Download citation
Download citation
link to html
X-ray crystallographic and computational studies are reported for a series of boranthrenes, substituted with halogen atoms. The role of competitive hydrogen (O—H...O, O—H...F, C—H...O) and halogen (Cl...Cl, O...Br, F...F) bonding interactions on the molecular arrangement in the crystal structures is discussed. The structural analysis and calculations reveal that the O—H...O hydrogen bond in the unsubstituted derivative 5,10-dihydroxy-5,10-dihydroboranthrene, C12H10B2O2, is of moderate strength (ca −20 kJ mol−1), but weaker than that in the related thiophene derivative 4,8-dihydro-4,8-dihydroxy-p-diborino[2,3-b:5,6-b]dithiophene, C8H6B2O2S2 (ca −40 kJ mol−1). This is due to shielding of the OH group by the H atoms in the β-position of the boranthrene unit. Structural diversity derived from the flexibility of the O—H...O hydrogen bond facilitates the occurrence of other competitive interactions. For instance, in the 1,6-difluoro derivative, C12H8B2F2O2, the crystal packing results from O—H...F and F...F interactions. In turn, the 1,6-dibromo derivative, C12H8B2Br2O2, is dominated by Br...O halogen-bond interactions. In the most interesting case, the 1,6-dichloro derivative, C12H8B2Cl2O2, molecular disorder leads to the formation of two different supramolecular arrangements co-existing in the crystal lattice, one based on the Cl...Cl and C—H...O bonds, and the other stabilized by O—H...O hydrogen bonds. Calculations performed with density-functional theory (DFT; CRYSTAL09) and PIXEL methodologies show that both lattices are characterized by similar energy values (ca −100 kJ mol−1). A mixed arrangement with random or short-range-ordered molecular orientations can also be expected.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S2052520613034987/bi5017sup1.cif
Contains datablocks I, II, III, IV, V, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2052520613034987/bi5017Isup2.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2052520613034987/bi5017IIsup3.hkl
Contains datablock II

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2052520613034987/bi5017IIIsup4.hkl
Contains datablock III

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2052520613034987/bi5017IVsup5.hkl
Contains datablock IV

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2052520613034987/bi5017Vsup6.hkl
Contains datablock V

pdf

Portable Document Format (PDF) file https://doi.org/10.1107/S2052520613034987/bi5017sup7.pdf
Supplementary figures and tables

CCDC references: 979192; 979193; 979194; 979195; 979196

Computing details top

Data collection: CrysAlis PRO (Agilent, 2011) for (I), (II), (III), (IV); APEX2 (Bruker, 2011) for (V). Cell refinement: CrysAlis PRO for (I), (II), (III), (IV); SAINT (Bruker, 2011) for (V). Data reduction: CrysAlis PRO for (I), (II), (III), (IV); SAINT for (V). For all compounds, program(s) used to solve structure: SHELXS2013 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2013; molecular graphics: SHELXTL (Bruker, 2011); software used to prepare material for publication: SHELXL2013.

Figures top
[Figure 1]
[Figure 2]
[Figure 3]
[Figure 4]
[Figure 5]
[Figure 6]
[Figure 7]
[Figure 8]
[Figure 9]
[Figure 10]
(I) top
Crystal data top
C12H10B2O2Dx = 1.402 Mg m3
Mr = 207.82Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, P212121Cell parameters from 2772 reflections
a = 4.8645 (4) Åθ = 2.0–34.3°
b = 13.0540 (11) ŵ = 0.09 mm1
c = 15.5080 (14) ÅT = 100 K
V = 984.78 (15) Å3Unspecified, colourless
Z = 40.10 × 0.07 × 0.06 mm
F(000) = 432
Data collection top
KUMA KM4 CCD
diffractometer
2096 independent reflections
Radiation source: fine-focus sealed tube1474 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.079
ω scansθmax = 26.7°, θmin = 2.0°
Absorption correction: multi-scan
CrysAlis PRO (Agilent, 2011)
h = 66
Tmin = 0.428, Tmax = 1.000k = 1616
10703 measured reflectionsl = 1919
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.081H-atom parameters constrained
wR(F2) = 0.220 w = 1/[σ2(Fo2) + (0.1435P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max < 0.001
2096 reflectionsΔρmax = 1.01 e Å3
145 parametersΔρmin = 0.36 e Å3
Crystal data top
C12H10B2O2V = 984.78 (15) Å3
Mr = 207.82Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 4.8645 (4) ŵ = 0.09 mm1
b = 13.0540 (11) ÅT = 100 K
c = 15.5080 (14) Å0.10 × 0.07 × 0.06 mm
Data collection top
KUMA KM4 CCD
diffractometer
2096 independent reflections
Absorption correction: multi-scan
CrysAlis PRO (Agilent, 2011)
1474 reflections with I > 2σ(I)
Tmin = 0.428, Tmax = 1.000Rint = 0.079
10703 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0810 restraints
wR(F2) = 0.220H-atom parameters constrained
S = 1.05Δρmax = 1.01 e Å3
2096 reflectionsΔρmin = 0.36 e Å3
145 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.1682 (7)0.0445 (2)0.1511 (2)0.0184 (9)
H10.05270.08350.17450.028*
O20.3250 (7)0.3186 (2)0.3511 (2)0.0179 (9)
H20.43690.35850.32710.027*
C10.4681 (10)0.2116 (3)0.2182 (3)0.0133 (11)
C60.6646 (10)0.2813 (3)0.1865 (3)0.0165 (12)
H60.69550.34330.21720.020*
C20.4211 (10)0.1204 (3)0.1699 (3)0.0145 (11)
C50.8128 (10)0.2629 (4)0.1130 (3)0.0177 (12)
H50.94620.31110.09410.021*
C70.0223 (10)0.0630 (4)0.2834 (3)0.0140 (11)
C30.5728 (11)0.1040 (3)0.0947 (3)0.0163 (11)
H30.54180.04340.06210.020*
B10.1955 (12)0.0431 (4)0.1996 (3)0.0124 (12)
C80.0723 (10)0.1538 (4)0.3317 (3)0.0133 (11)
B20.2994 (12)0.2310 (4)0.3027 (4)0.0133 (12)
C120.1792 (10)0.0060 (3)0.3131 (3)0.0132 (11)
H120.21320.06720.28160.016*
C40.7681 (10)0.1739 (4)0.0662 (3)0.0191 (12)
H40.87010.16090.01520.023*
C90.0806 (11)0.1702 (4)0.4075 (3)0.0188 (12)
H90.04630.22980.44100.023*
C110.3292 (10)0.0135 (4)0.3875 (3)0.0189 (12)
H110.46580.03360.40610.023*
C100.2796 (11)0.1015 (3)0.4345 (3)0.0176 (11)
H100.38220.11490.48540.021*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0199 (19)0.0110 (17)0.024 (2)0.0029 (14)0.0026 (17)0.0019 (15)
O20.0195 (18)0.0128 (17)0.021 (2)0.0004 (15)0.0021 (16)0.0000 (14)
C10.012 (2)0.012 (2)0.016 (3)0.0027 (18)0.002 (2)0.002 (2)
C60.014 (2)0.010 (2)0.025 (3)0.003 (2)0.004 (2)0.004 (2)
C20.017 (3)0.012 (2)0.015 (2)0.005 (2)0.004 (2)0.0024 (19)
C50.015 (2)0.016 (3)0.022 (3)0.003 (2)0.003 (2)0.005 (2)
C70.016 (2)0.009 (2)0.017 (3)0.0034 (19)0.005 (2)0.001 (2)
C30.019 (2)0.014 (3)0.016 (3)0.000 (2)0.003 (2)0.001 (2)
B10.014 (3)0.007 (2)0.016 (3)0.006 (2)0.002 (2)0.002 (2)
C80.013 (2)0.010 (2)0.017 (3)0.0027 (19)0.001 (2)0.001 (2)
B20.013 (3)0.008 (2)0.019 (3)0.000 (2)0.002 (2)0.003 (2)
C120.013 (2)0.005 (2)0.021 (3)0.000 (2)0.001 (2)0.001 (2)
C40.016 (3)0.023 (3)0.018 (3)0.003 (2)0.004 (2)0.004 (2)
C90.023 (3)0.010 (2)0.023 (3)0.004 (2)0.002 (2)0.004 (2)
C110.020 (3)0.013 (2)0.024 (3)0.000 (2)0.002 (2)0.004 (2)
C100.019 (3)0.018 (2)0.016 (3)0.004 (2)0.003 (2)0.002 (2)
Geometric parameters (Å, º) top
O1—B11.375 (6)C7—C121.409 (7)
O2—B21.373 (6)C7—C81.423 (7)
C1—C61.408 (7)C7—B11.570 (7)
C1—C21.426 (6)C3—C41.390 (7)
C1—B21.567 (7)C8—C91.408 (7)
C6—C51.370 (7)C8—B21.562 (7)
C2—C31.397 (7)C12—C111.389 (7)
C2—B11.560 (7)C9—C101.385 (7)
C5—C41.386 (7)C11—C101.382 (7)
C6—C1—C2117.7 (5)O1—B1—C7122.5 (4)
C6—C1—B2122.9 (4)C2—B1—C7121.0 (4)
C2—C1—B2119.4 (4)C9—C8—C7118.4 (4)
C5—C6—C1122.3 (5)C9—C8—B2121.1 (4)
C3—C2—C1118.8 (4)C7—C8—B2120.5 (4)
C3—C2—B1121.3 (4)O2—B2—C8116.4 (4)
C1—C2—B1119.8 (4)O2—B2—C1123.0 (4)
C6—C5—C4120.0 (5)C8—B2—C1120.4 (4)
C12—C7—C8118.7 (4)C11—C12—C7121.3 (4)
C12—C7—B1122.6 (4)C5—C4—C3119.5 (5)
C8—C7—B1118.8 (4)C10—C9—C8121.6 (5)
C4—C3—C2121.7 (5)C10—C11—C12119.9 (5)
O1—B1—C2116.4 (4)C11—C10—C9120.1 (5)
C2—C1—C6—C51.5 (7)C12—C7—C8—B2178.3 (4)
B2—C1—C6—C5179.3 (4)B1—C7—C8—B21.2 (6)
C6—C1—C2—C30.8 (7)C9—C8—B2—O25.0 (7)
B2—C1—C2—C3180.0 (4)C7—C8—B2—O2177.3 (4)
C6—C1—C2—B1177.0 (4)C9—C8—B2—C1179.9 (5)
B2—C1—C2—B12.3 (6)C7—C8—B2—C12.2 (7)
C1—C6—C5—C41.1 (7)C6—C1—B2—O21.7 (7)
C1—C2—C3—C40.2 (7)C2—C1—B2—O2177.5 (5)
B1—C2—C3—C4177.9 (5)C6—C1—B2—C8176.5 (4)
C3—C2—B1—O14.2 (7)C2—C1—B2—C82.8 (6)
C1—C2—B1—O1178.1 (4)C8—C7—C12—C110.5 (7)
C3—C2—B1—C7179.0 (4)B1—C7—C12—C11180.0 (4)
C1—C2—B1—C71.3 (7)C6—C5—C4—C30.1 (7)
C12—C7—B1—O12.2 (7)C2—C3—C4—C50.6 (7)
C8—C7—B1—O1177.3 (4)C7—C8—C9—C101.4 (7)
C12—C7—B1—C2178.7 (4)B2—C8—C9—C10179.1 (5)
C8—C7—B1—C20.7 (6)C7—C12—C11—C100.8 (7)
C12—C7—C8—C90.5 (7)C12—C11—C10—C90.0 (7)
B1—C7—C8—C9178.9 (4)C8—C9—C10—C111.1 (8)
(II) top
Crystal data top
C12H8B2F2O2F(000) = 496
Mr = 243.80Dx = 1.555 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 17.909 (6) ÅCell parameters from 15096 reflections
b = 3.7790 (1) Åθ = 2.2–34.5°
c = 17.355 (3) ŵ = 0.12 mm1
β = 117.51 (4)°T = 100 K
V = 1041.7 (5) Å3Block, colourless
Z = 40.11 × 0.10 × 0.07 mm
Data collection top
KUMA KM4 CCD
diffractometer
4294 independent reflections
Radiation source: fine-focus sealed tube3245 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.041
ω scansθmax = 34.6°, θmin = 2.4°
Absorption correction: multi-scan
CrysAlis PRO (Agilent, 2011)
h = 2828
Tmin = 0.995, Tmax = 1.000k = 55
45182 measured reflectionsl = 2727
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.043H-atom parameters constrained
wR(F2) = 0.124 w = 1/[σ2(Fo2) + (0.0642P)2 + 0.3315P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max < 0.001
4294 reflectionsΔρmax = 0.46 e Å3
163 parametersΔρmin = 0.26 e Å3
Crystal data top
C12H8B2F2O2V = 1041.7 (5) Å3
Mr = 243.80Z = 4
Monoclinic, P21/cMo Kα radiation
a = 17.909 (6) ŵ = 0.12 mm1
b = 3.7790 (1) ÅT = 100 K
c = 17.355 (3) Å0.11 × 0.10 × 0.07 mm
β = 117.51 (4)°
Data collection top
KUMA KM4 CCD
diffractometer
4294 independent reflections
Absorption correction: multi-scan
CrysAlis PRO (Agilent, 2011)
3245 reflections with I > 2σ(I)
Tmin = 0.995, Tmax = 1.000Rint = 0.041
45182 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0430 restraints
wR(F2) = 0.124H-atom parameters constrained
S = 1.03Δρmax = 0.46 e Å3
4294 reflectionsΔρmin = 0.26 e Å3
163 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C50.28586 (6)0.2283 (3)0.31060 (7)0.01845 (19)
H50.23000.13940.28100.022*
C10.41071 (6)0.3603 (3)0.44649 (6)0.01310 (17)
C20.45225 (6)0.4940 (3)0.40022 (6)0.01331 (17)
C30.40672 (6)0.4843 (3)0.31000 (6)0.01531 (18)
C40.32562 (6)0.3575 (3)0.26389 (7)0.01831 (19)
H40.29780.35860.20220.022*
C60.32842 (6)0.2300 (3)0.40087 (6)0.01593 (18)
H60.30100.14070.43240.019*
C70.08711 (5)0.8320 (3)0.53297 (6)0.01212 (16)
C80.04521 (6)0.9370 (3)0.44467 (6)0.01214 (16)
C90.08874 (6)0.8749 (3)0.39707 (6)0.01450 (17)
C100.16693 (6)0.7200 (3)0.42871 (7)0.01686 (19)
H100.19260.68200.39220.020*
C110.20712 (6)0.6210 (3)0.51571 (7)0.01738 (19)
H110.26140.51560.54000.021*
C120.16717 (6)0.6777 (3)0.56694 (6)0.01534 (18)
H120.19480.61010.62640.018*
B10.54389 (6)0.6446 (3)0.45154 (7)0.01407 (19)
B20.04423 (6)0.8881 (3)0.59308 (7)0.01328 (18)
O10.58821 (5)0.7887 (2)0.41325 (5)0.02121 (17)
H1A0.55830.78890.35910.032*
O20.08905 (5)0.7770 (3)0.67653 (5)0.02172 (18)
H20.06140.81640.70370.033*
F10.44392 (4)0.61138 (19)0.26178 (4)0.02121 (15)
F20.05177 (4)0.9789 (2)0.31154 (4)0.02156 (15)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C50.0125 (4)0.0190 (5)0.0200 (4)0.0014 (3)0.0041 (3)0.0032 (4)
C10.0108 (4)0.0129 (4)0.0155 (4)0.0004 (3)0.0059 (3)0.0003 (3)
C20.0117 (4)0.0135 (4)0.0146 (4)0.0008 (3)0.0059 (3)0.0007 (3)
C30.0157 (4)0.0158 (4)0.0152 (4)0.0003 (3)0.0079 (3)0.0009 (3)
C40.0164 (4)0.0192 (5)0.0152 (4)0.0002 (4)0.0038 (3)0.0028 (3)
C60.0127 (4)0.0159 (4)0.0188 (4)0.0011 (3)0.0069 (3)0.0022 (3)
C70.0105 (3)0.0129 (4)0.0123 (4)0.0001 (3)0.0047 (3)0.0003 (3)
C80.0118 (4)0.0135 (4)0.0116 (4)0.0008 (3)0.0059 (3)0.0010 (3)
C90.0150 (4)0.0168 (4)0.0126 (4)0.0012 (3)0.0071 (3)0.0020 (3)
C100.0153 (4)0.0173 (5)0.0217 (4)0.0006 (3)0.0117 (4)0.0034 (4)
C110.0123 (4)0.0174 (5)0.0234 (5)0.0015 (3)0.0090 (3)0.0011 (4)
C120.0121 (4)0.0159 (4)0.0165 (4)0.0015 (3)0.0053 (3)0.0011 (3)
B10.0114 (4)0.0150 (5)0.0161 (4)0.0006 (3)0.0067 (4)0.0002 (4)
B20.0120 (4)0.0156 (5)0.0115 (4)0.0001 (3)0.0048 (3)0.0007 (3)
O10.0152 (3)0.0316 (5)0.0171 (3)0.0035 (3)0.0077 (3)0.0028 (3)
O20.0164 (3)0.0364 (5)0.0126 (3)0.0068 (3)0.0068 (3)0.0066 (3)
F10.0215 (3)0.0286 (4)0.0157 (3)0.0026 (3)0.0104 (2)0.0005 (2)
F20.0224 (3)0.0326 (4)0.0122 (3)0.0036 (3)0.0102 (2)0.0009 (3)
Geometric parameters (Å, º) top
C5—C61.3901 (15)C8—C91.3930 (13)
C5—C41.3915 (15)C8—B2ii1.5690 (16)
C5—H50.9500C9—F21.3741 (12)
C1—C61.4011 (15)C9—C101.3763 (15)
C1—C21.4162 (13)C10—C111.3906 (16)
C1—B1i1.5696 (16)C10—H100.9500
C2—C31.3922 (15)C11—C121.3914 (14)
C2—B11.5685 (16)C11—H110.9500
C3—F11.3748 (12)C12—H120.9500
C3—C41.3805 (16)B1—O11.3620 (13)
C4—H40.9500B1—C1i1.5696 (16)
C6—H60.9500B2—O21.3581 (14)
C7—C121.4008 (14)B2—C8ii1.5691 (16)
C7—C81.4165 (14)O1—H1A0.8400
C7—B21.5696 (14)O2—H20.8400
C6—C5—C4119.55 (9)C9—C8—B2ii124.50 (9)
C6—C5—H5120.2C7—C8—B2ii119.88 (9)
C4—C5—H5120.2F2—C9—C10116.52 (9)
C6—C1—C2119.73 (9)F2—C9—C8118.03 (9)
C6—C1—B1i119.66 (9)C10—C9—C8125.44 (9)
C2—C1—B1i120.62 (9)C9—C10—C11117.95 (9)
C3—C2—C1116.12 (9)C9—C10—H10121.0
C3—C2—B1124.31 (9)C11—C10—H10121.0
C1—C2—B1119.57 (9)C10—C11—C12119.42 (9)
F1—C3—C4116.37 (9)C10—C11—H11120.3
F1—C3—C2118.60 (9)C12—C11—H11120.3
C4—C3—C2125.02 (10)C11—C12—C7121.57 (9)
C3—C4—C5117.95 (10)C11—C12—H12119.2
C3—C4—H4121.0C7—C12—H12119.2
C5—C4—H4121.0O1—B1—C2124.11 (9)
C5—C6—C1121.64 (10)O1—B1—C1i116.08 (9)
C5—C6—H6119.2C2—B1—C1i119.81 (9)
C1—C6—H6119.2O2—B2—C8ii124.19 (9)
C12—C7—C8119.99 (9)O2—B2—C7115.94 (9)
C12—C7—B2119.77 (9)C8ii—B2—C7119.87 (9)
C8—C7—B2120.25 (8)B1—O1—H1A109.5
C9—C8—C7115.62 (9)B2—O2—H2109.5
C6—C1—C2—C30.24 (14)C7—C8—C9—F2178.59 (9)
B1i—C1—C2—C3179.56 (9)B2ii—C8—C9—F21.19 (15)
C6—C1—C2—B1179.12 (9)C7—C8—C9—C100.65 (15)
B1i—C1—C2—B11.08 (16)B2ii—C8—C9—C10179.56 (10)
C1—C2—C3—F1179.88 (9)F2—C9—C10—C11178.19 (9)
B1—C2—C3—F10.56 (15)C8—C9—C10—C111.06 (16)
C1—C2—C3—C40.34 (15)C9—C10—C11—C120.64 (16)
B1—C2—C3—C4178.99 (10)C10—C11—C12—C70.11 (16)
F1—C3—C4—C5179.71 (9)C8—C7—C12—C110.52 (15)
C2—C3—C4—C50.16 (17)B2—C7—C12—C11179.55 (10)
C6—C5—C4—C30.12 (16)C3—C2—B1—O11.36 (16)
C4—C5—C6—C10.21 (16)C1—C2—B1—O1177.95 (10)
C2—C1—C6—C50.02 (15)C3—C2—B1—C1i179.63 (9)
B1i—C1—C6—C5179.83 (10)C1—C2—B1—C1i1.07 (15)
C12—C7—C8—C90.16 (14)C12—C7—B2—O20.47 (15)
B2—C7—C8—C9179.92 (9)C8—C7—B2—O2179.60 (9)
C12—C7—C8—B2ii179.64 (9)C12—C7—B2—C8ii179.64 (9)
B2—C7—C8—B2ii0.29 (16)C8—C7—B2—C8ii0.29 (16)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y+2, z+1.
(III) top
Crystal data top
C12H8B2Cl2O2F(000) = 280
Mr = 276.70Dx = 1.616 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 7.3645 (10) ÅCell parameters from 1683 reflections
b = 3.8696 (6) Åθ = 2.0–32.1°
c = 20.125 (3) ŵ = 0.56 mm1
β = 97.543 (14)°T = 100 K
V = 568.55 (15) Å3Block, colourless
Z = 20.15 × 0.14 × 0.13 mm
Data collection top
KUMA KM4 CCD
diffractometer
1906 independent reflections
Radiation source: fine-focus sealed tube977 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.109
ω scansθmax = 32.2°, θmin = 2.0°
Absorption correction: multi-scan
CrysAlis PRO (Agilent, 2011)
h = 1011
Tmin = 0.421, Tmax = 1.000k = 55
8905 measured reflectionsl = 2929
Refinement top
Refinement on F212 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.064H-atom parameters constrained
wR(F2) = 0.165 w = 1/[σ2(Fo2) + (0.0509P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.99(Δ/σ)max < 0.001
1906 reflectionsΔρmax = 0.27 e Å3
164 parametersΔρmin = 0.30 e Å3
Crystal data top
C12H8B2Cl2O2V = 568.55 (15) Å3
Mr = 276.70Z = 2
Monoclinic, P21/nMo Kα radiation
a = 7.3645 (10) ŵ = 0.56 mm1
b = 3.8696 (6) ÅT = 100 K
c = 20.125 (3) Å0.15 × 0.14 × 0.13 mm
β = 97.543 (14)°
Data collection top
KUMA KM4 CCD
diffractometer
1906 independent reflections
Absorption correction: multi-scan
CrysAlis PRO (Agilent, 2011)
977 reflections with I > 2σ(I)
Tmin = 0.421, Tmax = 1.000Rint = 0.109
8905 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.06412 restraints
wR(F2) = 0.165H-atom parameters constrained
S = 0.99Δρmax = 0.27 e Å3
1906 reflectionsΔρmin = 0.30 e Å3
164 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cl1A0.8344 (4)0.6810 (8)0.18884 (12)0.0320 (5)0.620 (3)
O1A1.3169 (4)0.6676 (8)0.05950 (15)0.0325 (8)0.620 (3)
H1A1.32600.54740.09370.049*0.620 (3)
B1A1.1643 (9)0.5740 (15)0.0330 (4)0.0190 (10)0.620 (3)
C1A1.1584 (7)0.6834 (11)0.0419 (3)0.0194 (8)0.620 (3)
C2A1.0027 (10)0.6193 (15)0.0747 (3)0.0195 (11)0.620 (3)
C3A1.0173 (7)0.7345 (10)0.1409 (2)0.0238 (9)0.620 (3)
C4A1.1703 (7)0.8983 (11)0.1751 (3)0.0280 (11)0.620 (3)
H4A1.17200.96950.22040.034*0.620 (3)
C5A1.3210 (16)0.955 (4)0.1411 (7)0.034 (3)0.620 (3)
H5A1.42711.06740.16280.040*0.620 (3)
C6A1.3146 (5)0.8457 (10)0.0753 (2)0.0243 (9)0.620 (3)
H6A1.41780.88150.05230.029*0.620 (3)
Cl1B1.3689 (7)0.9588 (19)0.1505 (3)0.0359 (10)0.380 (3)
O1B1.3475 (7)0.8177 (15)0.0012 (3)0.0414 (16)0.380 (3)
H1B1.38970.90070.03870.062*0.380 (3)
B1B1.1834 (12)0.653 (2)0.0064 (7)0.0215 (16)0.380 (3)
C1B1.0999 (14)0.477 (2)0.0604 (5)0.0193 (15)0.380 (3)
C2B1.0790 (18)0.662 (2)0.0692 (4)0.0202 (18)0.380 (3)
C3B1.1447 (11)0.807 (2)0.1331 (5)0.0308 (17)0.380 (3)
C4B1.0403 (11)0.8242 (19)0.1841 (4)0.0294 (16)0.380 (3)
H4B1.08730.93020.22530.035*0.380 (3)
C5B0.867 (2)0.688 (5)0.1754 (8)0.032 (4)0.380 (3)
H5B0.79500.69220.21120.038*0.380 (3)
C6B1.2021 (10)0.4566 (18)0.1147 (4)0.0270 (16)0.380 (3)
H6B1.32340.54580.10930.032*0.380 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl1A0.0395 (10)0.0363 (8)0.0240 (9)0.0022 (7)0.0186 (7)0.0005 (6)
O1A0.0235 (16)0.0496 (19)0.0275 (18)0.0055 (14)0.0149 (13)0.0035 (14)
B1A0.013 (3)0.026 (3)0.019 (4)0.001 (2)0.004 (2)0.003 (2)
C1A0.023 (3)0.020 (2)0.016 (3)0.0012 (17)0.003 (2)0.003 (2)
C2A0.019 (3)0.025 (3)0.016 (2)0.005 (3)0.008 (3)0.006 (2)
C3A0.028 (2)0.025 (2)0.019 (2)0.0048 (17)0.0066 (18)0.0067 (17)
C4A0.040 (3)0.027 (2)0.017 (2)0.003 (2)0.000 (2)0.0001 (18)
C5A0.037 (6)0.026 (3)0.037 (5)0.007 (4)0.002 (4)0.001 (3)
C6A0.0170 (19)0.029 (2)0.027 (2)0.0027 (16)0.0025 (16)0.0012 (17)
Cl1B0.037 (2)0.0402 (15)0.0302 (17)0.0051 (17)0.0023 (15)0.0031 (12)
O1B0.031 (3)0.065 (4)0.028 (3)0.021 (3)0.008 (2)0.005 (3)
B1B0.020 (4)0.027 (4)0.017 (5)0.000 (3)0.002 (5)0.003 (4)
C1B0.008 (4)0.034 (4)0.017 (5)0.004 (3)0.006 (3)0.011 (3)
C2B0.027 (6)0.020 (4)0.016 (5)0.001 (4)0.012 (5)0.002 (3)
C3B0.024 (4)0.028 (4)0.041 (5)0.003 (3)0.007 (4)0.014 (4)
C4B0.034 (5)0.028 (4)0.027 (4)0.004 (3)0.005 (3)0.007 (3)
C5B0.035 (6)0.033 (5)0.032 (7)0.005 (4)0.020 (4)0.002 (5)
C6B0.020 (3)0.034 (4)0.030 (4)0.005 (3)0.016 (3)0.002 (3)
Geometric parameters (Å, º) top
Cl1A—C3A1.770 (5)C5B—C6Bi1.379 (19)
O1A—B1A1.355 (6)C5B—H5B0.9500
O1A—H1A0.8400Cl1B—C3B1.744 (10)
C1A—C6A1.402 (6)C3B—C4B1.361 (12)
C1A—C2A1.418 (7)C3B—C2B1.429 (15)
C1A—B1A1.571 (8)C1B—C6B1.409 (9)
C2A—C3A1.395 (8)C1B—C2Bi1.412 (11)
C2A—B1Ai1.583 (9)C1B—B1B1.560 (12)
B1A—C2Ai1.583 (9)O1B—B1B1.382 (10)
C3A—C4A1.394 (7)O1B—H1B0.8400
C4A—C5A1.396 (15)C2B—C1Bi1.412 (11)
C4A—H4A0.9500C2B—B1B1.564 (14)
C5A—C6A1.385 (15)C4B—H4B0.9500
C5A—H5A0.9500C6B—C5Bi1.379 (19)
C6A—H6A0.9500C6B—H6B0.9500
C5B—C4B1.370 (19)
B1A—O1A—H1A109.5C4B—C5B—C6Bi119.9 (10)
C6A—C1A—C2A121.1 (6)C4B—C5B—H5B120.1
C6A—C1A—B1A117.1 (6)C6Bi—C5B—H5B120.1
C2A—C1A—B1A121.7 (4)C4B—C3B—C2B122.6 (9)
C3A—C2A—C1A115.1 (6)C4B—C3B—Cl1B116.5 (8)
C3A—C2A—B1Ai127.9 (7)C2B—C3B—Cl1B120.9 (8)
C1A—C2A—B1Ai117.0 (5)C6B—C1B—C2Bi117.8 (10)
O1A—B1A—C1A115.8 (7)C6B—C1B—B1B120.2 (11)
O1A—B1A—C2Ai123.0 (7)C2Bi—C1B—B1B122.0 (7)
C1A—B1A—C2Ai121.2 (4)B1B—O1B—H1B109.5
C4A—C3A—C2A125.0 (6)C1Bi—C2B—C3B117.5 (9)
C4A—C3A—Cl1A114.0 (4)C1Bi—C2B—B1B116.1 (8)
C2A—C3A—Cl1A121.0 (5)C3B—C2B—B1B126.3 (11)
C3A—C4A—C5A118.1 (7)C3B—C4B—C5B119.6 (10)
C3A—C4A—H4A120.9C3B—C4B—H4B120.2
C5A—C4A—H4A120.9C5B—C4B—H4B120.2
C6A—C5A—C4A119.5 (9)O1B—B1B—C1B112.8 (11)
C6A—C5A—H5A120.3O1B—B1B—C2B125.3 (12)
C4A—C5A—H5A120.3C1B—B1B—C2B121.7 (7)
C5A—C6A—C1A121.2 (7)C5Bi—C6B—C1B122.5 (10)
C5A—C6A—H6A119.4C5Bi—C6B—H6B118.8
C1A—C6A—H6A119.4C1B—C6B—H6B118.8
Symmetry code: (i) x+2, y+1, z.
(IV) top
Crystal data top
C12H8B2Br2O2F(000) = 352
Mr = 365.62Dx = 2.066 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 8.988 (3) ÅCell parameters from 4741 reflections
b = 3.9050 (8) Åθ = 2.3–28.6°
c = 16.841 (5) ŵ = 6.88 mm1
β = 96.11 (3)°T = 100 K
V = 587.7 (3) Å3Block, colourles
Z = 20.13 × 0.11 × 0.09 mm
Data collection top
KUMA KM4 CCD
diffractometer
1402 independent reflections
Radiation source: fine-focus sealed tube1195 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.083
ω scansθmax = 28.6°, θmin = 2.7°
Absorption correction: multi-scan
CrysAlis PRO (Agilent, 2011)
h = 1111
Tmin = 0.428, Tmax = 1.000k = 45
8654 measured reflectionsl = 2222
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.041H-atom parameters constrained
wR(F2) = 0.107 w = 1/[σ2(Fo2) + (0.0686P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max = 0.001
1402 reflectionsΔρmax = 1.29 e Å3
82 parametersΔρmin = 1.37 e Å3
Crystal data top
C12H8B2Br2O2V = 587.7 (3) Å3
Mr = 365.62Z = 2
Monoclinic, P21/nMo Kα radiation
a = 8.988 (3) ŵ = 6.88 mm1
b = 3.9050 (8) ÅT = 100 K
c = 16.841 (5) Å0.13 × 0.11 × 0.09 mm
β = 96.11 (3)°
Data collection top
KUMA KM4 CCD
diffractometer
1402 independent reflections
Absorption correction: multi-scan
CrysAlis PRO (Agilent, 2011)
1195 reflections with I > 2σ(I)
Tmin = 0.428, Tmax = 1.000Rint = 0.083
8654 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0410 restraints
wR(F2) = 0.107H-atom parameters constrained
S = 1.06Δρmax = 1.29 e Å3
1402 reflectionsΔρmin = 1.37 e Å3
82 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.96685 (4)0.05617 (10)0.76151 (2)0.01642 (18)
O11.2395 (3)0.6699 (9)1.11718 (16)0.0240 (6)
H11.21040.76831.15710.036*
B11.1195 (4)0.5889 (10)1.0647 (2)0.0133 (8)
C11.0983 (4)0.1722 (10)0.8556 (2)0.0143 (7)
C21.0475 (3)0.3228 (10)0.92270 (19)0.0116 (6)
C31.1577 (4)0.4025 (9)0.9868 (2)0.0123 (7)
C41.3083 (4)0.3233 (11)0.9817 (2)0.0156 (7)
H41.37960.37321.02590.019*
C51.3575 (4)0.1732 (10)0.9137 (2)0.0181 (7)
H51.46040.12540.91050.022*
C61.2466 (4)0.0956 (9)0.8498 (2)0.0162 (7)
H61.27460.00960.80270.019*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0186 (2)0.0180 (3)0.0132 (2)0.00214 (12)0.00419 (14)0.00445 (12)
O10.0146 (12)0.0416 (18)0.0156 (13)0.0062 (12)0.0004 (10)0.0083 (13)
B10.0178 (18)0.012 (2)0.0106 (18)0.0001 (14)0.0024 (15)0.0037 (14)
C10.0185 (16)0.0117 (17)0.0129 (16)0.0003 (14)0.0028 (13)0.0002 (14)
C20.0146 (15)0.0089 (17)0.0119 (16)0.0007 (13)0.0038 (12)0.0040 (13)
C30.0133 (16)0.0097 (19)0.0146 (17)0.0009 (12)0.0048 (13)0.0038 (12)
C40.0151 (16)0.0151 (18)0.0171 (18)0.0004 (14)0.0040 (13)0.0025 (15)
C50.0319 (19)0.0087 (18)0.0147 (17)0.0023 (16)0.0068 (14)0.0024 (15)
C60.0191 (17)0.014 (2)0.0172 (18)0.0012 (13)0.0089 (14)0.0001 (13)
Geometric parameters (Å, º) top
C1—C61.379 (5)C4—H40.9500
C1—C21.393 (5)C5—C61.420 (5)
C1—Br11.928 (4)C5—H50.9500
C2—C31.419 (5)C6—H60.9500
C2—B1i1.576 (5)O1—B11.357 (5)
C3—C41.400 (5)O1—H10.8400
C3—B11.571 (5)B1—C2i1.576 (5)
C4—C51.399 (5)
C6—C1—C2123.5 (3)C5—C4—H4118.8
C6—C1—Br1113.7 (3)C4—C5—C6116.9 (3)
C2—C1—Br1122.7 (2)C4—C5—H5121.6
C1—C2—C3116.5 (3)C6—C5—H5121.6
C1—C2—B1i126.9 (3)C1—C6—C5120.3 (3)
C3—C2—B1i116.6 (3)C1—C6—H6119.8
C4—C3—C2120.4 (3)C5—C6—H6119.8
C4—C3—B1116.9 (3)B1—O1—H1109.5
C2—C3—B1122.7 (3)O1—B1—C3115.0 (3)
C3—C4—C5122.3 (3)O1—B1—C2i124.4 (3)
C3—C4—H4118.8C3—B1—C2i120.6 (3)
C6—C1—C2—C30.9 (6)B1—C3—C4—C5176.7 (4)
Br1—C1—C2—C3178.3 (3)C3—C4—C5—C61.5 (6)
C6—C1—C2—B1i178.5 (4)C2—C1—C6—C50.7 (6)
Br1—C1—C2—B1i2.2 (6)Br1—C1—C6—C5178.6 (3)
C1—C2—C3—C41.4 (5)C4—C5—C6—C10.9 (6)
B1i—C2—C3—C4178.1 (3)C4—C3—B1—O13.5 (5)
C1—C2—C3—B1177.0 (3)C2—C3—B1—O1175.0 (3)
B1i—C2—C3—B13.6 (6)C4—C3—B1—C2i177.9 (3)
C2—C3—C4—C51.8 (6)C2—C3—B1—C2i3.7 (6)
Symmetry code: (i) x+2, y+1, z+2.
(V) top
Crystal data top
C8H6B2O2S2Dx = 1.330 Mg m3
Mr = 219.87Mo Kα radiation, λ = 0.71073 Å
Trigonal, R3:Hθ = 0.3–26.3°
a = 24.719 (2) ŵ = 0.45 mm1
c = 4.6681 (4) ÅT = 100 K
V = 2470.2 (5) Å3Needle, colourless
Z = 90.20 × 0.03 × 0.03 mm
F(000) = 1008
Data collection top
Bruker Kappa APEX-II Ultra
diffractometer
1158 independent reflections
Radiation source: fine-focus sealed tube1061 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.051
ω scansθmax = 26.7°, θmin = 2.9°
Absorption correction: multi-scan
SORTAV (Blessing, 1995; Blessing, 1997)
h = 3130
Tmin = 0.529, Tmax = 1.000k = 2831
13594 measured reflectionsl = 55
Refinement top
Refinement on F227 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.053H-atom parameters constrained
wR(F2) = 0.193 w = 1/[σ2(Fo2) + (0.1152P)2 + 3.5904P]
where P = (Fo2 + 2Fc2)/3
S = 1.29(Δ/σ)max < 0.001
1158 reflectionsΔρmax = 1.09 e Å3
93 parametersΔρmin = 0.35 e Å3
Crystal data top
C8H6B2O2S2Z = 9
Mr = 219.87Mo Kα radiation
Trigonal, R3:Hµ = 0.45 mm1
a = 24.719 (2) ÅT = 100 K
c = 4.6681 (4) Å0.20 × 0.03 × 0.03 mm
V = 2470.2 (5) Å3
Data collection top
Bruker Kappa APEX-II Ultra
diffractometer
1158 independent reflections
Absorption correction: multi-scan
SORTAV (Blessing, 1995; Blessing, 1997)
1061 reflections with I > 2σ(I)
Tmin = 0.529, Tmax = 1.000Rint = 0.051
13594 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.05327 restraints
wR(F2) = 0.193H-atom parameters constrained
S = 1.29Δρmax = 1.09 e Å3
1158 reflectionsΔρmin = 0.35 e Å3
93 parameters
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems open-flow nitrogen cryostat operating at 100.0 (2) K.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refined as a 2-component twin.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
S1A0.8998 (2)0.49994 (17)0.0707 (6)0.0276 (6)0.815 (9)
C3A0.9154 (4)0.4038 (9)0.090 (4)0.040 (5)0.815 (9)
H3A0.91400.36570.04350.049*0.815 (9)
C4A0.8785 (3)0.4258 (4)0.0370 (14)0.0299 (14)0.815 (9)
H4A0.84550.40220.16770.036*0.815 (9)
C3B0.9118 (14)0.506 (4)0.094 (15)0.05 (3)0.185 (9)
H3B0.90850.54180.04740.054*0.185 (9)
S1B0.9026 (5)0.3995 (7)0.083 (3)0.017 (3)0.185 (9)
C4B0.8788 (16)0.4497 (18)0.022 (7)0.032 (8)0.185 (9)
H4B0.84500.43860.15010.039*0.185 (9)
O11.00549 (15)0.38712 (13)0.5193 (6)0.0261 (8)
H10.97980.36060.40410.039*
C20.9556 (2)0.4481 (2)0.3008 (9)0.0225 (9)
C10.9547 (2)0.5035 (2)0.3061 (8)0.0240 (10)
B11.0024 (3)0.4405 (2)0.5021 (10)0.0222 (9)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S1A0.0395 (12)0.0298 (11)0.0210 (9)0.0230 (10)0.0101 (9)0.0048 (7)
C3A0.041 (5)0.038 (6)0.044 (6)0.021 (4)0.003 (4)0.005 (3)
C4A0.035 (3)0.030 (3)0.024 (2)0.017 (2)0.009 (2)0.008 (2)
C3B0.05 (3)0.04 (3)0.04 (3)0.023 (14)0.003 (5)0.002 (5)
S1B0.021 (4)0.018 (4)0.016 (4)0.012 (4)0.000 (3)0.001 (3)
C4B0.034 (9)0.032 (9)0.031 (9)0.016 (6)0.003 (5)0.002 (5)
O10.0326 (16)0.0239 (16)0.0251 (14)0.0166 (13)0.0042 (12)0.0037 (12)
C20.031 (2)0.023 (2)0.0151 (17)0.0153 (17)0.0004 (16)0.0005 (15)
C10.032 (2)0.027 (2)0.0153 (18)0.017 (2)0.0019 (16)0.0014 (15)
B10.028 (2)0.024 (2)0.0166 (18)0.014 (2)0.0016 (15)0.0002 (18)
Geometric parameters (Å, º) top
S1A—C4A1.710 (9)S1B—C21.620 (13)
S1A—C11.713 (5)S1B—C4B1.69 (4)
C3A—C4A1.405 (18)C4B—H4B0.9500
C3A—C21.438 (17)O1—B11.362 (5)
C3A—H3A0.9500O1—H10.8400
C4A—H4A0.9500C2—C11.382 (5)
C3B—C4B1.33 (7)C2—B11.572 (6)
C3B—C11.48 (5)C1—B1i1.541 (6)
C3B—H3B0.9500B1—C1i1.541 (6)
C4A—S1A—C193.2 (3)B1—O1—H1109.5
C4A—C3A—C2109.2 (14)C1—C2—C3A114.8 (9)
C4A—C3A—H3A125.4C1—C2—B1119.0 (4)
C2—C3A—H3A125.4C3A—C2—B1126.1 (9)
C3A—C4A—S1A112.3 (9)C1—C2—S1B109.7 (6)
C3A—C4A—H4A123.9B1—C2—S1B131.2 (6)
S1A—C4A—H4A123.9C2—C1—C3B114 (3)
C4B—C3B—C1108 (6)C2—C1—B1i123.8 (4)
C4B—C3B—H3B126.2C3B—C1—B1i122 (3)
C1—C3B—H3B126.2C2—C1—S1A110.1 (3)
C2—S1B—C4B95.0 (15)B1i—C1—S1A126.2 (4)
C3B—C4B—S1B114 (4)O1—B1—C1i119.3 (4)
C3B—C4B—H4B123.2O1—B1—C2123.4 (4)
S1B—C4B—H4B123.2C1i—B1—C2117.2 (3)
C2—C3A—C4A—S1A6.9 (14)C3A—C2—C1—S1A4.6 (8)
C1—S1A—C4A—C3A3.9 (9)B1—C2—C1—S1A179.7 (3)
C1—C3B—C4B—S1B7 (6)S1B—C2—C1—S1A2.2 (8)
C2—S1B—C4B—C3B3 (4)C4B—C3B—C1—C28 (5)
C4A—C3A—C2—C17.4 (13)C4B—C3B—C1—B1i176 (3)
C4A—C3A—C2—B1177.3 (7)C4B—C3B—C1—S1A4E1 (4)
C4A—C3A—C2—S1B45 (9)C4A—S1A—C1—C20.4 (5)
C4B—S1B—C2—C12.1 (14)C4A—S1A—C1—C3B13E1 (4)
C4B—S1B—C2—C3A128 (11)C4A—S1A—C1—B1i179.3 (4)
C4B—S1B—C2—B1179.3 (12)C1—C2—B1—O1177.8 (4)
C3A—C2—C1—C3B0 (3)C3A—C2—B1—O17.1 (10)
B1—C2—C1—C3B176 (3)S1B—C2—B1—O10.9 (10)
S1B—C2—C1—C3B6 (3)C1—C2—B1—C1i0.5 (7)
C3A—C2—C1—B1i175.1 (8)C3A—C2—B1—C1i174.6 (9)
B1—C2—C1—B1i0.5 (7)S1B—C2—B1—C1i177.4 (8)
S1B—C2—C1—B1i178.1 (6)
Symmetry code: (i) x+2, y+1, z+1.

Experimental details

(I)(II)(III)(IV)
Crystal data
Chemical formulaC12H10B2O2C12H8B2F2O2C12H8B2Cl2O2C12H8B2Br2O2
Mr207.82243.80276.70365.62
Crystal system, space groupOrthorhombic, P212121Monoclinic, P21/cMonoclinic, P21/nMonoclinic, P21/n
Temperature (K)100100100100
a, b, c (Å)4.8645 (4), 13.0540 (11), 15.5080 (14)17.909 (6), 3.7790 (1), 17.355 (3)7.3645 (10), 3.8696 (6), 20.125 (3)8.988 (3), 3.9050 (8), 16.841 (5)
α, β, γ (°)90, 90, 9090, 117.51 (4), 9090, 97.543 (14), 9090, 96.11 (3), 90
V3)984.78 (15)1041.7 (5)568.55 (15)587.7 (3)
Z4422
Radiation typeMo KαMo KαMo KαMo Kα
µ (mm1)0.090.120.566.88
Crystal size (mm)0.10 × 0.07 × 0.060.11 × 0.10 × 0.070.15 × 0.14 × 0.130.13 × 0.11 × 0.09
Data collection
DiffractometerKUMA KM4 CCD
diffractometer
KUMA KM4 CCD
diffractometer
KUMA KM4 CCD
diffractometer
KUMA KM4 CCD
diffractometer
Absorption correctionMulti-scan
CrysAlis PRO (Agilent, 2011)
Multi-scan
CrysAlis PRO (Agilent, 2011)
Multi-scan
CrysAlis PRO (Agilent, 2011)
Multi-scan
CrysAlis PRO (Agilent, 2011)
Tmin, Tmax0.428, 1.0000.995, 1.0000.421, 1.0000.428, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
10703, 2096, 1474 45182, 4294, 3245 8905, 1906, 977 8654, 1402, 1195
Rint0.0790.0410.1090.083
(sin θ/λ)max1)0.6330.7980.7500.673
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.081, 0.220, 1.05 0.043, 0.124, 1.03 0.064, 0.165, 0.99 0.041, 0.107, 1.06
No. of reflections2096429419061402
No. of parameters14516316482
No. of restraints00120
H-atom treatmentH-atom parameters constrainedH-atom parameters constrainedH-atom parameters constrainedH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.01, 0.360.46, 0.260.27, 0.301.29, 1.37


(V)
Crystal data
Chemical formulaC8H6B2O2S2
Mr219.87
Crystal system, space groupTrigonal, R3:H
Temperature (K)100
a, b, c (Å)24.719 (2), 24.719 (2), 4.6681 (4)
α, β, γ (°)90, 90, 120
V3)2470.2 (5)
Z9
Radiation typeMo Kα
µ (mm1)0.45
Crystal size (mm)0.20 × 0.03 × 0.03
Data collection
DiffractometerBruker Kappa APEX-II Ultra
diffractometer
Absorption correctionMulti-scan
SORTAV (Blessing, 1995; Blessing, 1997)
Tmin, Tmax0.529, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
13594, 1158, 1061
Rint0.051
(sin θ/λ)max1)0.632
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.053, 0.193, 1.29
No. of reflections1158
No. of parameters93
No. of restraints27
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.09, 0.35

Computer programs: CrysAlis PRO (Agilent, 2011), APEX2 (Bruker, 2011), CrysAlis PRO, SAINT (Bruker, 2011), SAINT, SHELXS2013 (Sheldrick, 2008), SHELXL2013, SHELXTL (Bruker, 2011).

 

Follow Acta Cryst. B
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds