Download citation
Download citation
link to html
In the title heteroleptic cuprous complex, (aceto­nitrile-κN)({2-[2-(di­phenyl­phosphan­yl)phen­oxy]phen­yl}di­phenyl­phos­phane-κ2P,P′)[2-(pyridin-4-yl-κN)-1,3-benzoxazole]copper(I) hexa­fluorido­phosphate, [Cu(C36H28OP2)(CH3CN)(C12H8N2O)]PF6, conventionally abbreviated [Cu(POP)(CH3CN)(4-PBO)]PF6, where POP is the diphosphane ligand {2-[2-(di­phenyl­phosphan­yl)phen­oxy]phen­yl}di­phenyl­phosphane and 4-PBO is the N-containing ligand 2-(pyridin-4-yl)-1,3-benzoxazole, the asymmetric unit consists of a hexa­fluorido­phosphate anion and a whole mononuclear cation, where the CuI centre is coordinated by two P atoms from the POP ligand, by one N atom from the 4-PBO ligand and by the N atom of the coordinated aceto­nitrile mol­ecule, giving rise to a CuP2N2 distorted tetra­hedral coordination geometry. The electronic absorption, photoluminescence and thermal stability properties of this complex have been studied on as-synthesized samples, which had previously been examined by powder X-ray diffraction. A yellow emission signal is attributed to an excited state arising from metal-to-ligand charge transfer (MLCT).

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S2053229614018014/bg3182sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2053229614018014/bg3182Isup2.hkl
Contains datablock I

CCDC reference: 1018006

Introduction top

Highly luminescent transition-metal complexes have a wide range of potential applications, such as biological imaging (McMillin & McNett, 1998), photochemical catalysis (Kuramochi et al., 2014), chemical sensors/probes (Zhao et al., 2010), sensitizers in photovoltaic devices (Robertson, 2008) and emitters in organic light-emitting diodes (OLEDs) (Xiao et al., 2011). Now, OLEDs are considered to be the next generation of flat panel displays because of their numerous advantages (Xiao et al., 2011). OLED technology offers the distinctive possibility of fabricating lightweight, large area and also flexible and transparent light-emitting devices by low-cost processing based on various thin-film deposition techniques, such as vacuum thermal evaporation, spin coating or casting from solution. Based on these attractive properties, sources for general lighting based on white organic light-emitting diodes (WOLEDs) are also being actively investigated (Farinola & Ragni, 2011; Dawson, 2010). To overcome the 25% inter­nal quantum efficiency limit in fluorescent OLEDs (Baldo et al., 1998), phospho­rescent heavy metal complex emitters based on Ir, Pt and Os have been developed to achieve high efficiency with colour tuning emission (Zhang et al., 2004). Nowadays, an excellent external quantum efficiency (EQE, photons per electron) has been reached based on cyclo­metalated iridium(III) complexes (Hashimoto et al., 2011). Unfortunately, iridium and other heavy metal are low in natural abundance, so there has been an increasing inter­est in luminescent copper(I) complexes for use in high-efficiency OLEDs due to their advantages including abundant resource, low cost and nontoxic properties compared to noble metal complexes, e.g. Re, Os, Ir, Pt and Rh (Liu et al., 2011).

Among all the luminescent copper(I) complexes, cationic CuI complexes have attracted much attention over the past two decades because of their available metal-to-ligand charge transfer (MLCT) excited state and good solubility for fabricating luminescent devices (Zhang et al., 2004). Originally, the research was focused on the [Cu(N–N)2]+ complexes, and McMillin group's systematic studies revealed that the luminescence intensity of complexes markedly depends on the substituent at 2,9-positions of the phenanthroline ligand (McMillin & McNett, 1998). However, the [Cu(N–N)2]+ systems still exhibits week emission. Fortunately, when one di­imine ligand is replaced by one diphosphane ligand, the derivative complexes, called heteroleptic [Cu(N–N)(P–P)]+ complexes, shows an unprecedented lifetime and high luminescence (Cuttell et al., 2002). In this study, we have focused on the construction of a novel heteroleptic cuprous complex by utilizing {2-[2-(di­phenyl­phosphanyl)phen­oxy]­phenyl}­diphenyl­phosphane (POP) as the P-containing ligand and 2-(pyridin-4-yl)-1,3-benzoxazole (4-PBO) as the N-containing ligand, and the title complex, [Cu(POP)(CH3CN)(4-PBO)]PF6, (I), with a strong yellow luminescence, has been successfully synthesized and characterized.

Experimental top

Synthesis and crystallization top

The title complex, (I), was synthesized by a successive-assembly reaction with mixed solvents. Cu(CH3CN)4·(PF6) (0.1 mmol) and 4-PBO (0.1 mmol) were dissolved in aceto­nitrile (10 ml) under stirring at room temperature. And then, di­chloro­methane solution (5 ml) containing POP (0.1 mmol) was added to the resulting solution dropwise under stirring. The mixture solution was stirred at room temperature for an additional 30 min. The crude complex was collected after rotary evaporation under reduced pressure, washed with ethanol and dried to obtain a pure yellow product. Single crystals suitable for X-ray analysis were obtained by dissolving this powder product in aceto­nitrile (4 ml) and covering with a layer of propan-2-ol. IR (KBr, cm-1): 3050 (m), 2962 (w), 2922 (w), 2300 (w), 2270 (w), 1954 (w), 1892 (w), 1812 (w), 1576 (m), 1434 (s), 1213 (s), 1090 (m), 885 (vs), 745 (s), 700 (s), 560 (s), 515 (ms).

Refinement top

Crystal data, data collection and structure refinement details are summarized in Table 1. All H atoms bounded to C atoms were added at calculated positions and refined using a riding model, with C—H = 0.93–0.97 Å and Uiso(H) = 1.5Ueq(C) for methyl H atoms and 1.2Ueq(C) for all others.

Results and discussion top

Compound (I) is a ionic mononuclear structure (Fig. 1) made up of an hexafluoridophosphate anion and a complex cation, consisting of one CuI centre, one diphosphane POP ligand acting in a chelated fashion, one N-containing 4-PBO ligand and one N-coordinated aceto­nitrile molecule. The CuI centre exhibits a [CuP2N2] distorted tetra­hedral coordination geometry with a large P1—Cu1—P2 bite angle of 114.28 (3)°, which is similar to previous reports (Cuttell et al., 2002; Zhang et al., 2007; Czerwieniec et al., 2013). Within this CuP2N2 tetra­hedron, the Cu—P and Cu—N bond lengths (Table 2) are similar to those in analogous heteroleptic structures containing the POP ligand (Cuttell et al., 2002; Zhang et al., 2007; Hsu et al., 2011; Femoni et al., 2013). It is worth noting that the Cu—N bond length in aceto­nitrile is smaller than that in the 4-PBO ligand, indicating that the coordination of aceto­nitrile to copper is slightly stronger than that of 4-PBO. And this actual coordination also brings about good thermal stability against the escape of volatile aceto­nitrile (see TG–DSC measurement below). There are no obvious supra­molecular inter­actions, such as hydrogen bonding or ππ stacking inter­actions, to give rise to a supra­molecular structure, and so the complex is stabilzed by weak van der Waals forces and electrostatic attractions between the ionic moieties.

Before measureing some physicochemical properties of this complex, a powder X-ray diffraction (PXRD) experiment has been performed in order to check the purity of the powder sample. As shown in Fig. 2, the experimental peaks overlap well with those calculated from the single-crystal data. The UV–Vis absorption spectrum of (I) in di­chloro­methane (c = 1.0 × 10-5 M) solution is compared with those of the free ligands in Fig. 3. There is a ππ* transition band centred at 270 and 300 nm in the spectra of the POP and 4-PBO ligands, respectively, while a new broadened band centreed at 290 nm appears in the spectrum of (I) due to a mixture of the ππ* transition from POP and 4-PBO, or between them. In the low-energy region, an additional tail could be easily seen beyond this ππ* transition band, even expanding to the visible region. According to previous reports on similar heteroleptic structures (Zhang et al., 2007; Hsu et al., 2011; Femoni et al., 2013), this weak absorption band should be assigned as a MLCT absorption band, that is a charge transfer primarily from the Cu centre to the N-containing ligand 4-PBO.

The solid-state emission and excitation spectra have been recorded at room temperature on as-synthesized powder samples (Fig. 4). Under irradiation with wavelengths varying from 330 to 520 nm (the full width at half-maximum of the excitation spectrum), the complex emits strong yellow phospho­rescence all along, and its photoluminescence (PL) emission spectrum is broad with the λmax value at ~570 nm and without any observed vibronic fine structures. It is worth mentioning that the shockes shift herein of 150 nm is smaller than the great majority of similar luminescent CuI complexes, and this small shift should benefit the high efficiency of the energy utilization. These PL emissions should be derived from some MLCT excited states on the basis of relevant reports (Zhang et al., 2007; Hsu et al., 2011; Femoni et al., 2013).

For investigating the thermal stability of (I), simultaneous thermogravimetric (TG) and differential scanning calorimetry (DSC) measurements were carried out on the as-synthesized powder sample. As shown in Fig. 5, there are three obvious weight-loss steps. The weight loss in the range ~373–433 K (4%) corresponds to the release of the coordinated aceto­nitrile molecule (calculated value 4.16%). Above 473 K, the second third weight-loss steps are two sequential process, they could be assigned as the decomposition of 4-PBO and POP ligands. After 773 K, the weight loss is completely finished and the (not analyzed) final residuals (11%) should be ascribable to inorganic residues (copper oxide etc.).

Related literature top

For related literature, see: Baldo et al. (1998); Cuttell et al. (2002); Czerwieniec et al. (2013); Dawson (2010); Farinola & Ragni (2011); Femoni et al. (2013); Hashimoto et al. (2011); Hsu et al. (2011); Kuramochi et al. (2014); Liu et al. (2011); McMillin & McNett (1998); Robertson (2008); Xiao et al. (2011); Zhang et al. (2004, 2007); Zhao et al. (2010).

Computing details top

Data collection: CrysAlis PRO (Agilent, 2011); cell refinement: CrysAlis PRO (Agilent, 2011); data reduction: CrysAlis PRO (Agilent, 2011); program(s) used to solve structure: OLEX2.SOLVE (Bourhis et al., 2014); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2008); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure and atom-labelling scheme of (I), with displacement ellipsoids drawn at the 30% probability level. H atoms have been omitted for clarity.
[Figure 2] Fig. 2. XRD patterns for complex (I), showing (a) the pattern calculated from the single-crystal data and (b) the pattern observed at room temperature.
[Figure 3] Fig. 3. The UV absorption spectra of 4-PBO, POP and complex (I) in CH2Cl2.
[Figure 4] Fig. 4. The photoluminescent emission (λex = 420 nm) and excitation (λex = 570 nm) spectra recorded on powder samples of complex (I) at room temperature.
[Figure 5] Fig. 5. The TG and DSC curves of complex (I).
(Acetonitrile-κN)({2-[2-(diphenylphosphanyl)phenoxy]phenyl}diphenylphosphane- κ2P,P')[2-(pyridin-4-yl-κN)-1,3-benzoxazole]copper(I) hexafluoridophosphate top
Crystal data top
[Cu(C36H28OP2)(C12H8N2O)(C2H3N)]PF6F(000) = 2016
Mr = 984.29Dx = 1.402 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 14.0913 (11) ÅCell parameters from 5004 reflections
b = 14.9503 (9) Åθ = 3.1–29.5°
c = 22.6588 (15) ŵ = 0.64 mm1
β = 102.300 (7)°T = 293 K
V = 4663.9 (6) Å3Block, clear light yellow
Z = 40.37 × 0.33 × 0.23 mm
Data collection top
Agilent Xcalibur (Atlas, Gemini ultra)
diffractometer
11077 independent reflections
Radiation source: Enhance (Mo) X-ray Source6452 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.038
Detector resolution: 10.3592 pixels mm-1θmax = 29.5°, θmin = 3.1°
ω scansh = 1912
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2011)
k = 1320
Tmin = 0.870, Tmax = 1.000l = 3031
21816 measured reflections
Refinement top
Refinement on F2Primary atom site location: iterative
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.053H-atom parameters constrained
wR(F2) = 0.160 w = 1/[σ2(Fo2) + (0.073P)2 + 0.912P]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max = 0.001
11077 reflectionsΔρmax = 0.58 e Å3
587 parametersΔρmin = 0.37 e Å3
0 restraints
Crystal data top
[Cu(C36H28OP2)(C12H8N2O)(C2H3N)]PF6V = 4663.9 (6) Å3
Mr = 984.29Z = 4
Monoclinic, P21/cMo Kα radiation
a = 14.0913 (11) ŵ = 0.64 mm1
b = 14.9503 (9) ÅT = 293 K
c = 22.6588 (15) Å0.37 × 0.33 × 0.23 mm
β = 102.300 (7)°
Data collection top
Agilent Xcalibur (Atlas, Gemini ultra)
diffractometer
11077 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2011)
6452 reflections with I > 2σ(I)
Tmin = 0.870, Tmax = 1.000Rint = 0.038
21816 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0530 restraints
wR(F2) = 0.160H-atom parameters constrained
S = 1.02Δρmax = 0.58 e Å3
11077 reflectionsΔρmin = 0.37 e Å3
587 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.18529 (3)0.59979 (2)0.36705 (2)0.04349 (13)
P10.11829 (6)0.65930 (5)0.27563 (4)0.0434 (2)
P20.28434 (6)0.69491 (5)0.43039 (4)0.0426 (2)
O10.32207 (16)0.70864 (14)0.30386 (9)0.0480 (5)
O20.4279 (2)0.18489 (17)0.39991 (12)0.0750 (8)
N10.0772 (2)0.5419 (2)0.40123 (13)0.0574 (7)
N20.26887 (19)0.48612 (17)0.36248 (11)0.0467 (6)
N30.4854 (2)0.2289 (2)0.32100 (15)0.0688 (9)
C10.0831 (3)0.4764 (3)0.4213 (2)0.0854 (13)
H1A0.13790.50790.39590.128*
H1B0.08540.48440.46390.128*
H1C0.08700.41260.41130.128*
C20.0081 (3)0.5128 (3)0.41054 (16)0.0583 (9)
C30.0133 (2)0.6750 (2)0.25994 (14)0.0484 (8)
C40.0722 (3)0.6661 (3)0.20214 (16)0.0625 (9)
H40.04400.65470.16830.075*
C50.1718 (3)0.6739 (3)0.1947 (2)0.0774 (12)
H50.21190.66770.15550.093*
C60.2134 (3)0.6904 (3)0.2427 (2)0.0738 (11)
H60.28200.69580.23670.089*
C70.1567 (3)0.6991 (3)0.29967 (19)0.0687 (10)
H70.18580.71050.33310.082*
C80.0570 (3)0.6912 (2)0.30830 (16)0.0584 (9)
H80.01790.69700.34780.070*
C90.1364 (2)0.5982 (2)0.20903 (14)0.0472 (7)
C100.1320 (3)0.5052 (2)0.21047 (16)0.0585 (9)
H100.12390.47570.24620.070*
C110.1392 (3)0.4556 (3)0.15997 (19)0.0723 (11)
H110.13670.39220.16130.087*
C120.1501 (3)0.4979 (3)0.10823 (19)0.0770 (12)
H120.15500.46380.07360.092*
C130.1539 (3)0.5890 (3)0.10635 (18)0.0789 (13)
H130.16080.61800.07020.095*
C140.1479 (3)0.6395 (3)0.15633 (16)0.0644 (10)
H140.15170.70290.15460.077*
C150.1667 (2)0.7712 (2)0.26777 (14)0.0474 (7)
C160.1088 (3)0.8462 (2)0.24916 (16)0.0625 (9)
H160.04070.83910.23510.075*
C170.1495 (4)0.9306 (3)0.25100 (19)0.0759 (12)
H170.10910.98100.23890.091*
C180.2470 (4)0.9420 (2)0.27002 (19)0.0769 (12)
H180.27421.00020.27080.092*
C190.3067 (3)0.8694 (2)0.28821 (17)0.0646 (10)
H190.37480.87720.30150.078*
C200.2657 (3)0.7850 (2)0.28683 (14)0.0475 (8)
C210.4069 (2)0.7172 (2)0.34871 (15)0.0468 (7)
C220.4947 (3)0.7258 (2)0.33098 (18)0.0613 (9)
H220.49620.72890.28930.074*
C230.5800 (3)0.7297 (3)0.3744 (2)0.0687 (11)
H230.64040.73540.36250.082*
C240.5780 (3)0.7254 (3)0.4347 (2)0.0679 (10)
H240.63670.72860.46440.081*
C250.4903 (3)0.7163 (2)0.45177 (17)0.0590 (9)
H250.48950.71350.49350.071*
C260.4021 (2)0.7112 (2)0.40919 (15)0.0469 (7)
C270.3184 (2)0.6530 (2)0.50841 (14)0.0496 (8)
C280.2960 (3)0.6975 (3)0.55681 (16)0.0718 (11)
H280.26850.75570.55140.086*
C290.3134 (3)0.6576 (4)0.61387 (19)0.0920 (15)
H290.29650.68850.64680.110*
C300.3539 (4)0.5759 (4)0.6225 (2)0.0885 (14)
H300.36560.54930.66140.106*
C310.3783 (4)0.5311 (3)0.5750 (2)0.0915 (14)
H310.40740.47360.58110.110*
C320.3606 (3)0.5695 (3)0.51831 (18)0.0757 (12)
H320.37770.53800.48570.091*
C330.2419 (2)0.8091 (2)0.43750 (14)0.0464 (7)
C340.3010 (3)0.8821 (3)0.4488 (3)0.109 (2)
H340.36930.87450.45440.131*
C350.2633 (4)0.9669 (3)0.4522 (3)0.126 (2)
H350.30611.01650.46050.151*
C360.1680 (4)0.9801 (3)0.4439 (2)0.0834 (14)
H360.14261.03870.44510.100*
C370.1079 (4)0.9083 (3)0.4337 (2)0.0894 (15)
H370.03980.91670.42870.107*
C380.1446 (3)0.8231 (3)0.43064 (19)0.0707 (11)
H380.10140.77350.42370.085*
C390.4833 (3)0.1154 (2)0.38473 (18)0.0620 (9)
C400.5025 (4)0.0336 (3)0.4108 (3)0.1077 (18)
H400.47740.01610.44480.129*
C410.5603 (4)0.0224 (3)0.3853 (3)0.1027 (17)
H410.57580.08010.40230.123*
C420.5953 (4)0.0029 (3)0.3367 (3)0.0990 (16)
H420.63320.03810.31950.119*
C430.5776 (4)0.0856 (4)0.3117 (2)0.1072 (19)
H430.60440.10390.27860.129*
C440.5188 (3)0.1419 (3)0.33668 (17)0.0622 (9)
C450.4338 (2)0.2496 (2)0.35919 (15)0.0508 (8)
C460.3792 (2)0.3322 (2)0.36147 (14)0.0459 (7)
C470.3881 (3)0.4042 (2)0.32433 (16)0.0561 (9)
H470.43190.40160.29780.067*
C480.3329 (3)0.4792 (2)0.32642 (16)0.0550 (8)
H480.34030.52840.30130.066*
C490.2612 (3)0.4167 (2)0.39775 (16)0.0572 (9)
H490.21650.42070.42370.069*
C500.3147 (3)0.3387 (2)0.39882 (16)0.0578 (9)
H500.30680.29080.42490.069*
P30.11093 (9)0.25787 (7)0.49916 (5)0.0694 (3)
F10.0341 (3)0.3072 (2)0.5262 (2)0.1609 (16)
F20.1811 (3)0.34119 (19)0.51479 (16)0.1303 (12)
F30.0746 (3)0.2990 (3)0.43509 (17)0.1642 (16)
F40.1942 (2)0.2102 (2)0.47340 (17)0.1264 (11)
F50.0488 (3)0.1722 (2)0.4840 (2)0.1476 (14)
F60.1540 (4)0.2181 (3)0.56213 (16)0.186 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0424 (2)0.0414 (2)0.0459 (2)0.00026 (16)0.00771 (16)0.00045 (16)
P10.0420 (5)0.0432 (4)0.0432 (4)0.0008 (4)0.0047 (3)0.0009 (3)
P20.0381 (5)0.0444 (4)0.0438 (4)0.0009 (3)0.0056 (3)0.0046 (3)
O10.0459 (13)0.0451 (12)0.0511 (12)0.0045 (10)0.0058 (10)0.0049 (10)
O20.098 (2)0.0617 (16)0.0758 (17)0.0216 (15)0.0411 (16)0.0081 (14)
N10.0486 (18)0.0623 (18)0.0639 (18)0.0006 (14)0.0181 (15)0.0057 (15)
N20.0470 (16)0.0440 (14)0.0513 (15)0.0039 (12)0.0152 (12)0.0021 (12)
N30.075 (2)0.067 (2)0.075 (2)0.0268 (17)0.0394 (18)0.0150 (16)
C10.056 (3)0.100 (3)0.105 (3)0.018 (2)0.030 (2)0.000 (3)
C20.057 (2)0.063 (2)0.054 (2)0.0001 (18)0.0121 (17)0.0032 (17)
C30.0467 (19)0.0458 (17)0.0496 (18)0.0025 (14)0.0032 (15)0.0024 (14)
C40.052 (2)0.078 (2)0.052 (2)0.0068 (19)0.0016 (17)0.0045 (18)
C50.056 (3)0.095 (3)0.069 (3)0.005 (2)0.013 (2)0.005 (2)
C60.042 (2)0.081 (3)0.091 (3)0.0107 (19)0.002 (2)0.010 (2)
C70.050 (2)0.077 (3)0.079 (3)0.0122 (19)0.013 (2)0.005 (2)
C80.049 (2)0.066 (2)0.056 (2)0.0101 (17)0.0026 (17)0.0018 (17)
C90.0430 (18)0.0491 (17)0.0480 (18)0.0062 (14)0.0063 (14)0.0025 (15)
C100.063 (2)0.0513 (19)0.059 (2)0.0060 (17)0.0079 (17)0.0069 (17)
C110.080 (3)0.056 (2)0.077 (3)0.010 (2)0.009 (2)0.019 (2)
C120.082 (3)0.087 (3)0.065 (3)0.015 (2)0.024 (2)0.029 (2)
C130.095 (3)0.092 (3)0.055 (2)0.023 (3)0.028 (2)0.010 (2)
C140.077 (3)0.059 (2)0.061 (2)0.0114 (19)0.022 (2)0.0057 (19)
C150.053 (2)0.0432 (17)0.0449 (17)0.0014 (15)0.0073 (15)0.0039 (14)
C160.069 (3)0.051 (2)0.063 (2)0.0070 (18)0.0045 (19)0.0067 (17)
C170.092 (4)0.047 (2)0.083 (3)0.014 (2)0.005 (2)0.009 (2)
C180.095 (4)0.043 (2)0.088 (3)0.008 (2)0.008 (3)0.005 (2)
C190.070 (3)0.052 (2)0.069 (2)0.0146 (19)0.0081 (19)0.0006 (18)
C200.060 (2)0.0399 (16)0.0415 (16)0.0027 (15)0.0088 (15)0.0003 (14)
C210.0422 (19)0.0411 (16)0.057 (2)0.0006 (14)0.0116 (15)0.0070 (15)
C220.052 (2)0.065 (2)0.071 (2)0.0036 (18)0.0237 (19)0.0045 (19)
C230.041 (2)0.069 (2)0.101 (3)0.0021 (18)0.024 (2)0.003 (2)
C240.041 (2)0.074 (3)0.084 (3)0.0057 (18)0.0022 (19)0.002 (2)
C250.045 (2)0.067 (2)0.062 (2)0.0004 (17)0.0037 (17)0.0043 (18)
C260.0410 (18)0.0450 (17)0.0543 (19)0.0019 (14)0.0096 (15)0.0097 (15)
C270.0434 (19)0.0542 (19)0.0482 (18)0.0022 (15)0.0032 (14)0.0034 (15)
C280.075 (3)0.087 (3)0.053 (2)0.023 (2)0.0106 (19)0.002 (2)
C290.081 (3)0.143 (5)0.052 (2)0.024 (3)0.014 (2)0.002 (3)
C300.076 (3)0.123 (4)0.061 (3)0.008 (3)0.001 (2)0.023 (3)
C310.113 (4)0.074 (3)0.076 (3)0.003 (3)0.007 (3)0.013 (2)
C320.099 (3)0.062 (2)0.057 (2)0.015 (2)0.002 (2)0.0029 (19)
C330.0451 (19)0.0471 (17)0.0469 (17)0.0030 (14)0.0093 (14)0.0056 (14)
C340.061 (3)0.056 (2)0.219 (6)0.008 (2)0.046 (3)0.038 (3)
C350.104 (4)0.053 (3)0.240 (7)0.009 (3)0.080 (5)0.037 (4)
C360.118 (4)0.057 (3)0.083 (3)0.032 (3)0.040 (3)0.004 (2)
C370.066 (3)0.094 (4)0.102 (4)0.038 (3)0.002 (2)0.018 (3)
C380.049 (2)0.067 (2)0.092 (3)0.0100 (19)0.003 (2)0.020 (2)
C390.066 (3)0.0479 (19)0.073 (2)0.0093 (17)0.017 (2)0.0018 (18)
C400.141 (5)0.067 (3)0.129 (4)0.026 (3)0.060 (4)0.026 (3)
C410.119 (5)0.054 (3)0.129 (5)0.022 (3)0.013 (4)0.001 (3)
C420.100 (4)0.082 (3)0.114 (4)0.042 (3)0.022 (3)0.014 (3)
C430.123 (5)0.103 (4)0.108 (4)0.063 (3)0.053 (3)0.013 (3)
C440.058 (2)0.066 (2)0.065 (2)0.0144 (19)0.0160 (19)0.0004 (19)
C450.0446 (19)0.0516 (18)0.0540 (19)0.0005 (15)0.0060 (15)0.0020 (16)
C460.0428 (18)0.0471 (17)0.0471 (17)0.0026 (14)0.0080 (14)0.0032 (15)
C470.050 (2)0.061 (2)0.063 (2)0.0068 (17)0.0255 (17)0.0048 (17)
C480.054 (2)0.0513 (19)0.064 (2)0.0002 (16)0.0220 (17)0.0106 (16)
C490.065 (2)0.053 (2)0.060 (2)0.0067 (17)0.0269 (18)0.0034 (17)
C500.073 (3)0.0464 (18)0.060 (2)0.0101 (17)0.0261 (19)0.0087 (16)
P30.0842 (8)0.0573 (6)0.0738 (7)0.0058 (5)0.0325 (6)0.0005 (5)
F10.146 (3)0.125 (3)0.249 (5)0.001 (2)0.125 (3)0.035 (3)
F20.153 (3)0.0830 (19)0.169 (3)0.0405 (19)0.066 (2)0.029 (2)
F30.184 (4)0.177 (4)0.116 (3)0.032 (3)0.003 (2)0.042 (2)
F40.116 (3)0.100 (2)0.183 (3)0.0060 (18)0.077 (2)0.025 (2)
F50.111 (3)0.110 (2)0.238 (4)0.052 (2)0.075 (3)0.061 (3)
F60.316 (6)0.143 (3)0.091 (2)0.009 (3)0.026 (3)0.035 (2)
Geometric parameters (Å, º) top
Cu1—P12.2674 (9)C21—C261.389 (4)
Cu1—P22.2752 (9)C22—H220.9500
Cu1—N12.042 (3)C22—C231.384 (5)
Cu1—N22.083 (3)C23—H230.9500
P1—C31.827 (3)C23—C241.373 (6)
P1—C91.828 (3)C24—H240.9500
P1—C151.830 (3)C24—C251.379 (5)
P2—C261.839 (3)C25—H250.9500
P2—C271.841 (3)C25—C261.404 (5)
P2—C331.827 (3)C27—C281.376 (5)
O1—C201.398 (4)C27—C321.380 (5)
O1—C211.400 (4)C28—H280.9500
O2—C391.386 (4)C28—C291.397 (6)
O2—C451.351 (4)C29—H290.9500
N1—C21.127 (4)C29—C301.345 (7)
N2—C481.344 (4)C30—H300.9500
N2—C491.329 (4)C30—C311.372 (7)
N3—C441.402 (5)C31—H310.9500
N3—C451.281 (4)C31—C321.380 (6)
C1—H1A0.9800C32—H320.9500
C1—H1B0.9800C33—C341.363 (5)
C1—H1C0.9800C33—C381.363 (5)
C1—C21.462 (5)C34—H340.9500
C3—C41.400 (5)C34—C351.384 (6)
C3—C81.388 (5)C35—H350.9500
C4—H40.9500C35—C361.330 (7)
C4—C51.383 (5)C36—H360.9500
C5—H50.9500C36—C371.357 (7)
C5—C61.364 (6)C37—H370.9500
C6—H60.9500C37—C381.383 (5)
C6—C71.372 (6)C38—H380.9500
C7—H70.9500C39—C401.360 (6)
C7—C81.382 (5)C39—C441.351 (5)
C8—H80.9500C40—H400.9500
C9—C101.392 (4)C40—C411.378 (7)
C9—C141.385 (5)C41—H410.9500
C10—H100.9500C41—C421.355 (7)
C10—C111.385 (5)C42—H420.9500
C11—H110.9500C42—C431.360 (7)
C11—C121.369 (6)C43—H430.9500
C12—H120.9500C43—C441.383 (5)
C12—C131.364 (6)C45—C461.462 (4)
C13—H130.9500C46—C471.388 (5)
C13—C141.379 (5)C46—C501.371 (4)
C14—H140.9500C47—H470.9500
C15—C161.399 (5)C47—C481.370 (5)
C15—C201.385 (5)C48—H480.9500
C16—H160.9500C49—H490.9500
C16—C171.383 (5)C49—C501.385 (5)
C17—H170.9500C50—H500.9500
C17—C181.360 (6)P3—F11.540 (3)
C18—H180.9500P3—F21.583 (3)
C18—C191.381 (6)P3—F31.559 (4)
C19—H190.9500P3—F41.586 (3)
C19—C201.384 (5)P3—F51.549 (3)
C21—C221.385 (5)P3—F61.546 (4)
P1—Cu1—P2114.28 (3)C23—C24—C25119.6 (4)
N1—Cu1—P1108.28 (9)C25—C24—H24120.2
N1—Cu1—P2115.62 (9)C24—C25—H25119.1
N1—Cu1—N298.54 (11)C24—C25—C26121.8 (3)
N2—Cu1—P1113.86 (7)C26—C25—H25119.1
N2—Cu1—P2105.30 (8)C21—C26—P2120.2 (2)
C3—P1—Cu1115.86 (11)C21—C26—C25116.9 (3)
C3—P1—C9102.59 (15)C25—C26—P2122.9 (3)
C3—P1—C15104.34 (15)C28—C27—P2122.9 (3)
C9—P1—Cu1117.01 (11)C28—C27—C32118.2 (3)
C9—P1—C15104.83 (14)C32—C27—P2118.7 (3)
C15—P1—Cu1110.87 (11)C27—C28—H28119.8
C26—P2—Cu1112.60 (10)C27—C28—C29120.4 (4)
C26—P2—C27103.32 (15)C29—C28—H28119.8
C27—P2—Cu1113.10 (11)C28—C29—H29119.8
C33—P2—Cu1118.13 (11)C30—C29—C28120.5 (4)
C33—P2—C26103.28 (15)C30—C29—H29119.8
C33—P2—C27104.90 (14)C29—C30—H30120.0
C20—O1—C21118.2 (2)C29—C30—C31119.9 (4)
C45—O2—C39104.3 (3)C31—C30—H30120.0
C2—N1—Cu1168.1 (3)C30—C31—H31120.0
C48—N2—Cu1123.6 (2)C30—C31—C32120.1 (4)
C49—N2—Cu1119.2 (2)C32—C31—H31120.0
C49—N2—C48117.2 (3)C27—C32—C31120.9 (4)
C45—N3—C44105.1 (3)C27—C32—H32119.5
H1A—C1—H1B109.5C31—C32—H32119.5
H1A—C1—H1C109.5C34—C33—P2124.5 (3)
H1B—C1—H1C109.5C34—C33—C38117.3 (3)
C2—C1—H1A109.5C38—C33—P2118.2 (3)
C2—C1—H1B109.5C33—C34—H34119.4
C2—C1—H1C109.5C33—C34—C35121.2 (5)
N1—C2—C1178.5 (4)C35—C34—H34119.4
C4—C3—P1123.0 (3)C34—C35—H35119.5
C8—C3—P1118.1 (3)C36—C35—C34121.1 (5)
C8—C3—C4118.7 (3)C36—C35—H35119.5
C3—C4—H4120.3C35—C36—H36120.6
C5—C4—C3119.4 (4)C35—C36—C37118.8 (4)
C5—C4—H4120.3C37—C36—H36120.6
C4—C5—H5119.5C36—C37—H37119.7
C6—C5—C4121.1 (4)C36—C37—C38120.7 (4)
C6—C5—H5119.5C38—C37—H37119.7
C5—C6—H6119.9C33—C38—C37120.9 (4)
C5—C6—C7120.2 (4)C33—C38—H38119.5
C7—C6—H6119.9C37—C38—H38119.5
C6—C7—H7120.1C40—C39—O2129.5 (4)
C6—C7—C8119.8 (4)C44—C39—O2107.8 (3)
C8—C7—H7120.1C44—C39—C40122.7 (4)
C3—C8—H8119.6C39—C40—H40121.8
C7—C8—C3120.8 (3)C39—C40—C41116.4 (5)
C7—C8—H8119.6C41—C40—H40121.8
C10—C9—P1117.7 (2)C40—C41—H41119.3
C14—C9—P1123.5 (3)C42—C41—C40121.4 (5)
C14—C9—C10118.7 (3)C42—C41—H41119.3
C9—C10—H10119.9C41—C42—H42119.1
C11—C10—C9120.2 (3)C43—C42—C41121.7 (4)
C11—C10—H10119.9C43—C42—H42119.1
C10—C11—H11119.9C42—C43—H43121.4
C12—C11—C10120.1 (4)C42—C43—C44117.2 (5)
C12—C11—H11119.9C44—C43—H43121.4
C11—C12—H12120.0C39—C44—N3108.3 (3)
C13—C12—C11120.0 (4)C39—C44—C43120.5 (4)
C13—C12—H12120.0C43—C44—N3131.2 (4)
C12—C13—H13119.6O2—C45—C46118.1 (3)
C12—C13—C14120.8 (4)N3—C45—O2114.5 (3)
C14—C13—H13119.6N3—C45—C46127.3 (3)
C9—C14—H14119.9C47—C46—C45121.2 (3)
C13—C14—C9120.2 (4)C50—C46—C45120.3 (3)
C13—C14—H14119.9C50—C46—C47118.4 (3)
C16—C15—P1123.8 (3)C46—C47—H47120.4
C20—C15—P1118.6 (2)C48—C47—C46119.2 (3)
C20—C15—C16117.3 (3)C48—C47—H47120.4
C15—C16—H16119.6N2—C48—C47122.9 (3)
C17—C16—C15120.7 (4)N2—C48—H48118.5
C17—C16—H16119.6C47—C48—H48118.5
C16—C17—H17119.7N2—C49—H49118.2
C18—C17—C16120.5 (4)N2—C49—C50123.6 (3)
C18—C17—H17119.7C50—C49—H49118.2
C17—C18—H18119.8C46—C50—C49118.6 (3)
C17—C18—C19120.4 (4)C46—C50—H50120.7
C19—C18—H18119.8C49—C50—H50120.7
C18—C19—H19120.5F1—P3—F289.6 (2)
C18—C19—C20119.0 (4)F1—P3—F393.6 (3)
C20—C19—H19120.5F1—P3—F4177.1 (2)
C15—C20—O1116.1 (3)F1—P3—F594.2 (2)
C15—C20—C19122.0 (3)F1—P3—F689.3 (3)
C19—C20—O1121.9 (3)F2—P3—F487.75 (18)
C22—C21—O1118.4 (3)F3—P3—F287.9 (2)
C22—C21—C26121.8 (3)F3—P3—F487.5 (2)
C26—C21—O1119.7 (3)F5—P3—F2175.9 (2)
C21—C22—H22120.3F5—P3—F393.5 (3)
C23—C22—C21119.5 (4)F5—P3—F488.46 (17)
C23—C22—H22120.3F5—P3—F688.8 (2)
C22—C23—H23119.8F6—P3—F289.6 (2)
C24—C23—C22120.4 (4)F6—P3—F3176.2 (3)
C24—C23—H23119.8F6—P3—F489.5 (3)
C23—C24—H24120.2
Cu1—P1—C3—C4146.4 (3)C17—C18—C19—C200.1 (6)
Cu1—P1—C3—C829.6 (3)C18—C19—C20—O1179.1 (3)
Cu1—P1—C9—C1039.1 (3)C18—C19—C20—C150.0 (5)
Cu1—P1—C9—C14145.2 (3)C20—O1—C21—C2298.1 (3)
Cu1—P1—C15—C16129.6 (3)C20—O1—C21—C2686.0 (3)
Cu1—P1—C15—C2043.8 (3)C20—C15—C16—C171.1 (5)
Cu1—P2—C26—C2138.7 (3)C21—O1—C20—C15149.2 (3)
Cu1—P2—C26—C25140.0 (2)C21—O1—C20—C1931.6 (4)
Cu1—P2—C27—C28119.3 (3)C21—C22—C23—C240.2 (6)
Cu1—P2—C27—C3254.7 (3)C22—C21—C26—P2177.3 (3)
Cu1—P2—C33—C34148.5 (4)C22—C21—C26—C251.5 (5)
Cu1—P2—C33—C3831.0 (3)C22—C23—C24—C250.5 (6)
Cu1—N2—C48—C47179.4 (3)C23—C24—C25—C260.1 (6)
Cu1—N2—C49—C50178.9 (3)C24—C25—C26—P2177.7 (3)
P1—C3—C4—C5176.2 (3)C24—C25—C26—C211.1 (5)
P1—C3—C8—C7176.6 (3)C26—P2—C27—C28118.7 (3)
P1—C9—C10—C11176.1 (3)C26—P2—C27—C3267.3 (3)
P1—C9—C14—C13175.1 (3)C26—P2—C33—C3423.5 (4)
P1—C15—C16—C17172.3 (3)C26—P2—C33—C38156.0 (3)
P1—C15—C20—O17.6 (4)C26—C21—C22—C230.9 (5)
P1—C15—C20—C19173.2 (3)C27—P2—C26—C21161.1 (3)
P2—C27—C28—C29172.4 (3)C27—P2—C26—C2517.6 (3)
P2—C27—C32—C31173.2 (4)C27—P2—C33—C3484.5 (4)
P2—C33—C34—C35178.5 (5)C27—P2—C33—C3896.1 (3)
P2—C33—C38—C37178.1 (3)C27—C28—C29—C301.2 (7)
O1—C21—C22—C23176.7 (3)C28—C27—C32—C311.1 (6)
O1—C21—C26—P21.5 (4)C28—C29—C30—C310.1 (8)
O1—C21—C26—C25177.3 (3)C29—C30—C31—C320.5 (8)
O2—C39—C40—C41179.6 (5)C30—C31—C32—C270.0 (7)
O2—C39—C44—N30.2 (5)C32—C27—C28—C291.7 (6)
O2—C39—C44—C43179.8 (4)C33—P2—C26—C2189.8 (3)
O2—C45—C46—C47174.7 (3)C33—P2—C26—C2591.5 (3)
O2—C45—C46—C508.1 (5)C33—P2—C27—C2810.8 (4)
N2—C49—C50—C460.1 (6)C33—P2—C27—C32175.2 (3)
N3—C45—C46—C478.0 (6)C33—C34—C35—C360.7 (10)
N3—C45—C46—C50169.2 (4)C34—C33—C38—C371.4 (6)
C3—P1—C9—C1088.9 (3)C34—C35—C36—C371.9 (9)
C3—P1—C9—C1486.9 (3)C35—C36—C37—C381.4 (8)
C3—P1—C15—C164.2 (3)C36—C37—C38—C330.3 (7)
C3—P1—C15—C20169.2 (2)C38—C33—C34—C351.0 (8)
C3—C4—C5—C60.1 (6)C39—O2—C45—N30.1 (4)
C4—C3—C8—C70.5 (5)C39—O2—C45—C46177.7 (3)
C4—C5—C6—C70.3 (7)C39—C40—C41—C420.4 (9)
C5—C6—C7—C80.1 (6)C40—C39—C44—N3179.9 (5)
C6—C7—C8—C30.3 (6)C40—C39—C44—C430.2 (7)
C8—C3—C4—C50.3 (5)C40—C41—C42—C431.9 (9)
C9—P1—C3—C417.7 (3)C41—C42—C43—C442.5 (9)
C9—P1—C3—C8158.3 (3)C42—C43—C44—N3178.4 (5)
C9—P1—C15—C16103.3 (3)C42—C43—C44—C391.6 (8)
C9—P1—C15—C2083.3 (3)C44—N3—C45—O20.2 (5)
C9—C10—C11—C120.5 (6)C44—N3—C45—C46177.6 (3)
C10—C9—C14—C130.6 (6)C44—C39—C40—C410.5 (8)
C10—C11—C12—C130.1 (7)C45—O2—C39—C40180.0 (5)
C11—C12—C13—C140.7 (7)C45—O2—C39—C440.1 (4)
C12—C13—C14—C91.0 (7)C45—N3—C44—C390.3 (5)
C14—C9—C10—C110.1 (5)C45—N3—C44—C43179.7 (5)
C15—P1—C3—C491.5 (3)C45—C46—C47—C48177.7 (3)
C15—P1—C3—C892.6 (3)C45—C46—C50—C49177.2 (3)
C15—P1—C9—C10162.4 (3)C46—C47—C48—N21.0 (6)
C15—P1—C9—C1421.9 (3)C47—C46—C50—C490.1 (5)
C15—C16—C17—C181.1 (6)C48—N2—C49—C500.4 (5)
C16—C15—C20—O1178.6 (3)C49—N2—C48—C470.9 (5)
C16—C15—C20—C190.6 (5)C50—C46—C47—C480.4 (5)
C16—C17—C18—C190.5 (7)

Experimental details

Crystal data
Chemical formula[Cu(C36H28OP2)(C12H8N2O)(C2H3N)]PF6
Mr984.29
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)14.0913 (11), 14.9503 (9), 22.6588 (15)
β (°) 102.300 (7)
V3)4663.9 (6)
Z4
Radiation typeMo Kα
µ (mm1)0.64
Crystal size (mm)0.37 × 0.33 × 0.23
Data collection
DiffractometerAgilent Xcalibur (Atlas, Gemini ultra)
diffractometer
Absorption correctionMulti-scan
(CrysAlis PRO; Agilent, 2011)
Tmin, Tmax0.870, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
21816, 11077, 6452
Rint0.038
(sin θ/λ)max1)0.693
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.053, 0.160, 1.02
No. of reflections11077
No. of parameters587
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.58, 0.37

Computer programs: CrysAlis PRO (Agilent, 2011), OLEX2.SOLVE (Bourhis et al., 2014), SHELXL2014 (Sheldrick, 2008), OLEX2 (Dolomanov et al., 2009).

Selected geometric parameters (Å, º) top
Cu1—P12.2674 (9)Cu1—N12.042 (3)
Cu1—P22.2752 (9)Cu1—N22.083 (3)
P1—Cu1—P2114.28 (3)N1—Cu1—N298.54 (11)
N1—Cu1—P1108.28 (9)N2—Cu1—P1113.86 (7)
N1—Cu1—P2115.62 (9)N2—Cu1—P2105.30 (8)
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds