Download citation
Download citation
link to html
The three-dimensional ZnII coordination polymer poly[[bis­(μ2-benzene-1,4-di­carboxyl­ato){μ4-N1,N3,N5-tris­[(pyridin-3-yl)meth­yl]benzene-1,3,5-tricarboxamide}­dizinc(II)] mono­hy­drate], {[Zn2(C8H4O4)2(C27H24N6O3)]·H2O}n, is characterized by a rare (4,4,4)-connected (4.62.72.8)(4.62.73)(42.62.72) topology. The tricarboxamide ligand adopts an un­precedented tetra­dentate coordination mode, with one carboxamide O atom participating in the coordination. The polymer was further characterized by thermogravimetric and solid-state luminescence analysis.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S205322961401451X/bg3173sup1.cif
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S205322961401451X/bg3173Isup2.hkl
Contains datablock I

pdf

Portable Document Format (PDF) file https://doi.org/10.1107/S205322961401451X/bg3173sup3.pdf
Schematic description of tetrahedral Zn1 and Zn2 nodes

CCDC reference: 1009319

Introduction top

The construction of metal–organic frameworks (MOFs) is of current inter­est in the field of supra­molecular chemistry and crystal engineering, and considerable attention has been paid to these compounds due to their potential applications in magnetism, separation, catalysis and ion-exchange, as well as the intriguing variety of their architectures and fascinating new topologies (Suksai et al., 2008; Abdul-Kadir et al., 2011; Wang et al., 2010; Hasegawa et al., 2007; Bae et al., 2009; Long et al., 2009; Gagnon et al., 2011). Currently, the most common approach to building coordination frameworks (MOFs) is a rational combination of a suitable organic ligand and a transition metal with a specific coordination geometry. The organic ligand is significant because changing its structure can lead, for instance, to various inter­esting porous MOFs (Tsai et al., 2010). Therefore, an elaborative design or choice of ligand with appropriate groups is the key for the construction of functional coordination compounds with desired structural and physicochemical properties (Liao et al., 2011).

Among the organic bridging blocks, much attention has been devoted to the use of three-connected centres as basic structural units for the construction of framework materials. Particularly, tripodal ligands such as 1,3,5-tris­[(imidazol-1-yl)methyl]-2,4,6-tri­methyl­benzene, 2,4,6-tri­ethyl-1,3,5-tris­[(pyrazol-1-yl)methyl]­benzene, 1,3,5-tris­[(pyridin-4-yl)methyl]­benzene, 1,3,5-tris­[(imidazol-1-yl)methyl]­benzene etc (Bai et al., 2013; Luo et al., 2012; Wang et al., 2011; Wu et al., 2013), have been broadly used in the construction of MOFs. In this context, the tripodal ligand,N1,N3,N5-tris­[(pyridin-3-yl)methyl]­benzene-1,3,5-tricarboxamide (L) has a remarkable coordinating ability and various coordination modes due to the coordination potential arising from the three pyridine N atoms plus the three carbonyl O atoms (Liao et al., 2010; Gong et al., 2011). In compounds containing L as a ligand, it is common for the pyridine N atoms to participate in the coordination. However, in some reports, the carboxamide O atom coordinates to a metal centre, in various ways (Cheng et al., 2013; Jiao et al., 2012; Zhang et al., 2013; Ma et al., 2011; Cheng et al., 2013; Bai et al., 2013). The results presented here show that not only can the pyridine N atoms participate in coordination but that the carboxamide O atoms can also coordinate. We report a new polymeric framework, namely [Zn2(BDC)2(L)]n (BDC2- is benzene-1,4-di­carboxyl­ate), (1), in which the L ligand coordinates through a carboxamide O atom. (1) is characterized by an unprecedented trinodal (4,4,4)-connected (4.62.72.8) (4.626.73) (42.62.72) topology (Blatov & Proserpio, 2008).

Experimental top

Synthesis and crystallization top

Zn(NO3)2 (0.2 mmol, 59.50 mg), benzene-1,4-di­carb­oxy­lic acid (H2BDC; 0.2 mmol, 33.20 mg) and L (0.1 mmol, 43.80 mg) were sealed in a Teflon reactor with di­methyl­formamide (DMF, 4 ml) and H2O (4 ml), and heated at 388 K for 2 d, followed by cooling to room temperature at a rate of 3 K h-1. Subsequently, block-shaped colourless crystals of (1) were obtained in 78% yield based on Zn(NO3)2.

Refinement top

Crystal data, data collection and structure refinement details are summarized in Table 1. The C40—O8 group in one of the centrosymmetric terephthalate ligands is disordered over two positions, which were refined using similar-distance and planarity restraints for the disordered atoms and their directly bonded atoms (SADI and FLAT instructions in SHELXL2014; Sheldrick, 2008). The occupation factor of the major orientation of the disordered group refined to 0.507 (2). The Zn complex leaves one centrosymmetric cavity per unit cell of 92 Å3 and four small but significant peaks of residual electron density remained within the cavity. The SQUEEZE routine of the program PLATON (Spek, 2009) suggested that there were 22 electrons per cavity, or 11 per asymmetric unit. This is consistent with there being one water molecule per asymmetric unit and per formula unit of the Zn complex. The model development was continued using the original reflection data and assigning the four residual electron-density peaks as partially occupied O atoms of a disordered water molecule. These sites were then refined while restraining their occupancies to sum to a total of 1.0. The sum of the occupancies of atom O8A and the two nearest water sites were also restrained to sum to 1.0, to avoid them being simultaneously present in the same asymmetric unit because of impossibly short O8A···O(water) contacts. Pseudo-isotropic restraints were also applied to the anisotropic displacement parameters of the disordered sites of the water molecule and the water H atoms were not included in the model. H atoms bonded to C atoms were placed in calculated positions, with C—H = 0.93 Å and Uiso(H) = 1.2Ueq(C) for aromatic, and C—H = 0.97 Å and Uiso(H) = 1.2Ueq(C) for methyl­ene groups. H atoms bonded to N atoms were found in difference maps and refined with N—H bond-length restraints of 0.86 (1) Å and with Uiso(H) = 1.2Ueq(N).

Results and discussion top

As shown in Fig. 1, the asymmetric unit of (1) consists of two unique ZnII ions and one L ligand in general positions, and four centrosymmetric BDC2- ligands. The Zn1 ion presents a distorted o­cta­hedral environment with two chelating BDC2- ligands, each providng one of the shortest and one of the longest Zn—O bonds in the polyhedron, completed by two pyridine N atoms of two L ligands. The Zn2 ion shows a clear four-coordinated tetra­hedral geometry, defined by two carboxyl­ate O atoms from two BDC2- ligands, one pyridine N atom from an L ligand and one carboxamide O atom from one L ligand.

The Zn—N coordination distances range from 2.042 (3) to 2.097 (2) Å and the Zn—O coordination distances range from 1.988 (2) to 2.011 (2) Å, with two semicoordinated outlyers [2.444 (2) and 2.565 (2) Å; Table 2]. The L ligand adopts a tetra­dentate coordination mode with one carboxamide O atom participating in the coordination (Fig. 2). To the best of our knowledge, the L ligand is usually tripodal and its coordination via a carboxamide O atom as in (1) is rather unusual (Fig. 2).

A search of the Cambridge Structural Database (Version 5.35, February 2014 update; Allen, 2002) reveals three L-containing complexes involving different metal atoms, viz. Cu (Tzeng et al., 2008), Ag (Fan et al., 2003) and Pb (Shahverdizadeh et al. 2012). In none of these compounds does the L ligand link to the metal centre in the tetra­dentate binding mode seen in (1).

As shown in Figs. 3(a) and 3(b), each L ligand in (1) coordinates to two Zn1 ions and two Zn2 ions, creating a 32-membered (Zn1)2L2 ring and a 16-membered (Zn2)2L2 ring. Furthermore, by sharing the L ligand, the (Zn1)2L2 and (Zn2)2L2 rings are connected forming a one-dimensional chain (Fig. 3c). Each one-dimensional chain is in turn connected to six identical one-dimensional chains by BDC2- ligands.

The benzene rings in the L ligand (ring 1 is C14–C17/C19/C20) and the BDC2- groups [ring 2 is C5–C7/C5i–C7i and ring 3 is C37–C39/C37ii–C39ii; symmetry codes: (i) -x+2, -y+1, -z+1; (ii) -x, -y+1, -z+2] are almost parallel [the dihedral angle between the planes of rings 1 and 2 is 0.53 (13)°, and that between the planes of rings 1 and 3 is 0.86 (13)°], with rather short inter­centroid distances [3.853 (2) Å between the centroids of rings 1 and 2, and 3.797 (2) Å between the centroids of rings 1 and 3] suggesting weak ππ inter­actions between the rings (Fig. 4), which can futher stabilize the structure. In addition, there are a number of C—H···π and C—H···O hydrogen-bonding inter­actions (Table 3).

Further insight into the structural properties of (1) can be achieved by topology methods which consist in reducing the multidimensional structure to a simple node-and-linker net. According to these principles, the L ligand is regarded as a 4-connecting node (see Fig. S1c), while the Zn1 ion connects two Zn1 ions and the Zn2 ion links two Zn2 ions though two BDC2- ligands and two L ligands. The BDC2- ligands serve as linear linkers and Zn1 and Zn2 serve as two different 4-connecting nodes, showing four connectivity in tetra­hedral geometries (see Figs. S1a and S1b). A topology analysis performed with TOPOS (Blatov & Proserpio, 2008) gave (4.62.72.8)(4.62.73)(42.62.72) as the topology symbol, corresponding to a (4,4,4)-connected net (Fig. 5).

There are many (4,4)-connected networks reported in the literature, for example, the distorted non-inter­penetrating coordination polymer [Cu(dps)2]PF6 with a (4,4) topology (dps is ????; Ni et al., 2001), the characteristic grid structure of a (4,4) net topology in {[Co(L4)2(H2O)2](BF4)2.4DMF}n {L4 = 3,5-bis­[4-(imidazol-1-yl)phenyl]-1,2,4-triazol-4-amine; Aijaz, et al., 2010} and [Zn(L5)2(ClO4)2] with a (4,4) network [L5 = N,N'-bis­(pyridin-4-yl)urea; Kumar et al., 2005], among many examples. However, the connecting mode of compound (1) appears to be comparatively unusual.

Thermogravimetric analysis (TGA) of (1) was carried out under a nitro­gen atmosphere in the temperature range 308–1073 K at a heating rate of 10 K min-1. As shown in Fig. 6(a), compound (1) is stable to over 743 K, but displays a sharp weight loss from approximately 873 K, indicating decomposition. In addition, the solid-state photoluminescence properties were measured. As shown in Fig. 6(b), an intense emission occurs at 400 nm with the excitation wavelength at 320 nm. Comparatively, the free L ligand shows emission at 428 nm upon excitation at 300–350 nm at room temperature (Tzeng et al., 2008) and free benzene-1,4-di­carb­oxy­lic acid shows an emission at 369 nm with excitation at 331 nm (Guo et al., 2012). Accordingly, the emission in (1) is most likely to originate from the L ligand through a ππ transition, given the significant blue shift (28 nm) on going from L to (1) (Guo et al., 2012).

In summary, the results herein discussed confirm the L ligand to be an excellent polydentate ligand suitable for the construction of coordination polymers with diverse structures.

Related literature top

For related literature, see: Abdul-Kadir, Hanton, Sumby & Dastidar (2011); Aijaz et al. (2010); Allen (2002); Bae et al. (2009); Bai et al. (2013); Blatov & Proserpio (2008); Cheng et al. (2013); Fan et al. (2003); Gagnon et al. (2011); Gong et al. (2011); Guo et al. (2012); Hasegawa et al. (2007); Jiao et al. (2012); Kumar et al. (2005); Liao et al. (2010, 2011); Long & Yaghi (2009); Luo et al. (2012); Ma et al. (2011); Ni & Vittal (2001); Shahverdizadeh et al. (2012); Suksai et al. (2008); Tsai et al. (2010); Tzeng et al. (2008); Wang et al. (2010, 2011); Wu et al. (2013); Zhang et al. (2013).

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2005); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (1), with displacement ellipsoids drawn at the 30% probability level. Only one of the two disordered C40–O8 groups (unit A) has been shown for clarity. Colour key: Zn light blue, C green, N blue, O red and H pink. [Symmetry codes: (#1) -x+2, -y+2, -z; (#2) -x+3, -y+1, -z+1; (#3) -x+2, -y+1, -z+1; (#4) -x+1, -y+1, -z+2; (#5) -x, -y+1, -z+2; (#6) -x+1, -y+2, -z+1.]
[Figure 2] Fig. 2. The L ligand adopts a tetradentate coordinated mode with one carbonyl O atom participating in the coordination.
[Figure 3] Fig. 3. (a) The 32-membered (Zn1)2L2 ring, (b) the 16-membered (Zn2)2L2 ring and (c) a view of a one-dimensional chain formed by ZnII ions and L ligands. Generic atom labels without symmetry codes have been used. The green ring is (Zn1)2L2 and the red ring is (Zn2)2L2.
[Figure 4] Fig. 4. A view of ππ interactions between benzene rings of BDC2- and L ligands. Black dotted line denote ππ interactions. Colour code: Zn light blue, C green, N blue, O red and H pink.
[Figure 5] Fig. 5. Schematic description of the (4,4,4)-connected net with (4.62.72.8)(4.62.73)(42.62.72) topology.
[Figure 6] Fig. 6. (a) The TG curve and (b) the solid-state photoluminescence spectrum of compound (1).
Poly[[bis(µ2-benzene-1,4-dicarboxylato){µ4-N1,N3,N5-tris[(pyridin-3-yl)methyl]benzene-1,3,5-tricarboxamide}dizinc(II)] 0.22-hydrate] top
Crystal data top
[Zn2(C8H4O4)2(C27H24N6O3)]·H2OZ = 2
Mr = 957.50F(000) = 980
Triclinic, P1Dx = 1.570 Mg m3
a = 10.6904 (4) ÅMo Kα radiation, λ = 0.71073 Å
b = 13.9661 (6) ÅCell parameters from 8310 reflections
c = 15.2652 (6) Åθ = 2.3–25.1°
α = 69.182 (2)°µ = 1.26 mm1
β = 72.346 (2)°T = 296 K
γ = 80.313 (2)°Block, colorless
V = 2025.33 (14) Å30.20 × 0.20 × 0.15 mm
Data collection top
Bruker APEXII CCD area-detector
diffractometer
7130 independent reflections
Radiation source: fine-focus sealed tube5724 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.036
phi and ω scansθmax = 25.0°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2008)
h = 1212
Tmin = 0.76, Tmax = 0.84k = 1616
29300 measured reflectionsl = 1818
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.034Hydrogen site location: mixed
wR(F2) = 0.096H atoms treated by a mixture of independent and constrained refinement
S = 1.07 w = 1/[σ2(Fo2) + (0.0449P)2 + 1.2809P]
where P = (Fo2 + 2Fc2)/3
7130 reflections(Δ/σ)max = 0.001
627 parametersΔρmax = 0.58 e Å3
40 restraintsΔρmin = 0.40 e Å3
Crystal data top
[Zn2(C8H4O4)2(C27H24N6O3)]·H2Oγ = 80.313 (2)°
Mr = 957.50V = 2025.33 (14) Å3
Triclinic, P1Z = 2
a = 10.6904 (4) ÅMo Kα radiation
b = 13.9661 (6) ŵ = 1.26 mm1
c = 15.2652 (6) ÅT = 296 K
α = 69.182 (2)°0.20 × 0.20 × 0.15 mm
β = 72.346 (2)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
7130 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2008)
5724 reflections with I > 2σ(I)
Tmin = 0.76, Tmax = 0.84Rint = 0.036
29300 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.03440 restraints
wR(F2) = 0.096H atoms treated by a mixture of independent and constrained refinement
S = 1.07Δρmax = 0.58 e Å3
7130 reflectionsΔρmin = 0.40 e Å3
627 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Zn11.21845 (3)0.86478 (2)0.30589 (2)0.03314 (11)
Zn20.48414 (3)0.65771 (3)0.82277 (2)0.03682 (11)
C11.1352 (3)0.9086 (2)0.1523 (2)0.0384 (7)
C21.0659 (3)0.9565 (2)0.0725 (2)0.0330 (6)
C31.0602 (3)0.9017 (2)0.0144 (2)0.0361 (7)
H31.10040.83570.02370.043*
C41.0054 (3)1.0553 (2)0.0580 (2)0.0362 (7)
H41.00901.09260.09690.043*
C51.0459 (3)0.5977 (2)0.4575 (2)0.0377 (7)
C60.9123 (3)0.5853 (2)0.4961 (2)0.0438 (8)
H60.85330.64270.49410.053*
C71.1338 (3)0.5118 (2)0.4624 (2)0.0425 (7)
H71.22380.51970.43780.051*
C81.1718 (3)1.0331 (2)0.3899 (2)0.0429 (8)
H81.17201.07350.32660.051*
C91.1498 (3)1.0797 (3)0.4592 (3)0.0473 (8)
H91.13551.15070.44280.057*
C101.1492 (3)1.0207 (3)0.5528 (3)0.0465 (8)
H101.13301.05150.60050.056*
C111.1729 (3)0.9153 (2)0.5761 (2)0.0392 (7)
C121.1937 (3)0.8742 (2)0.5028 (2)0.0370 (7)
H121.20900.80340.51760.044*
C131.0293 (3)0.7137 (2)0.7324 (2)0.0398 (7)
C141.0083 (3)0.6059 (2)0.7440 (2)0.0350 (7)
C151.1063 (3)0.5290 (2)0.7355 (2)0.0403 (7)
H151.19350.54210.72330.048*
C161.0760 (3)0.4320 (2)0.7450 (2)0.0370 (7)
C170.9465 (3)0.4121 (2)0.7648 (2)0.0341 (6)
H170.92570.34680.77320.041*
C181.1745 (4)0.8489 (3)0.6789 (2)0.0520 (9)
H18A1.25900.85220.68870.062*
H18B1.10730.87680.72410.062*
C190.8470 (3)0.4891 (2)0.77210 (19)0.0318 (6)
C200.8792 (3)0.5849 (2)0.7618 (2)0.0357 (7)
H200.81270.63650.76690.043*
C210.7058 (3)0.4764 (2)0.7873 (2)0.0333 (6)
C220.5350 (3)0.3667 (3)0.8114 (2)0.0401 (7)
H22A0.53240.32100.77680.048*
H22B0.48610.43060.78590.048*
C230.5293 (3)0.6810 (2)1.0826 (2)0.0342 (7)
C240.6286 (3)0.7472 (2)1.0506 (3)0.0441 (8)
H240.65560.76511.09480.053*
C250.6873 (3)0.7863 (3)0.9519 (3)0.0500 (9)
H250.75440.83080.92920.060*
C260.6458 (3)0.7591 (2)0.8881 (3)0.0462 (8)
H260.68520.78610.82190.055*
C270.4949 (3)0.6571 (2)1.0133 (2)0.0386 (7)
H270.42910.61201.03400.046*
C281.1895 (3)0.3554 (3)0.7282 (2)0.0451 (8)
C291.2734 (3)0.2086 (3)0.6761 (3)0.0608 (11)
H29A1.32630.25440.61720.073*
H29B1.23800.16130.65760.073*
C301.6383 (3)0.8522 (3)0.2585 (3)0.0431 (8)
C311.6789 (3)0.9307 (3)0.1747 (3)0.0579 (10)
H311.76650.94680.15270.070*
C321.5909 (4)0.9865 (3)0.1223 (3)0.0656 (11)
H321.61791.03980.06460.079*
C331.4621 (3)0.9611 (3)0.1576 (2)0.0483 (8)
H331.40200.99870.12290.058*
C341.5080 (3)0.8309 (2)0.2880 (2)0.0349 (7)
H341.48000.77620.34420.042*
C351.0935 (3)0.7037 (3)0.4059 (2)0.0428 (8)
C360.2303 (3)0.6187 (3)0.9189 (2)0.0411 (7)
C370.1114 (3)0.5570 (2)0.9612 (2)0.0354 (7)
C380.1206 (3)0.4562 (2)0.9646 (2)0.0450 (8)
H380.20200.42560.94070.054*
C390.0102 (3)0.6006 (3)0.9969 (2)0.0452 (8)
H390.01850.66860.99530.054*
C410.5084 (3)0.9023 (2)0.5665 (2)0.0397 (7)
C420.5045 (3)0.9870 (2)0.5929 (2)0.0404 (7)
H420.50710.97910.65550.048*
C430.5034 (3)0.9164 (2)0.4730 (2)0.0458 (8)
H430.50530.85940.45450.055*
N11.1930 (2)0.93073 (19)0.41118 (18)0.0357 (6)
N21.1523 (3)0.7428 (2)0.7009 (2)0.0444 (6)
H2M1.216 (2)0.699 (2)0.691 (2)0.053*
N30.6709 (2)0.3869 (2)0.79423 (19)0.0377 (6)
H3M0.728 (2)0.3358 (17)0.797 (2)0.045*
N40.5505 (2)0.69495 (19)0.91799 (18)0.0405 (6)
N51.1647 (3)0.2690 (2)0.7201 (2)0.0539 (8)
H5M1.0884 (18)0.266 (3)0.714 (3)0.065*
N61.4196 (2)0.88478 (18)0.23972 (17)0.0342 (5)
O11.1404 (2)0.96280 (16)0.20227 (15)0.0423 (5)
O21.1842 (3)0.81934 (18)0.16661 (18)0.0584 (7)
O31.2165 (2)0.71417 (17)0.38134 (16)0.0476 (5)
O41.0135 (2)0.77826 (17)0.38517 (18)0.0565 (6)
O50.2258 (2)0.7048 (2)0.9236 (2)0.0730 (8)
O60.3355 (2)0.57593 (18)0.87755 (18)0.0565 (6)
O70.5145 (2)0.78609 (18)0.71924 (17)0.0595 (7)
O90.9357 (2)0.77317 (18)0.7499 (2)0.0655 (7)
O101.3010 (2)0.3721 (2)0.7209 (2)0.0748 (9)
O110.6231 (2)0.54863 (17)0.79330 (19)0.0541 (6)
C40A0.4877 (4)0.7961 (3)0.6430 (3)0.045 (2)0.493 (2)
O8A0.4473 (6)0.7262 (3)0.6293 (4)0.0690 (16)0.493 (2)
C40B0.5391 (4)0.7948 (3)0.6324 (3)0.050 (2)0.507 (2)
O8B0.5848 (7)0.7254 (4)0.5970 (4)0.094 (2)0.507 (2)
O910.3862 (12)0.6447 (10)0.5443 (12)0.124 (4)0.313 (2)
O920.4001 (14)0.6143 (12)0.6174 (11)0.067 (4)0.194 (2)
O931.4683 (14)0.5638 (13)0.4399 (10)0.125 (5)0.288 (3)
O941.492 (2)0.4668 (18)0.4218 (15)0.127 (7)0.205 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.03373 (19)0.03127 (19)0.0359 (2)0.00344 (14)0.01496 (14)0.00725 (15)
Zn20.03584 (19)0.0342 (2)0.0345 (2)0.00206 (15)0.00837 (15)0.00503 (15)
C10.0337 (16)0.0413 (19)0.0379 (17)0.0031 (14)0.0141 (13)0.0060 (15)
C20.0322 (15)0.0324 (16)0.0331 (15)0.0041 (12)0.0120 (12)0.0055 (13)
C30.0394 (16)0.0298 (16)0.0409 (17)0.0015 (13)0.0174 (13)0.0098 (13)
C40.0406 (16)0.0348 (16)0.0382 (17)0.0033 (13)0.0164 (13)0.0123 (13)
C50.0520 (18)0.0337 (17)0.0281 (15)0.0131 (14)0.0106 (13)0.0064 (13)
C60.0529 (19)0.0382 (18)0.0382 (18)0.0061 (15)0.0101 (15)0.0104 (15)
C70.0455 (18)0.0453 (19)0.0345 (17)0.0141 (15)0.0064 (14)0.0089 (15)
C80.0368 (16)0.0415 (19)0.0474 (19)0.0083 (14)0.0107 (14)0.0087 (15)
C90.0448 (18)0.0367 (18)0.063 (2)0.0022 (14)0.0129 (16)0.0213 (17)
C100.0403 (17)0.052 (2)0.056 (2)0.0108 (15)0.0071 (15)0.0299 (18)
C110.0317 (15)0.0476 (19)0.0417 (18)0.0151 (14)0.0060 (13)0.0162 (15)
C120.0358 (16)0.0364 (17)0.0407 (17)0.0088 (13)0.0105 (13)0.0116 (14)
C130.0374 (17)0.0389 (18)0.0374 (17)0.0080 (14)0.0086 (13)0.0041 (14)
C140.0343 (15)0.0368 (17)0.0319 (15)0.0046 (13)0.0086 (12)0.0077 (13)
C150.0306 (15)0.050 (2)0.0421 (18)0.0026 (14)0.0124 (13)0.0147 (15)
C160.0319 (15)0.0417 (18)0.0423 (17)0.0047 (13)0.0153 (13)0.0181 (14)
C170.0341 (15)0.0355 (16)0.0366 (16)0.0016 (12)0.0127 (13)0.0154 (13)
C180.055 (2)0.063 (2)0.0441 (19)0.0314 (18)0.0083 (16)0.0167 (17)
C190.0297 (14)0.0364 (16)0.0284 (15)0.0021 (12)0.0061 (12)0.0109 (13)
C200.0313 (15)0.0342 (17)0.0380 (17)0.0016 (12)0.0078 (12)0.0104 (13)
C210.0315 (15)0.0366 (17)0.0308 (15)0.0003 (13)0.0060 (12)0.0127 (13)
C220.0354 (16)0.0497 (19)0.0437 (18)0.0080 (14)0.0095 (13)0.0237 (15)
C230.0290 (14)0.0332 (16)0.0439 (17)0.0000 (12)0.0111 (13)0.0163 (14)
C240.0408 (17)0.0392 (18)0.059 (2)0.0048 (14)0.0179 (16)0.0199 (16)
C250.0400 (18)0.0387 (19)0.069 (2)0.0121 (15)0.0125 (17)0.0122 (18)
C260.0411 (18)0.0392 (18)0.048 (2)0.0099 (15)0.0042 (15)0.0048 (15)
C270.0377 (16)0.0377 (17)0.0387 (17)0.0122 (13)0.0056 (13)0.0097 (14)
C280.0318 (17)0.053 (2)0.059 (2)0.0067 (15)0.0193 (15)0.0272 (17)
C290.049 (2)0.072 (3)0.093 (3)0.0267 (18)0.043 (2)0.056 (2)
C300.0347 (16)0.0461 (19)0.063 (2)0.0112 (14)0.0186 (15)0.0368 (18)
C310.0300 (17)0.063 (2)0.082 (3)0.0078 (16)0.0067 (17)0.029 (2)
C320.052 (2)0.056 (2)0.068 (3)0.0141 (19)0.0018 (19)0.002 (2)
C330.0412 (18)0.0417 (19)0.050 (2)0.0002 (15)0.0133 (15)0.0009 (16)
C340.0360 (16)0.0332 (16)0.0412 (17)0.0023 (13)0.0153 (13)0.0168 (14)
C350.058 (2)0.0426 (19)0.0313 (17)0.0138 (17)0.0108 (15)0.0118 (14)
C360.0353 (17)0.047 (2)0.0407 (18)0.0037 (14)0.0117 (14)0.0116 (15)
C370.0326 (15)0.0403 (18)0.0322 (16)0.0010 (13)0.0101 (12)0.0101 (13)
C380.0313 (16)0.0435 (19)0.054 (2)0.0034 (14)0.0032 (14)0.0184 (16)
C390.0408 (18)0.0375 (18)0.056 (2)0.0020 (14)0.0064 (15)0.0191 (16)
C410.0430 (17)0.0368 (17)0.0345 (17)0.0021 (14)0.0096 (13)0.0084 (14)
C420.0454 (18)0.0462 (19)0.0293 (16)0.0005 (14)0.0121 (13)0.0114 (14)
C430.062 (2)0.0373 (18)0.0419 (18)0.0014 (15)0.0129 (16)0.0193 (15)
N10.0323 (13)0.0359 (14)0.0404 (14)0.0074 (11)0.0108 (11)0.0109 (12)
N20.0392 (15)0.0489 (18)0.0443 (16)0.0129 (12)0.0086 (13)0.0116 (13)
N30.0283 (13)0.0406 (15)0.0477 (15)0.0007 (11)0.0059 (11)0.0226 (13)
N40.0414 (14)0.0380 (15)0.0386 (15)0.0087 (12)0.0076 (12)0.0081 (12)
N50.0321 (14)0.0573 (19)0.093 (2)0.0140 (13)0.0300 (15)0.0452 (17)
N60.0329 (13)0.0308 (13)0.0395 (14)0.0012 (10)0.0124 (11)0.0112 (11)
O10.0498 (13)0.0414 (12)0.0440 (12)0.0014 (10)0.0275 (10)0.0117 (10)
O20.0804 (17)0.0426 (14)0.0599 (15)0.0185 (13)0.0438 (14)0.0146 (12)
O30.0513 (14)0.0417 (13)0.0464 (13)0.0172 (11)0.0096 (11)0.0067 (11)
O40.0621 (15)0.0364 (13)0.0652 (16)0.0085 (12)0.0171 (13)0.0070 (12)
O50.0496 (15)0.0645 (18)0.108 (2)0.0163 (13)0.0025 (15)0.0412 (17)
O60.0345 (12)0.0540 (15)0.0698 (16)0.0072 (11)0.0024 (11)0.0184 (13)
O70.0727 (17)0.0511 (15)0.0400 (14)0.0048 (13)0.0157 (13)0.0036 (11)
O90.0433 (14)0.0344 (13)0.104 (2)0.0072 (11)0.0034 (14)0.0167 (14)
O100.0324 (13)0.0747 (19)0.141 (3)0.0098 (12)0.0328 (15)0.0613 (19)
O110.0320 (11)0.0402 (13)0.0883 (18)0.0056 (10)0.0152 (12)0.0228 (13)
C40A0.040 (5)0.041 (5)0.048 (5)0.009 (3)0.010 (3)0.014 (4)
O8A0.086 (4)0.038 (3)0.075 (4)0.009 (3)0.020 (3)0.007 (3)
C40B0.046 (5)0.046 (5)0.047 (5)0.001 (3)0.011 (3)0.007 (4)
O8B0.154 (7)0.046 (3)0.073 (4)0.025 (4)0.033 (4)0.022 (3)
O910.092 (7)0.094 (7)0.159 (9)0.003 (6)0.043 (7)0.004 (6)
O920.060 (5)0.070 (6)0.072 (6)0.005 (4)0.000 (4)0.036 (4)
O930.106 (8)0.146 (9)0.115 (8)0.033 (7)0.036 (6)0.017 (7)
O940.126 (8)0.127 (8)0.127 (8)0.008 (5)0.033 (5)0.040 (5)
Geometric parameters (Å, º) top
Zn1—O11.9873 (19)C22—N31.454 (4)
Zn1—O22.562 (2)C22—C23iii1.500 (4)
Zn1—O32.007 (2)C22—H22A0.9700
Zn1—O42.443 (2)C22—H22B0.9700
Zn1—N12.051 (2)C23—C271.376 (4)
Zn1—N62.099 (2)C23—C241.383 (4)
Zn2—O61.911 (2)C24—C251.386 (5)
Zn2—O71.920 (2)C24—H240.9300
Zn2—O112.012 (2)C25—C261.367 (5)
Zn2—N42.043 (3)C25—H250.9300
C1—O21.238 (4)C26—N41.336 (4)
C1—O11.268 (4)C26—H260.9300
C1—C21.511 (4)C27—N41.336 (4)
C2—C31.382 (4)C27—H270.9300
C2—C41.393 (4)C28—O101.217 (4)
C3—C4i1.389 (4)C28—N51.333 (4)
C3—H30.9300C29—N51.453 (4)
C4—H40.9300C29—C30iv1.519 (4)
C5—C61.385 (4)C29—H29A0.9700
C5—C71.388 (4)C29—H29B0.9700
C5—C351.501 (4)C30—C311.361 (5)
C6—C7ii1.382 (4)C30—C341.377 (4)
C6—H60.9300C31—C321.379 (5)
C7—H70.9300C31—H310.9300
C8—N11.344 (4)C32—C331.375 (5)
C8—C91.372 (5)C32—H320.9300
C8—H80.9300C33—N61.335 (4)
C9—C101.371 (5)C33—H330.9300
C9—H90.9300C34—N61.339 (3)
C10—C111.384 (5)C34—H340.9300
C10—H100.9300C35—O41.244 (4)
C11—C121.376 (4)C35—O31.272 (4)
C11—C181.517 (4)C36—O51.222 (4)
C12—N11.342 (4)C36—O61.278 (4)
C12—H120.9300C36—C371.500 (4)
C13—O91.216 (4)C37—C391.378 (4)
C13—N21.335 (4)C37—C381.379 (4)
C13—C141.499 (4)C38—C39v1.389 (4)
C14—C151.380 (4)C38—H380.9300
C14—C201.385 (4)C39—H390.9300
C15—C161.393 (4)C41—C421.370 (4)
C15—H150.9300C41—C431.387 (4)
C16—C171.379 (4)C41—C40B1.527 (5)
C16—C281.500 (4)C41—C40A1.528 (5)
C17—C191.388 (4)C42—C43vi1.374 (4)
C17—H170.9300C42—H420.9300
C18—N21.442 (4)C43—H430.9300
C18—H18A0.9700N2—H2M0.851 (10)
C18—H18B0.9700N3—H3M0.857 (10)
C19—C201.381 (4)N5—H5M0.857 (10)
C19—C211.487 (4)O7—C40B1.236 (4)
C20—H200.9300O7—C40A1.237 (4)
C21—O111.235 (3)C40A—O8A1.235 (5)
C21—N31.323 (4)C40B—O8B1.234 (5)
O1—Zn1—O3137.31 (9)C25—C24—H24120.4
O1—Zn1—N1107.98 (9)C26—C25—C24119.4 (3)
O3—Zn1—N1102.87 (9)C26—C25—H25120.3
O1—Zn1—N6100.81 (9)C24—C25—H25120.3
O3—Zn1—N6102.76 (9)N4—C26—C25122.0 (3)
N1—Zn1—N698.97 (9)N4—C26—H26119.0
O1—Zn1—O490.74 (8)C25—C26—H26119.0
O3—Zn1—O458.14 (8)N4—C27—C23123.8 (3)
N1—Zn1—O493.63 (9)N4—C27—H27118.1
N6—Zn1—O4159.30 (9)C23—C27—H27118.1
O1—Zn1—O256.10 (8)O10—C28—N5120.9 (3)
O3—Zn1—O287.32 (8)O10—C28—C16121.2 (3)
N1—Zn1—O2161.71 (8)N5—C28—C16117.9 (3)
N6—Zn1—O293.41 (9)N5—C29—C30iv114.2 (3)
O4—Zn1—O278.75 (9)N5—C29—H29A108.7
O6—Zn2—O7131.00 (11)C30iv—C29—H29A108.7
O6—Zn2—O1198.23 (10)N5—C29—H29B108.7
O7—Zn2—O11110.62 (10)C30iv—C29—H29B108.7
O6—Zn2—N4116.42 (11)H29A—C29—H29B107.6
O7—Zn2—N496.66 (11)C31—C30—C34117.8 (3)
O11—Zn2—N4100.60 (10)C31—C30—C29iv123.7 (3)
O2—C1—O1122.7 (3)C34—C30—C29iv118.4 (3)
O2—C1—C2119.6 (3)C30—C31—C32120.3 (3)
O1—C1—C2117.7 (3)C30—C31—H31119.9
C3—C2—C4119.6 (3)C32—C31—H31119.9
C3—C2—C1120.1 (3)C33—C32—C31118.1 (3)
C4—C2—C1120.4 (3)C33—C32—H32120.9
C2—C3—C4i120.3 (3)C31—C32—H32120.9
C2—C3—H3119.9N6—C33—C32122.8 (3)
C4i—C3—H3119.9N6—C33—H33118.6
C3i—C4—C2120.2 (3)C32—C33—H33118.6
C3i—C4—H4119.9N6—C34—C30123.3 (3)
C2—C4—H4119.9N6—C34—H34118.3
C6—C5—C7119.7 (3)C30—C34—H34118.3
C6—C5—C35119.6 (3)O4—C35—O3121.6 (3)
C7—C5—C35120.6 (3)O4—C35—C5119.9 (3)
C7ii—C6—C5120.3 (3)O3—C35—C5118.5 (3)
C7ii—C6—H6119.8O5—C36—O6122.4 (3)
C5—C6—H6119.8O5—C36—C37121.6 (3)
C6ii—C7—C5120.0 (3)O6—C36—C37115.9 (3)
C6ii—C7—H7120.0C39—C37—C38118.4 (3)
C5—C7—H7120.0C39—C37—C36120.5 (3)
N1—C8—C9121.8 (3)C38—C37—C36121.1 (3)
N1—C8—H8119.1C37—C38—C39v121.1 (3)
C9—C8—H8119.1C37—C38—H38119.5
C10—C9—C8119.5 (3)C39v—C38—H38119.5
C10—C9—H9120.2C37—C39—C38v120.5 (3)
C8—C9—H9120.2C37—C39—H39119.7
C9—C10—C11119.8 (3)C38v—C39—H39119.7
C9—C10—H10120.1C42—C41—C43118.7 (3)
C11—C10—H10120.1C42—C41—C40B120.8 (3)
C12—C11—C10117.4 (3)C43—C41—C40B119.8 (3)
C12—C11—C18122.0 (3)C42—C41—C40A120.8 (3)
C10—C11—C18120.6 (3)C43—C41—C40A119.1 (3)
N1—C12—C11123.5 (3)C41—C42—C43vi120.0 (3)
N1—C12—H12118.3C41—C42—H42120.0
C11—C12—H12118.3C43vi—C42—H42120.0
O9—C13—N2121.2 (3)C42vi—C43—C41121.3 (3)
O9—C13—C14120.3 (3)C42vi—C43—H43119.4
N2—C13—C14118.5 (3)C41—C43—H43119.4
C15—C14—C20118.7 (3)C12—N1—C8118.0 (3)
C15—C14—C13125.5 (3)C12—N1—Zn1121.8 (2)
C20—C14—C13115.8 (3)C8—N1—Zn1120.1 (2)
C14—C15—C16120.7 (3)C13—N2—C18119.6 (3)
C14—C15—H15119.6C13—N2—H2M119 (2)
C16—C15—H15119.6C18—N2—H2M122 (2)
C17—C16—C15119.6 (3)C21—N3—C22122.8 (2)
C17—C16—C28123.4 (3)C21—N3—H3M119 (2)
C15—C16—C28117.0 (3)C22—N3—H3M117 (2)
C16—C17—C19120.4 (3)C27—N4—C26118.2 (3)
C16—C17—H17119.8C27—N4—Zn2119.6 (2)
C19—C17—H17119.8C26—N4—Zn2122.2 (2)
N2—C18—C11113.8 (3)C28—N5—C29118.7 (3)
N2—C18—H18A108.8C28—N5—H5M117 (3)
C11—C18—H18A108.8C29—N5—H5M118 (3)
N2—C18—H18B108.8C33—N6—C34117.6 (3)
C11—C18—H18B108.8C33—N6—Zn1121.99 (19)
H18A—C18—H18B107.7C34—N6—Zn1119.5 (2)
C20—C19—C17119.1 (3)C1—O1—Zn1103.41 (18)
C20—C19—C21116.8 (2)C1—O2—Zn177.51 (18)
C17—C19—C21124.0 (3)C35—O3—Zn199.7 (2)
C19—C20—C14121.5 (3)C35—O4—Zn180.50 (19)
C19—C20—H20119.3C36—O6—Zn2114.7 (2)
C14—C20—H20119.3C40B—O7—Zn2123.7 (3)
O11—C21—N3120.9 (3)C40A—O7—Zn2118.2 (3)
O11—C21—C19120.1 (3)C21—O11—Zn2172.2 (2)
N3—C21—C19119.0 (2)O8A—C40A—O7123.0 (5)
N3—C22—C23iii111.9 (2)O8A—C40A—C41122.3 (4)
N3—C22—H22A109.2O7—C40A—C41114.7 (4)
C23iii—C22—H22A109.2C40A—O8A—O92173.5 (7)
N3—C22—H22B109.2O8B—C40B—O7125.5 (5)
C23iii—C22—H22B109.2O8B—C40B—C41119.7 (4)
H22A—C22—H22B107.9O7—C40B—C41114.8 (4)
C27—C23—C24117.4 (3)O91—O92—O94ii86.0 (13)
C27—C23—C22iii120.8 (3)O91—O92—O8A101.4 (14)
C24—C23—C22iii121.7 (3)O94ii—O92—O8A121.7 (12)
C23—C24—C25119.2 (3)O93—O94—O92ii146.6 (18)
C23—C24—H24120.4
O2—C1—C2—C31.6 (4)O6—C36—C37—C387.2 (4)
O1—C1—C2—C3178.5 (3)C39—C37—C38—C39v0.1 (5)
O2—C1—C2—C4177.3 (3)C36—C37—C38—C39v179.4 (3)
O1—C1—C2—C42.7 (4)C38—C37—C39—C38v0.1 (5)
C4—C2—C3—C4i0.0 (5)C36—C37—C39—C38v179.4 (3)
C1—C2—C3—C4i178.9 (3)C43—C41—C42—C43vi0.5 (5)
C3—C2—C4—C3i0.0 (5)C40B—C41—C42—C43vi170.1 (3)
C1—C2—C4—C3i178.9 (3)C40A—C41—C42—C43vi166.9 (3)
C7—C5—C6—C7ii1.3 (5)C42—C41—C43—C42vi0.5 (5)
C35—C5—C6—C7ii175.3 (3)C40B—C41—C43—C42vi170.2 (3)
C6—C5—C7—C6ii1.3 (5)C40A—C41—C43—C42vi167.1 (3)
C35—C5—C7—C6ii175.2 (3)C11—C12—N1—C80.5 (4)
N1—C8—C9—C100.0 (5)C11—C12—N1—Zn1177.9 (2)
C8—C9—C10—C111.1 (5)C9—C8—N1—C120.8 (4)
C9—C10—C11—C121.3 (4)C9—C8—N1—Zn1177.7 (2)
C9—C10—C11—C18179.2 (3)O9—C13—N2—C185.6 (5)
C10—C11—C12—N10.5 (4)C14—C13—N2—C18173.2 (3)
C18—C11—C12—N1180.0 (3)C11—C18—N2—C1386.5 (4)
O9—C13—C14—C15173.5 (3)O11—C21—N3—C221.5 (4)
N2—C13—C14—C157.8 (5)C19—C21—N3—C22178.5 (3)
O9—C13—C14—C208.7 (4)C23iii—C22—N3—C2193.5 (3)
N2—C13—C14—C20170.1 (3)C23—C27—N4—C260.6 (5)
C20—C14—C15—C160.3 (4)C23—C27—N4—Zn2177.3 (2)
C13—C14—C15—C16178.1 (3)C25—C26—N4—C270.2 (5)
C14—C15—C16—C171.1 (4)C25—C26—N4—Zn2178.0 (2)
C14—C15—C16—C28176.2 (3)O10—C28—N5—C2917.1 (5)
C15—C16—C17—C192.1 (4)C16—C28—N5—C29162.0 (3)
C28—C16—C17—C19175.0 (3)C30iv—C29—N5—C2875.4 (5)
C12—C11—C18—N220.9 (4)C32—C33—N6—C340.8 (5)
C10—C11—C18—N2158.6 (3)C32—C33—N6—Zn1168.3 (3)
C16—C17—C19—C201.6 (4)C30—C34—N6—C331.9 (4)
C16—C17—C19—C21176.2 (3)C30—C34—N6—Zn1167.5 (2)
C17—C19—C20—C140.2 (4)O2—C1—O1—Zn16.7 (4)
C21—C19—C20—C14177.8 (3)C2—C1—O1—Zn1173.3 (2)
C15—C14—C20—C190.8 (4)O1—C1—O2—Zn15.2 (3)
C13—C14—C20—C19178.8 (3)C2—C1—O2—Zn1174.8 (3)
C20—C19—C21—O112.3 (4)O4—C35—O3—Zn13.2 (3)
C17—C19—C21—O11179.8 (3)C5—C35—O3—Zn1174.3 (2)
C20—C19—C21—N3177.7 (3)O3—C35—O4—Zn12.6 (3)
C17—C19—C21—N30.2 (4)C5—C35—O4—Zn1174.9 (3)
C27—C23—C24—C250.5 (4)O5—C36—O6—Zn20.6 (4)
C22iii—C23—C24—C25177.9 (3)C37—C36—O6—Zn2179.10 (19)
C23—C24—C25—C260.2 (5)C40B—O7—C40A—O8A107.2 (3)
C24—C25—C26—N40.5 (5)Zn2—O7—C40A—O8A2.9 (3)
C24—C23—C27—N40.9 (5)C40B—O7—C40A—C4172.9 (2)
C22iii—C23—C27—N4178.3 (3)Zn2—O7—C40A—C41177.1 (2)
C17—C16—C28—O10172.4 (3)C42—C41—C40A—O8A155.3 (4)
C15—C16—C28—O1010.5 (5)C43—C41—C40A—O8A11.1 (4)
C17—C16—C28—N58.6 (5)C40B—C41—C40A—O8A108.6 (3)
C15—C16—C28—N5168.5 (3)C42—C41—C40A—O724.7 (4)
C34—C30—C31—C320.3 (5)C43—C41—C40A—O7168.9 (3)
C29iv—C30—C31—C32176.0 (3)C40B—C41—C40A—O771.4 (2)
C30—C31—C32—C330.7 (6)C40A—O7—C40B—O8B106.8 (3)
C31—C32—C33—N60.4 (6)Zn2—O7—C40B—O8B22.3 (3)
C31—C30—C34—N61.7 (5)C40A—O7—C40B—C4173.1 (2)
C29iv—C30—C34—N6174.9 (3)Zn2—O7—C40B—C41157.6 (2)
C6—C5—C35—O410.8 (4)C42—C41—C40B—O8B156.0 (4)
C7—C5—C35—O4165.8 (3)C43—C41—C40B—O8B14.5 (4)
C6—C5—C35—O3171.7 (3)C40A—C41—C40B—O8B108.2 (3)
C7—C5—C35—O311.8 (4)C42—C41—C40B—O724.1 (4)
O5—C36—C37—C397.6 (5)C43—C41—C40B—O7165.4 (3)
O6—C36—C37—C39172.2 (3)C40A—C41—C40B—O771.7 (2)
O5—C36—C37—C38173.1 (3)
Symmetry codes: (i) x+2, y+2, z; (ii) x+2, y+1, z+1; (iii) x+1, y+1, z+2; (iv) x+3, y+1, z+1; (v) x, y+1, z+2; (vi) x+1, y+2, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N5—H5M···O4ii0.86 (1)2.40 (2)3.112 (4)141 (3)
N3—H3M···O2ii0.86 (1)2.16 (1)2.982 (3)161 (3)
N2—H2M···O8Avii0.85 (1)2.41 (3)3.007 (7)127 (3)
Symmetry codes: (ii) x+2, y+1, z+1; (vii) x+1, y, z.

Experimental details

Crystal data
Chemical formula[Zn2(C8H4O4)2(C27H24N6O3)]·H2O
Mr957.50
Crystal system, space groupTriclinic, P1
Temperature (K)296
a, b, c (Å)10.6904 (4), 13.9661 (6), 15.2652 (6)
α, β, γ (°)69.182 (2), 72.346 (2), 80.313 (2)
V3)2025.33 (14)
Z2
Radiation typeMo Kα
µ (mm1)1.26
Crystal size (mm)0.20 × 0.20 × 0.15
Data collection
DiffractometerBruker APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2008)
Tmin, Tmax0.76, 0.84
No. of measured, independent and
observed [I > 2σ(I)] reflections
29300, 7130, 5724
Rint0.036
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.034, 0.096, 1.07
No. of reflections7130
No. of parameters627
No. of restraints40
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.58, 0.40

Computer programs: APEX2 (Bruker, 2008), SAINT (Bruker, 2008), SHELXS97 (Sheldrick, 2008), SHELXL2014 (Sheldrick, 2008), DIAMOND (Brandenburg, 2005), SHELXTL (Sheldrick, 2008).

Selected bond lengths (Å) top
Zn1—O11.9873 (19)Zn1—N62.099 (2)
Zn1—O22.562 (2)Zn2—O61.911 (2)
Zn1—O32.007 (2)Zn2—O71.920 (2)
Zn1—O42.443 (2)Zn2—O112.012 (2)
Zn1—N12.051 (2)Zn2—N42.043 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N5—H5M···O4i0.857 (10)2.40 (2)3.112 (4)141 (3)
N3—H3M···O2i0.857 (10)2.157 (14)2.982 (3)161 (3)
N2—H2M···O8Aii0.851 (10)2.41 (3)3.007 (7)127 (3)
Symmetry codes: (i) x+2, y+1, z+1; (ii) x+1, y, z.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds