I), showing the hydrogen-bonded chains (dashed lines).
(S)-Methyl 2-(4,5-dibromo-1H-pyrrole-2-carboxamido)-3-methylbutanoate top
Crystal data top
C11H14Br2N2O3Dx = 1.773 Mg m3
Mr = 382.04Melting point: 452 K
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
a = 9.196 (3) ÅCell parameters from 905 reflections
b = 10.928 (3) Åθ = 2.6–24.8°
c = 14.244 (4) ŵ = 5.66 mm1
V = 1431.5 (7) Å3T = 293 K
Z = 4Plate, colorless
F(000) = 7520.47 × 0.41 × 0.18 mm
Data collection top
Bruker SMART 1K CCD area-detector
diffractometer
3112 independent reflections
Radiation source: fine-focus sealed tube2519 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.033
ϕ and ω scansθmax = 27.0°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1111
Tmin = 0.087, Tmax = 0.361k = 1313
8925 measured reflectionsl = 1518
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.033H-atom parameters constrained
wR(F2) = 0.075 w = 1/[σ2(Fo2) + (0.0245P)2 + 0.4813P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max = 0.001
3112 reflectionsΔρmax = 0.47 e Å3
163 parametersΔρmin = 0.61 e Å3
0 restraintsAbsolute structure: Flack (1983)
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.020 (12)
Crystal data top
C11H14Br2N2O3V = 1431.5 (7) Å3
Mr = 382.04Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 9.196 (3) ŵ = 5.66 mm1
b = 10.928 (3) ÅT = 293 K
c = 14.244 (4) Å0.47 × 0.41 × 0.18 mm
Data collection top
Bruker SMART 1K CCD area-detector
diffractometer
3112 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2519 reflections with I > 2σ(I)
Tmin = 0.087, Tmax = 0.361Rint = 0.033
8925 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.033H-atom parameters constrained
wR(F2) = 0.075Δρmax = 0.47 e Å3
S = 1.04Δρmin = 0.61 e Å3
3112 reflectionsAbsolute structure: Flack (1983)
163 parametersAbsolute structure parameter: 0.020 (12)
0 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.10111 (5)0.86539 (4)0.53610 (3)0.05906 (14)
Br20.11594 (5)0.55203 (4)0.45728 (4)0.06917 (16)
O10.5194 (3)0.4819 (2)0.73898 (19)0.0440 (6)
C40.3822 (3)0.6391 (3)0.6695 (2)0.0298 (7)
N10.3194 (3)0.5608 (2)0.60666 (19)0.0331 (6)
H1A0.33930.48430.60100.040*
N20.5749 (3)0.6783 (3)0.77767 (19)0.0354 (7)
H2A0.55300.75420.77020.042*
C10.2209 (3)0.6229 (3)0.5548 (2)0.0357 (8)
C30.3219 (3)0.7528 (3)0.6573 (2)0.0321 (7)
H3A0.34460.82350.69050.039*
C60.6943 (4)0.6464 (3)0.8398 (2)0.0350 (8)
H6A0.68790.55840.85250.042*
C20.2187 (3)0.7413 (3)0.5846 (2)0.0356 (8)
C50.4975 (3)0.5930 (3)0.7315 (2)0.0321 (8)
C80.8462 (4)0.6718 (4)0.7977 (3)0.0458 (9)
H8A0.91850.64730.84470.055*
C70.6779 (4)0.7126 (3)0.9324 (2)0.0344 (8)
O20.6126 (3)0.8072 (2)0.94335 (18)0.0496 (6)
O30.7497 (3)0.6556 (3)0.99927 (18)0.0505 (7)
C90.7482 (5)0.7098 (4)1.0923 (3)0.0562 (11)
H9A0.80420.66001.13440.084*
H9B0.64980.71491.11450.084*
H9C0.78950.79041.08960.084*
C110.8700 (5)0.5922 (5)0.7115 (4)0.0799 (16)
H11A0.96480.60810.68600.120*
H11B0.79730.61080.66530.120*
H11C0.86300.50750.72890.120*
C100.8706 (5)0.8050 (5)0.7768 (4)0.0689 (13)
H10A0.96620.81600.75110.103*
H10B0.86170.85160.83360.103*
H10C0.79940.83250.73220.103*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0689 (3)0.0505 (2)0.0577 (3)0.0140 (2)0.0253 (2)0.0038 (2)
Br20.0760 (3)0.0601 (3)0.0714 (3)0.0006 (2)0.0432 (3)0.0173 (2)
O10.0522 (15)0.0333 (14)0.0465 (15)0.0012 (11)0.0147 (13)0.0021 (11)
C40.0315 (15)0.0356 (17)0.0224 (16)0.0059 (15)0.0007 (14)0.0006 (13)
N10.0360 (13)0.0293 (14)0.0340 (16)0.0042 (12)0.0093 (13)0.0003 (12)
N20.0360 (15)0.0345 (14)0.0357 (16)0.0004 (12)0.0118 (13)0.0003 (12)
C10.0367 (16)0.0389 (19)0.0315 (19)0.0052 (14)0.0106 (15)0.0025 (16)
C30.0366 (17)0.0341 (18)0.0256 (17)0.0041 (15)0.0031 (14)0.0005 (13)
C60.0372 (17)0.0326 (18)0.0353 (19)0.0014 (15)0.0110 (15)0.0020 (15)
C20.0356 (17)0.040 (2)0.0313 (19)0.0004 (15)0.0041 (15)0.0048 (15)
C50.0326 (17)0.040 (2)0.0236 (19)0.0037 (14)0.0004 (14)0.0013 (14)
C80.0379 (19)0.052 (2)0.048 (2)0.0006 (16)0.0040 (17)0.0022 (18)
C70.0331 (16)0.0377 (19)0.0323 (19)0.0044 (15)0.0065 (15)0.0063 (15)
O20.0647 (15)0.0447 (14)0.0394 (16)0.0128 (13)0.0089 (14)0.0002 (12)
O30.0640 (17)0.0498 (17)0.0378 (15)0.0137 (14)0.0195 (13)0.0042 (12)
C90.063 (2)0.077 (3)0.028 (2)0.002 (2)0.009 (2)0.001 (2)
C110.068 (3)0.092 (4)0.079 (4)0.006 (3)0.021 (3)0.027 (3)
C100.050 (2)0.069 (3)0.087 (4)0.013 (2)0.014 (3)0.009 (3)
Geometric parameters (Å, º) top
Br1—C21.867 (3)C6—H6A0.9800
Br2—C11.860 (3)C8—C101.503 (6)
O1—C51.236 (4)C8—C111.520 (6)
C4—N11.366 (4)C8—H8A0.9800
C4—C31.371 (5)C7—O21.205 (4)
C4—C51.469 (4)C7—O31.316 (4)
N1—C11.351 (4)O3—C91.452 (4)
N1—H1A0.8600C9—H9A0.9600
N2—C51.345 (4)C9—H9B0.9600
N2—C61.454 (4)C9—H9C0.9600
N2—H2A0.8600C11—H11A0.9600
C1—C21.362 (5)C11—H11B0.9600
C3—C21.410 (4)C11—H11C0.9600
C3—H3A0.9300C10—H10A0.9600
C6—C71.512 (5)C10—H10B0.9600
C6—C81.545 (5)C10—H10C0.9600
N1—C4—C3108.3 (3)C10—C8—C6112.7 (3)
N1—C4—C5119.0 (3)C11—C8—C6109.9 (3)
C3—C4—C5132.7 (3)C10—C8—H8A107.4
C1—N1—C4109.1 (3)C11—C8—H8A107.4
C1—N1—H1A125.5C6—C8—H8A107.4
C4—N1—H1A125.5O2—C7—O3124.3 (3)
C5—N2—C6122.1 (3)O2—C7—C6124.9 (3)
C5—N2—H2A119.0O3—C7—C6110.7 (3)
C6—N2—H2A119.0C7—O3—C9117.5 (3)
N1—C1—C2108.4 (3)O3—C9—H9A109.5
N1—C1—Br2123.2 (2)O3—C9—H9B109.5
C2—C1—Br2128.4 (3)H9A—C9—H9B109.5
C4—C3—C2106.5 (3)O3—C9—H9C109.5
C4—C3—H3A126.7H9A—C9—H9C109.5
C2—C3—H3A126.7H9B—C9—H9C109.5
N2—C6—C7109.9 (3)C8—C11—H11A109.5
N2—C6—C8113.8 (3)C8—C11—H11B109.5
C7—C6—C8110.0 (3)H11A—C11—H11B109.5
N2—C6—H6A107.6C8—C11—H11C109.5
C7—C6—H6A107.6H11A—C11—H11C109.5
C8—C6—H6A107.6H11B—C11—H11C109.5
C1—C2—C3107.7 (3)C8—C10—H10A109.5
C1—C2—Br1125.7 (3)C8—C10—H10B109.5
C3—C2—Br1126.6 (3)H10A—C10—H10B109.5
O1—C5—N2123.5 (3)C8—C10—H10C109.5
O1—C5—C4120.5 (3)H10A—C10—H10C109.5
N2—C5—C4116.0 (3)H10B—C10—H10C109.5
C10—C8—C11111.8 (4)
C3—C4—N1—C10.2 (4)C6—N2—C5—C4178.6 (3)
C5—C4—N1—C1177.7 (3)N1—C4—C5—O112.9 (5)
C4—N1—C1—C20.6 (4)C3—C4—C5—O1169.8 (3)
C4—N1—C1—Br2177.3 (2)N1—C4—C5—N2167.0 (3)
N1—C4—C3—C20.2 (4)C3—C4—C5—N210.3 (5)
C5—C4—C3—C2177.7 (3)N2—C6—C8—C1061.9 (5)
C5—N2—C6—C7131.2 (3)C7—C6—C8—C1061.9 (4)
C5—N2—C6—C8104.8 (4)N2—C6—C8—C1163.5 (4)
N1—C1—C2—C30.7 (4)C7—C6—C8—C11172.6 (4)
Br2—C1—C2—C3177.0 (3)N2—C6—C7—O224.8 (5)
N1—C1—C2—Br1179.9 (2)C8—C6—C7—O2101.3 (4)
Br2—C1—C2—Br12.3 (5)N2—C6—C7—O3157.7 (3)
C4—C3—C2—C10.6 (4)C8—C6—C7—O376.2 (4)
C4—C3—C2—Br1180.0 (2)O2—C7—O3—C90.8 (5)
C6—N2—C5—O11.2 (5)C6—C7—O3—C9178.3 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···O1i0.862.583.437 (4)176
N1—H1A···O2ii0.862.082.929 (4)168
Symmetry codes: (i) x+1, y+1/2, z+3/2; (ii) x+1, y1/2, z+3/2.

Experimental details

Crystal data
Chemical formulaC11H14Br2N2O3
Mr382.04
Crystal system, space groupOrthorhombic, P212121
Temperature (K)293
a, b, c (Å)9.196 (3), 10.928 (3), 14.244 (4)
V3)1431.5 (7)
Z4
Radiation typeMo Kα
µ (mm1)5.66
Crystal size (mm)0.47 × 0.41 × 0.18
Data collection
DiffractometerBruker SMART 1K CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.087, 0.361
No. of measured, independent and
observed [I > 2σ(I)] reflections
8925, 3112, 2519
Rint0.033
(sin θ/λ)max1)0.639
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.033, 0.075, 1.04
No. of reflections3112
No. of parameters163
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.47, 0.61
Absolute structureFlack (1983)
Absolute structure parameter0.020 (12)

Computer programs: SMART (Bruker,1999), SAINT-Plus (Bruker, 1999), SAINT-Plus, SHELXTL (Bruker,1997), SHELXTL.

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···O1i0.862.583.437 (4)176
N1—H1A···O2ii0.862.082.929 (4)168
Symmetry codes: (i) x+1, y+1/2, z+3/2; (ii) x+1, y1/2, z+3/2.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds