Download citation
Download citation
link to html
In the title compound, C9H11N3OS, the OCN group makes dihedral angles of 30.48 (16) and 74.41 (14)°, respectively, with the phenyl and methyl­thio­urea groups. The crystal structure is stabilized by weak inter­molecular N—H...S, N—H...O and C—H...O hydrogen bonds, to form a two-dimensional network.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536805039528/bh6048sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536805039528/bh6048Isup2.hkl
Contains datablock I

CCDC reference: 296713

Key indicators

  • Single-crystal X-ray study
  • T = 298 K
  • Mean [sigma](C-C) = 0.005 Å
  • R factor = 0.064
  • wR factor = 0.155
  • Data-to-parameter ratio = 15.9

checkCIF/PLATON results

No syntax errors found



Alert level C PLAT340_ALERT_3_C Low Bond Precision on C-C bonds (x 1000) Ang ... 5
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 1 ALERT level C = Check and explain 0 ALERT level G = General alerts; check 0 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 0 ALERT type 2 Indicator that the structure model may be wrong or deficient 1 ALERT type 3 Indicator that the structure quality may be low 0 ALERT type 4 Improvement, methodology, query or suggestion

Comment top

The continuing efforts to synthesize new thiosemicarbazide derivatives are driven by their ability to form complexes with metal ions and also their biological activities. As an example, 4-(2-methylprop-2-enyl)-1-[3-(trifluoromethyl)phenyl]thiosemicarbazide has been found to exhibit anti-implantation activity (Nagarajan et al., 1984).

The title molecule, (I), adopts a cistrans configuration with respect to the position of the methyl and benzoylamine groups, respectively, against the thiono across the N3—C8 and N2—C8 bonds (Fig. 1), as observed in the related compounds 1-methyl-4-salicyloyl-thiosemicarbazide (Gors et al., 1979) and 4-phenyl-1-(propan-2-ylidene)thiosemicarbazide (Jian et al., 2005). The bond lengths and angles in (I) are in normal ranges (Allen et al., 1987) and comparable to those in the above-cited compounds.

The methylthiourea (S1/N2/N3/C8/C9), phenyl (C1–C6) and O1/C7/N1 fragments are each planar. The maximum deviation is 0.011 (3) Å for atom C1 in the phenyl group. The O1/C7/N1 fragment makes dihedral angles of 30.48 (16) and 74.41 (14)° with the phenyl and methylthiourea fragments. The phenyl and methylthiourea fragments bisect each other by 75.12 (14)°. In the crystal structure, the molecules are linked by weak intermolecular N—H···S, N—H···O and C—H···O hydrogen bonds (Table 2) to form a two-dimensional network (Fig.2).

Experimental top

A solution of 4-methyl-thiosemicarbazide (1.05 g, 0.01 mol) in acetone (50 ml) was added dropwise into an acetone solution (50 ml) containing an equimolar amount of benzoylchloride and ammonium thiocyanate in a two-necked round-bottomed flask. The mixture was refluxed for about 2 h. The light-yellow solution was filtered off and colourless crystals were obtained after five days of evaporation (yield 85%, m.p. 185.3–188.8 K).

Refinement top

All H atoms were placed in idealized positions and allowed to ride on their parent C and N atoms with distances constrained to 0.93 (aromatic C—H), 0.96 (methyl C—H) or 0.86 Å (N—H). Uiso(H) values were set at 1.2Ueq(carrier atom) for aromatic CH and NH groups, and 1.5Ueq(carrier atom) for the methyl CH3 group.

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 1997); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL, PARST (Nardelli, 1995) and PLATON (Spek, 2003).

Figures top
[Figure 1] Fig. 1. : Molecular structure of (I), with 50% probability displacement ellipsoids.
[Figure 2] Fig. 2. : Packing diagram of (I), viewed down the b axis. The dashed lines denote the N—H···O and N—H···S hydrogen bonds.
1-Benzoyl-4-methylthiosemicarbazide top
Crystal data top
C9H11N3OSF(000) = 440
Mr = 209.27Dx = 1.349 Mg m3
Monoclinic, P21/cMelting point = 185.3–188.8 K
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 12.110 (14) ÅCell parameters from 2263 reflections
b = 9.958 (11) Åθ = 1.7–26.0°
c = 8.758 (10) ŵ = 0.29 mm1
β = 102.69 (2)°T = 298 K
V = 1030 (2) Å3Block, colourless
Z = 40.49 × 0.20 × 0.19 mm
Data collection top
Bruker AXS CCD area-detector
diffractometer
2014 independent reflections
Radiation source: fine-focus sealed tube1807 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.050
Detector resolution: 83.66 pixels mm-1θmax = 26.0°, θmin = 1.7°
ω scansh = 1314
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
k = 1211
Tmin = 0.873, Tmax = 0.947l = 1010
5555 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.064Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.155H-atom parameters constrained
S = 1.23 w = 1/[σ2(Fo2) + (0.0526P)2 + 0.5802P]
where P = (Fo2 + 2Fc2)/3
2014 reflections(Δ/σ)max < 0.001
127 parametersΔρmax = 0.29 e Å3
0 restraintsΔρmin = 0.22 e Å3
Crystal data top
C9H11N3OSV = 1030 (2) Å3
Mr = 209.27Z = 4
Monoclinic, P21/cMo Kα radiation
a = 12.110 (14) ŵ = 0.29 mm1
b = 9.958 (11) ÅT = 298 K
c = 8.758 (10) Å0.49 × 0.20 × 0.19 mm
β = 102.69 (2)°
Data collection top
Bruker AXS CCD area-detector
diffractometer
2014 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
1807 reflections with I > 2σ(I)
Tmin = 0.873, Tmax = 0.947Rint = 0.050
5555 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0640 restraints
wR(F2) = 0.155H-atom parameters constrained
S = 1.23Δρmax = 0.29 e Å3
2014 reflectionsΔρmin = 0.22 e Å3
127 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.48871 (7)0.57819 (8)0.19465 (10)0.0508 (3)
O10.20052 (19)0.8871 (2)0.1134 (3)0.0571 (6)
N10.3140 (2)0.8563 (2)0.3521 (3)0.0447 (6)
H1A0.32190.86270.45180.054*
N20.3912 (2)0.7853 (2)0.2877 (3)0.0490 (7)
H2A0.43580.82910.24180.059*
N30.3364 (2)0.5854 (2)0.3757 (3)0.0438 (6)
H3A0.29460.63230.42310.053*
C10.0452 (3)1.0291 (3)0.2587 (4)0.0526 (8)
H1B0.01190.97950.17060.063*
C20.0190 (3)1.1178 (4)0.3228 (5)0.0622 (9)
H2B0.09591.12630.27870.075*
C30.0284 (3)1.1936 (3)0.4500 (4)0.0584 (9)
H3B0.01601.25250.49300.070*
C40.1421 (3)1.1823 (3)0.5142 (4)0.0606 (9)
H4A0.17511.23560.59910.073*
C50.2076 (3)1.0920 (3)0.4531 (4)0.0502 (8)
H5A0.28441.08370.49790.060*
C60.1591 (2)1.0137 (3)0.3249 (3)0.0398 (6)
C70.2254 (2)0.9155 (3)0.2522 (3)0.0414 (7)
C80.3992 (2)0.6504 (3)0.2943 (3)0.0375 (6)
C90.3328 (3)0.4408 (3)0.3908 (4)0.0608 (9)
H9A0.28180.41720.45630.091*
H9B0.40720.40790.43680.091*
H9C0.30710.40120.28920.091*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0543 (5)0.0487 (5)0.0549 (5)0.0154 (3)0.0240 (4)0.0014 (3)
O10.0566 (13)0.0728 (15)0.0462 (13)0.0129 (11)0.0208 (11)0.0172 (11)
N10.0556 (15)0.0357 (12)0.0490 (14)0.0036 (11)0.0248 (12)0.0056 (10)
N20.0540 (15)0.0353 (12)0.0686 (17)0.0030 (10)0.0374 (14)0.0085 (11)
N30.0485 (14)0.0387 (12)0.0478 (14)0.0008 (10)0.0185 (12)0.0013 (10)
C10.0494 (18)0.0490 (17)0.058 (2)0.0024 (14)0.0080 (15)0.0005 (15)
C20.0503 (19)0.060 (2)0.077 (2)0.0139 (16)0.0146 (18)0.0080 (18)
C30.066 (2)0.0471 (17)0.068 (2)0.0222 (16)0.0282 (18)0.0079 (16)
C40.079 (3)0.0481 (18)0.054 (2)0.0162 (16)0.0124 (18)0.0083 (15)
C50.0519 (18)0.0456 (16)0.0519 (18)0.0083 (13)0.0092 (15)0.0067 (14)
C60.0453 (16)0.0355 (13)0.0421 (16)0.0013 (12)0.0170 (13)0.0032 (11)
C70.0442 (16)0.0393 (15)0.0457 (17)0.0126 (12)0.0204 (13)0.0041 (12)
C80.0354 (14)0.0399 (15)0.0361 (14)0.0018 (11)0.0055 (11)0.0060 (11)
C90.083 (3)0.0408 (16)0.061 (2)0.0032 (16)0.0209 (19)0.0048 (14)
Geometric parameters (Å, º) top
S1—C81.694 (3)C2—C31.363 (5)
O1—C71.220 (4)C2—H2B0.9300
N1—C71.361 (4)C3—C41.373 (5)
N1—N21.387 (3)C3—H3B0.9300
N1—H1A0.8600C4—C51.383 (4)
N2—C81.347 (4)C4—H4A0.9300
N2—H2A0.8600C5—C61.387 (4)
N3—C81.320 (4)C5—H5A0.9300
N3—C91.448 (4)C6—C71.494 (4)
N3—H3A0.8600C9—H9A0.9600
C1—C21.375 (5)C9—H9B0.9600
C1—C61.383 (5)C9—H9C0.9600
C1—H1B0.9300
C7—N1—N2117.8 (3)C5—C4—H4A119.9
C7—N1—H1A121.1C4—C5—C6120.1 (3)
N2—N1—H1A121.1C4—C5—H5A120.0
C8—N2—N1122.7 (2)C6—C5—H5A120.0
C8—N2—H2A118.7C1—C6—C5118.9 (3)
N1—N2—H2A118.7C1—C6—C7118.3 (3)
C8—N3—C9124.7 (3)C5—C6—C7122.7 (3)
C8—N3—H3A117.6O1—C7—N1121.8 (3)
C9—N3—H3A117.6O1—C7—C6122.6 (3)
C2—C1—C6120.1 (3)N1—C7—C6115.6 (3)
C2—C1—H1B120.0N3—C8—N2117.9 (2)
C6—C1—H1B120.0N3—C8—S1125.4 (2)
C3—C2—C1121.0 (3)N2—C8—S1116.7 (2)
C3—C2—H2B119.5N3—C9—H9A109.5
C1—C2—H2B119.5N3—C9—H9B109.5
C2—C3—C4119.6 (3)H9A—C9—H9B109.5
C2—C3—H3B120.2N3—C9—H9C109.5
C4—C3—H3B120.2H9A—C9—H9C109.5
C3—C4—C5120.3 (3)H9B—C9—H9C109.5
C3—C4—H4A119.9
C7—N1—N2—C8109.4 (3)N2—N1—C7—C6167.6 (2)
C6—C1—C2—C31.3 (5)C1—C6—C7—O128.3 (4)
C1—C2—C3—C40.7 (5)C5—C6—C7—O1150.0 (3)
C2—C3—C4—C51.8 (5)C1—C6—C7—N1149.8 (3)
C3—C4—C5—C60.9 (5)C5—C6—C7—N131.9 (4)
C2—C1—C6—C52.1 (5)C9—N3—C8—N2178.3 (3)
C2—C1—C6—C7179.6 (3)C9—N3—C8—S11.0 (4)
C4—C5—C6—C11.0 (5)N1—N2—C8—N35.2 (4)
C4—C5—C6—C7179.3 (3)N1—N2—C8—S1174.1 (2)
N2—N1—C7—O114.3 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3A···N10.862.342.715 (4)107
N1—H1A···S1i0.862.663.334 (5)136
N2—H2A···S1ii0.862.663.248 (4)127
N3—H3A···O1i0.862.222.936 (5)140
C3—H3B···O1iii0.932.603.321 (6)135
Symmetry codes: (i) x, y+3/2, z+1/2; (ii) x+1, y+1/2, z+1/2; (iii) x, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC9H11N3OS
Mr209.27
Crystal system, space groupMonoclinic, P21/c
Temperature (K)298
a, b, c (Å)12.110 (14), 9.958 (11), 8.758 (10)
β (°) 102.69 (2)
V3)1030 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.29
Crystal size (mm)0.49 × 0.20 × 0.19
Data collection
DiffractometerBruker AXS CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2000)
Tmin, Tmax0.873, 0.947
No. of measured, independent and
observed [I > 2σ(I)] reflections
5555, 2014, 1807
Rint0.050
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.064, 0.155, 1.23
No. of reflections2014
No. of parameters127
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.29, 0.22

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SAINT, SHELXTL (Sheldrick, 1997), SHELXTL, PARST (Nardelli, 1995) and PLATON (Spek, 2003).

Selected geometric parameters (Å, º) top
S1—C81.694 (3)N2—C81.347 (4)
O1—C71.220 (4)N3—C81.320 (4)
N1—C71.361 (4)N3—C91.448 (4)
N1—N21.387 (3)
C7—N1—N2117.8 (3)N3—C8—N2117.9 (2)
C8—N2—N1122.7 (2)N3—C8—S1125.4 (2)
C8—N3—C9124.7 (3)N2—C8—S1116.7 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···S1i0.862.663.334 (5)136
N2—H2A···S1ii0.862.663.248 (4)127
N3—H3A···O1i0.862.222.936 (5)140
C3—H3B···O1iii0.932.603.321 (6)135
Symmetry codes: (i) x, y+3/2, z+1/2; (ii) x+1, y+1/2, z+1/2; (iii) x, y+1/2, z+1/2.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds