Download citation
Download citation
link to html
It is our hypothesis that fluoro substitution provides a powerful tool to modulate the desired characteristics and to increase the specificity of studies of structure–activity relationships. 4-Bromodiphenyl ether (PBDE 3) and its five corresponding monofluorinated analogues (F-PBDEs 3) have been synthesized and fully characterized (using 1H, 13C and 19F NMR spectroscopy, and mass spectrometry). The accurate structure from X-ray crystal analysis was compared with iterative calculations using semi-empirical self-consistent field molecular-orbital (SCF-MO) models. The compounds studied were 4-bromodiphenyl ether (PBDE 3), the 13C6-isotopically labeled PBDE 3 (13C6-PBDE 3) and 2-fluoro-4-bromodiphenyl ether (3-2F), 2′-fluoro-4-bromodiphenyl ether (3-2′F), 3-fluoro-4-bromodiphenyl ether (3-3F), 3′-fluoro-4-bromodiphenyl ether (3-3′F), and 4′-fluoro-4-bromodiphenyl ether (3-4′F). Solid-state intermolecular interactions for PBDE 3 and the F-PBDEs 3 isomers are dominated by weak C—H(F,Br)...π and C—H...F interactions. The C—F bond lengths varied between 1.347 (2) and 1.362 (2) Å, and the C4—Br bond length between 1.880 (3) and 1.904 (2) Å. These bond lengths are correlated with electron-density differences, as determined by 13C shifts, but not with the strength of the C—F couplings. The interior ring angles of ipso-fluoro substitution increased (121.9–124.0°) as a result of hyperconjugation, a phenomenon also predicted by the calculation models. An attraction between the vicinal fluoro and halo substituents (observed in fluoro substituted chlorobiphenyls) was not observed for the bromo substituted F-PBDEs. The influence of a fluoro substituent on the conformation was only observable in PBDEs with di-ortho substitution. Calculated and observed torsion angles showed a positive correlation with increasing van der Waals radii and/or the degree of substitution for mono- to tetra-fluoro, chloro, bromo and methyl substitutions in the ortho positions of diphenyl ether. These findings utilizing F-tagged analogues presented here may prove fundamental to the interpretation of the biological effects and toxicities of these persistent environmental pollutants.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108768107067079/bk5067sup1.cif
Contains datablocks BDE3, BDE3-3F, BDE3-2F, BDE3-2primeF, BDE3-3primeF, BDE3-4primeF

fcf

Structure factor file (CIF format) https://doi.org/10.1107/S0108768107067079/bk5067BDE3sup2.fcf
Contains datablock BDE3

fcf

Structure factor file (CIF format) https://doi.org/10.1107/S0108768107067079/bk5067BDE3-3Fsup3.fcf
Contains datablock BDE3-3F

fcf

Structure factor file (CIF format) https://doi.org/10.1107/S0108768107067079/bk5067BDE3-2Fsup4.fcf
Contains datablock BDE3-2F

fcf

Structure factor file (CIF format) https://doi.org/10.1107/S0108768107067079/bk5067BDE3-2primeFsup5.fcf
Contains datablock BDE3-2'F

fcf

Structure factor file (CIF format) https://doi.org/10.1107/S0108768107067079/bk5067BDE3-3primeFsup6.fcf
Contains datablock BDE3-3'F

fcf

Structure factor file (CIF format) https://doi.org/10.1107/S0108768107067079/bk5067BDE3-4primeFsup7.fcf
Contains datablock BDE3-4'F

pdf

Portable Document Format (PDF) file https://doi.org/10.1107/S0108768107067079/bk5067sup8.pdf
Supplementary material

CCDC references: 679973; 679974; 679975; 679976; 679977; 679978

Computing details top

For all compounds, data collection: Collect (Nonius BV, 1997-2000). Cell refinement: HKL SCALEPACK (Otwinowski & Minor, 1997) for BDE3, BDE3-3F, BDE3-2F, BDE3-2primeF, BDE3-4primeF; HKL SCALEPACK (Otwinowski & Minor,1997) for BDE3-3primeF. Data reduction: HKL DENZO, SCALEPACK (Otwinowski & Minor, 1997) for BDE3, BDE3-3F, BDE3-2primeF, BDE3-4primeF; HKL DENZO, SCALEPACK (Otwinowski & Minor, 1997 for BDE3-2F; HKL DENZO, SCALEPACK (Otwinowski & Minor,1997) for BDE3-3primeF. For all compounds, program(s) used to solve structure: SHELXTL v6.1 (Sheldrick, 1997); program(s) used to refine structure: SHELXTL v6.1 (Sheldrick, 1997); molecular graphics: SHELXTL v6.1 (Sheldrick, 1997); software used to prepare material for publication: SHELXTL v6.1 (Sheldrick, 1997).

Figures top
[Figure 1]
[Figure 2]
[Figure 3]
[Figure 4]
[Figure 5]
(BDE3) top
Crystal data top
C12H9BrOF(000) = 496
Mr = 249.10Dx = 1.614 Mg m3
Monoclinic, CcMo Kα radiation, λ = 0.71073 Å
Hall symbol: C -2ycCell parameters from 2244 reflections
a = 23.628 (3) Åθ = 1.0–27.5°
b = 7.5461 (9) ŵ = 3.97 mm1
c = 5.8066 (7) ÅT = 150 K
β = 97.919 (5)°Plate, colorless
V = 1025.4 (2) Å30.36 × 0.24 × 0.07 mm
Z = 4
Data collection top
Nonius KappaCCD
diffractometer
2310 independent reflections
Radiation source: fine-focus sealed tube2216 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.027
Detector resolution: 9 pixels mm-1θmax = 27.4°, θmin = 2.8°
CCD phi and ω scansh = 3030
Absorption correction: multi-scan
HKL SCALEPACK (Otwinowski & Minor, 1997)
k = 99
Tmin = 0.329, Tmax = 0.769l = 77
11708 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.024H-atom parameters constrained
wR(F2) = 0.063 w = 1/[σ2(Fo2) + (0.0391P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.08(Δ/σ)max = 0.001
2310 reflectionsΔρmax = 0.28 e Å3
127 parametersΔρmin = 0.37 e Å3
2 restraintsAbsolute structure: Flack H D (1983), Acta Cryst. A39, 876-881
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.010 (8)
Crystal data top
C12H9BrOV = 1025.4 (2) Å3
Mr = 249.10Z = 4
Monoclinic, CcMo Kα radiation
a = 23.628 (3) ŵ = 3.97 mm1
b = 7.5461 (9) ÅT = 150 K
c = 5.8066 (7) Å0.36 × 0.24 × 0.07 mm
β = 97.919 (5)°
Data collection top
Nonius KappaCCD
diffractometer
2310 independent reflections
Absorption correction: multi-scan
HKL SCALEPACK (Otwinowski & Minor, 1997)
2216 reflections with I > 2σ(I)
Tmin = 0.329, Tmax = 0.769Rint = 0.027
11708 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.024H-atom parameters constrained
wR(F2) = 0.063Δρmax = 0.28 e Å3
S = 1.08Δρmin = 0.37 e Å3
2310 reflectionsAbsolute structure: Flack H D (1983), Acta Cryst. A39, 876-881
127 parametersAbsolute structure parameter: 0.010 (8)
2 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.32889 (10)0.7587 (3)0.4212 (4)0.0263 (4)
C20.27897 (12)0.8309 (4)0.2987 (4)0.0305 (5)
H20.28050.89090.15590.037*
C30.22772 (11)0.8151 (3)0.3845 (4)0.0325 (5)
H30.19380.86290.30060.039*
C40.22599 (11)0.7286 (3)0.5946 (4)0.0303 (5)
Br10.156020 (8)0.70659 (3)0.717490 (10)0.04432 (9)
C50.27552 (11)0.6593 (3)0.7202 (4)0.0299 (4)
H50.27400.60260.86530.036*
C60.32703 (11)0.6732 (3)0.6332 (4)0.0292 (5)
H60.36090.62490.71720.035*
O10.37661 (8)0.7681 (3)0.3102 (3)0.0331 (4)
C1'0.43103 (10)0.7572 (3)0.4336 (4)0.0276 (4)
C2'0.47106 (11)0.6654 (3)0.3267 (4)0.0328 (5)
H2'0.45990.60530.18400.039*
C3'0.52780 (11)0.6620 (3)0.4302 (5)0.0372 (5)
H3'0.55530.59900.35770.045*
C4'0.54453 (13)0.7504 (4)0.6395 (5)0.0367 (5)
H4'0.58340.74930.70900.044*
C5'0.50363 (11)0.8399 (3)0.7450 (4)0.0353 (5)
H5'0.51470.89860.88900.042*
C6'0.44687 (11)0.8453 (3)0.6440 (4)0.0312 (4)
H6'0.41930.90790.71680.037*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0284 (11)0.0277 (9)0.0236 (10)0.0028 (8)0.0065 (8)0.0024 (8)
C20.0377 (14)0.0326 (10)0.0205 (10)0.0004 (10)0.0015 (9)0.0014 (9)
C30.0318 (12)0.0372 (12)0.0280 (11)0.0026 (9)0.0022 (9)0.0015 (8)
C40.0325 (13)0.0344 (11)0.0251 (10)0.0007 (9)0.0081 (9)0.0038 (8)
Br10.03262 (13)0.06288 (16)0.03977 (13)0.00028 (14)0.01317 (8)0.00277 (15)
C50.0374 (13)0.0301 (10)0.0226 (10)0.0008 (9)0.0051 (9)0.0007 (8)
C60.0322 (12)0.0317 (10)0.0234 (10)0.0018 (8)0.0032 (8)0.0012 (8)
O10.0314 (10)0.0464 (10)0.0222 (8)0.0027 (7)0.0064 (7)0.0010 (7)
C1'0.0301 (12)0.0281 (10)0.0257 (11)0.0033 (8)0.0081 (9)0.0021 (8)
C2'0.0377 (13)0.0342 (10)0.0297 (11)0.0065 (10)0.0156 (10)0.0035 (9)
C3'0.0348 (13)0.0354 (11)0.0450 (14)0.0019 (10)0.0188 (11)0.0012 (10)
C4'0.0331 (14)0.0370 (12)0.0399 (14)0.0004 (11)0.0049 (11)0.0052 (12)
C5'0.0385 (13)0.0373 (11)0.0303 (11)0.0038 (10)0.0052 (10)0.0033 (9)
C6'0.0364 (13)0.0295 (10)0.0294 (11)0.0007 (10)0.0100 (9)0.0054 (9)
Geometric parameters (Å, º) top
C1—O11.376 (3)O1—C1'1.386 (3)
C1—C61.396 (3)C1'—C2'1.386 (4)
C1—C21.401 (4)C1'—C6'1.396 (3)
C2—C31.377 (4)C2'—C3'1.392 (4)
C2—H20.9500C2'—H2'0.9500
C3—C41.389 (3)C3'—C4'1.395 (4)
C3—H30.9500C3'—H3'0.9500
C4—C51.393 (4)C4'—C5'1.389 (4)
C4—Br11.896 (3)C4'—H4'0.9500
C5—C61.385 (4)C5'—C6'1.388 (4)
C5—H50.9500C5'—H5'0.9500
C6—H60.9500C6'—H6'0.9500
O1—C1—C6124.4 (2)O1—C1'—C2'116.1 (2)
O1—C1—C2115.4 (2)O1—C1'—C6'122.8 (2)
C6—C1—C2120.1 (2)C2'—C1'—C6'120.8 (2)
C3—C2—C1120.2 (2)C1'—C2'—C3'119.5 (2)
C3—C2—H2119.9C1'—C2'—H2'120.3
C1—C2—H2119.9C3'—C2'—H2'120.3
C2—C3—C4119.5 (2)C2'—C3'—C4'120.5 (2)
C2—C3—H3120.2C2'—C3'—H3'119.7
C4—C3—H3120.2C4'—C3'—H3'119.7
C3—C4—C5120.8 (2)C5'—C4'—C3'119.1 (3)
C3—C4—Br1120.3 (2)C5'—C4'—H4'120.5
C5—C4—Br1118.90 (18)C3'—C4'—H4'120.5
C6—C5—C4119.9 (2)C6'—C5'—C4'121.2 (2)
C6—C5—H5120.1C6'—C5'—H5'119.4
C4—C5—H5120.1C4'—C5'—H5'119.4
C5—C6—C1119.5 (2)C5'—C6'—C1'118.9 (2)
C5—C6—H6120.2C5'—C6'—H6'120.6
C1—C6—H6120.2C1'—C6'—H6'120.6
C1—O1—C1'121.09 (18)
O1—C1—C2—C3174.4 (2)C2—C1—O1—C1'158.7 (2)
C6—C1—C2—C31.2 (4)C1—O1—C1'—C2'142.6 (2)
C1—C2—C3—C40.7 (4)C1—O1—C1'—C6'42.9 (3)
C2—C3—C4—C50.5 (3)O1—C1'—C2'—C3'174.3 (2)
C2—C3—C4—Br1179.56 (19)C6'—C1'—C2'—C3'0.3 (3)
C3—C4—C5—C61.3 (3)C1'—C2'—C3'—C4'0.2 (4)
Br1—C4—C5—C6179.70 (18)C2'—C3'—C4'—C5'0.9 (4)
C4—C5—C6—C10.8 (3)C3'—C4'—C5'—C6'1.1 (4)
O1—C1—C6—C5174.7 (2)C4'—C5'—C6'—C1'0.6 (4)
C2—C1—C6—C50.4 (4)O1—C1'—C6'—C5'174.2 (2)
C6—C1—O1—C1'25.9 (3)C2'—C1'—C6'—C5'0.1 (4)
(BDE3-3F) top
Crystal data top
C12H8BrFOF(000) = 528
Mr = 267.09Dx = 1.733 Mg m3
Orthorhombic, Pca21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2c -2acCell parameters from 4369 reflections
a = 14.9203 (16) Åθ = 1.0–27.5°
b = 11.6841 (13) ŵ = 4.00 mm1
c = 5.8727 (7) ÅT = 150 K
V = 1023.8 (2) Å3Plate, colorless
Z = 40.45 × 0.44 × 0.08 mm
Data collection top
Nonius KappaCCD
diffractometer
2327 independent reflections
Radiation source: fine-focus sealed tube2190 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.051
Detector resolution: 9 pixels mm-1θmax = 27.4°, θmin = 2.7°
CCD phi and ω scansh = 1819
Absorption correction: multi-scan
HKL SCALEPACK (Otwinowski & Minor, 1997)
k = 1515
Tmin = 0.267, Tmax = 0.741l = 77
15796 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.029H-atom parameters constrained
wR(F2) = 0.077 w = 1/[σ2(Fo2) + (0.0454P)2 + 0.1087P]
where P = (Fo2 + 2Fc2)/3
S = 1.12(Δ/σ)max < 0.001
2327 reflectionsΔρmax = 0.44 e Å3
136 parametersΔρmin = 0.32 e Å3
1 restraintAbsolute structure: Flack H D (1983), Acta Cryst. A39, 876-881
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.021 (11)
Crystal data top
C12H8BrFOV = 1023.8 (2) Å3
Mr = 267.09Z = 4
Orthorhombic, Pca21Mo Kα radiation
a = 14.9203 (16) ŵ = 4.00 mm1
b = 11.6841 (13) ÅT = 150 K
c = 5.8727 (7) Å0.45 × 0.44 × 0.08 mm
Data collection top
Nonius KappaCCD
diffractometer
2327 independent reflections
Absorption correction: multi-scan
HKL SCALEPACK (Otwinowski & Minor, 1997)
2190 reflections with I > 2σ(I)
Tmin = 0.267, Tmax = 0.741Rint = 0.051
15796 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.029H-atom parameters constrained
wR(F2) = 0.077Δρmax = 0.44 e Å3
S = 1.12Δρmin = 0.32 e Å3
2327 reflectionsAbsolute structure: Flack H D (1983), Acta Cryst. A39, 876-881
136 parametersAbsolute structure parameter: 0.021 (11)
1 restraint
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.10725 (17)0.5982 (2)0.1522 (4)0.0272 (6)
C20.07858 (15)0.4900 (2)0.0850 (5)0.0254 (5)
H20.04780.47970.05510.030*
C30.09566 (16)0.3980 (2)0.2252 (4)0.0246 (5)
F10.06619 (12)0.29363 (12)0.1570 (3)0.0335 (4)
C40.13905 (17)0.4085 (2)0.4306 (4)0.0254 (5)
Br10.161542 (15)0.27961 (2)0.61370 (9)0.03417 (10)
C50.16715 (15)0.5175 (3)0.4970 (5)0.0273 (6)
H50.19790.52700.63730.033*
C60.15084 (16)0.6114 (2)0.3617 (5)0.0269 (5)
H60.16920.68530.41060.032*
O10.09015 (15)0.68258 (18)0.0024 (4)0.0382 (5)
C1'0.10519 (19)0.7985 (2)0.0522 (5)0.0288 (6)
C2'0.15432 (18)0.8599 (3)0.1033 (5)0.0348 (6)
H2'0.18010.82330.23210.042*
C3'0.16563 (17)0.9771 (3)0.0680 (6)0.0385 (7)
H3'0.19851.02140.17490.046*
C4'0.12920 (16)1.0289 (2)0.1218 (8)0.0369 (5)
H4'0.13811.10830.14700.044*
C5'0.07970 (18)0.9652 (3)0.2752 (5)0.0331 (6)
H5'0.05451.00130.40520.040*
C6'0.06663 (18)0.8491 (2)0.2405 (5)0.0314 (6)
H6'0.03180.80530.34430.038*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0328 (11)0.0269 (11)0.0219 (15)0.0021 (9)0.0005 (10)0.0013 (10)
C20.0296 (11)0.0303 (12)0.0162 (14)0.0035 (9)0.0012 (9)0.0050 (10)
C30.0278 (12)0.0207 (12)0.0253 (12)0.0016 (9)0.0013 (10)0.0056 (9)
F10.0457 (9)0.0243 (7)0.0305 (12)0.0003 (6)0.0060 (7)0.0056 (6)
C40.0261 (11)0.0284 (13)0.0217 (12)0.0042 (10)0.0015 (10)0.0011 (10)
Br10.04194 (16)0.03409 (15)0.02648 (14)0.00229 (9)0.00161 (17)0.00695 (13)
C50.0285 (13)0.0359 (14)0.0175 (13)0.0023 (10)0.0006 (9)0.0039 (11)
C60.0308 (13)0.0270 (13)0.0230 (13)0.0031 (10)0.0012 (10)0.0036 (10)
O10.0661 (14)0.0249 (10)0.0236 (10)0.0008 (10)0.0094 (10)0.0022 (8)
C1'0.0361 (13)0.0266 (12)0.0236 (14)0.0031 (10)0.0038 (10)0.0008 (9)
C2'0.0402 (15)0.0375 (15)0.0268 (14)0.0091 (12)0.0052 (11)0.0033 (12)
C3'0.0352 (14)0.0363 (16)0.0439 (18)0.0007 (11)0.0014 (12)0.0122 (14)
C4'0.0313 (11)0.0259 (11)0.0534 (15)0.0012 (10)0.0075 (17)0.0029 (17)
C5'0.0311 (13)0.0356 (14)0.0327 (15)0.0083 (11)0.0004 (11)0.0092 (12)
C6'0.0295 (12)0.0346 (15)0.0300 (14)0.0012 (11)0.0055 (11)0.0009 (11)
Geometric parameters (Å, º) top
C1—O11.364 (3)O1—C1'1.410 (3)
C1—C21.392 (3)C1'—C2'1.373 (4)
C1—C61.400 (4)C1'—C6'1.380 (4)
C2—C31.377 (4)C2'—C3'1.396 (5)
C2—H20.9500C2'—H2'0.9500
C3—F11.357 (3)C3'—C4'1.379 (5)
C3—C41.374 (4)C3'—H3'0.9500
C4—C51.397 (4)C4'—C5'1.382 (5)
C4—Br11.880 (3)C4'—H4'0.9500
C5—C61.376 (4)C5'—C6'1.385 (4)
C5—H50.9500C5'—H5'0.9500
C6—H60.9500C6'—H6'0.9500
O1—C1—C2114.2 (2)C2'—C1'—C6'122.1 (3)
O1—C1—C6126.3 (2)C2'—C1'—O1115.8 (3)
C2—C1—C6119.5 (2)C6'—C1'—O1121.8 (3)
C3—C2—C1118.8 (2)C1'—C2'—C3'118.6 (3)
C3—C2—H2120.6C1'—C2'—H2'120.7
C1—C2—H2120.6C3'—C2'—H2'120.7
F1—C3—C4119.4 (2)C4'—C3'—C2'120.2 (3)
F1—C3—C2117.7 (2)C4'—C3'—H3'119.9
C4—C3—C2122.9 (2)C2'—C3'—H3'119.9
C3—C4—C5117.9 (2)C3'—C4'—C5'120.1 (2)
C3—C4—Br1121.0 (2)C3'—C4'—H4'120.0
C5—C4—Br1121.1 (2)C5'—C4'—H4'120.0
C6—C5—C4120.9 (2)C4'—C5'—C6'120.4 (3)
C6—C5—H5119.6C4'—C5'—H5'119.8
C4—C5—H5119.6C6'—C5'—H5'119.8
C5—C6—C1120.1 (2)C1'—C6'—C5'118.6 (3)
C5—C6—H6120.0C1'—C6'—H6'120.7
C1—C6—H6120.0C5'—C6'—H6'120.7
C1—O1—C1'120.9 (2)
O1—C1—C2—C3177.6 (2)C2—C1—O1—C1'172.2 (2)
C6—C1—C2—C31.3 (4)C6—C1—O1—C1'8.9 (4)
C1—C2—C3—F1179.3 (2)C1—O1—C1'—C2'130.0 (3)
C1—C2—C3—C40.7 (4)C1—O1—C1'—C6'55.2 (4)
F1—C3—C4—C5179.0 (2)C6'—C1'—C2'—C3'0.3 (4)
C2—C3—C4—C50.4 (4)O1—C1'—C2'—C3'175.1 (3)
F1—C3—C4—Br12.1 (3)C1'—C2'—C3'—C4'1.1 (4)
C2—C3—C4—Br1179.40 (19)C2'—C3'—C4'—C5'1.4 (4)
C3—C4—C5—C60.7 (4)C3'—C4'—C5'—C6'0.3 (4)
Br1—C4—C5—C6179.71 (19)C2'—C1'—C6'—C5'1.3 (4)
C4—C5—C6—C11.4 (4)O1—C1'—C6'—C5'175.8 (3)
O1—C1—C6—C5177.1 (3)C4'—C5'—C6'—C1'1.0 (4)
C2—C1—C6—C51.7 (4)
(BDE3-2F) top
Crystal data top
C12H8BrFOF(000) = 528
Mr = 267.09Dx = 1.713 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 4553 reflections
a = 5.8708 (7) Åθ = 1.0–27.5°
b = 9.0974 (10) ŵ = 3.95 mm1
c = 19.396 (2) ÅT = 150 K
V = 1035.9 (2) Å3Irregular prism, colorless
Z = 40.34 × 0.31 × 0.19 mm
Data collection top
Nonius KappaCCD
diffractometer
2373 independent reflections
Radiation source: fine-focus sealed tube2293 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.022
Detector resolution: 9 pixels mm-1θmax = 27.5°, θmin = 2.5°
CCD phi and ω scansh = 77
Absorption correction: multi-scan
HKL SCALEPACK (Otwinowski & Minor, 1997)
k = 1111
Tmin = 0.315, Tmax = 0.473l = 2524
21969 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.016H-atom parameters constrained
wR(F2) = 0.038 w = 1/[σ2(Fo2) + (0.0168P)2 + 0.2751P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max = 0.002
2373 reflectionsΔρmax = 0.17 e Å3
170 parametersΔρmin = 0.20 e Å3
46 restraintsAbsolute structure: Flack H D (1983), Acta Cryst. A39, 876-881
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.003 (7)
Crystal data top
C12H8BrFOV = 1035.9 (2) Å3
Mr = 267.09Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 5.8708 (7) ŵ = 3.95 mm1
b = 9.0974 (10) ÅT = 150 K
c = 19.396 (2) Å0.34 × 0.31 × 0.19 mm
Data collection top
Nonius KappaCCD
diffractometer
2373 independent reflections
Absorption correction: multi-scan
HKL SCALEPACK (Otwinowski & Minor, 1997)
2293 reflections with I > 2σ(I)
Tmin = 0.315, Tmax = 0.473Rint = 0.022
21969 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.016H-atom parameters constrained
wR(F2) = 0.038Δρmax = 0.17 e Å3
S = 1.03Δρmin = 0.20 e Å3
2373 reflectionsAbsolute structure: Flack H D (1983), Acta Cryst. A39, 876-881
170 parametersAbsolute structure parameter: 0.003 (7)
46 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Late stage difference fourier maps suggested disorder in the flouro- substituent. Disorder refinement confirmed this as disorder via twofold rotation about the C1—C4 direction. The disorder was modeled as whole molecule disorder with the conformations constrained to be the same and partial atoms in close proximity (<0.5 A) were constrained to have the same thermal parameters (e.g. Uaniso(C1)=Uaniso(C1"), Uaniso(c2)=Uaniso(C6"), etc.). F1" was assigned Uiso(F2")=1.2*Uiso,eq(C2"). The relative occupancies refined to 0.932 (2) for the major site and 0.068 (2) for the minor site (labels with " appended).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C10.5609 (3)0.63774 (17)0.88987 (8)0.0283 (4)0.932 (2)
C20.7540 (3)0.69569 (19)0.91977 (7)0.0295 (4)0.932 (2)
F10.8040 (2)0.65919 (14)0.98544 (5)0.0443 (3)0.932 (2)
C30.8997 (3)0.78760 (18)0.88401 (8)0.0284 (4)0.932 (2)
H31.03210.82700.90520.034*0.932 (2)
C40.8461 (3)0.82021 (18)0.81628 (9)0.0247 (3)0.932 (2)
Br11.04090 (7)0.94633 (5)0.76543 (3)0.03277 (7)0.932 (2)
C50.6538 (3)0.76432 (19)0.78458 (10)0.0294 (4)0.932 (2)
H50.62030.78810.73800.035*0.932 (2)
C60.5102 (3)0.6726 (2)0.82206 (10)0.0321 (4)0.932 (2)
H60.37690.63380.80110.038*0.932 (2)
O10.4158 (2)0.54952 (15)0.92844 (8)0.0368 (3)0.932 (2)
C1'0.4321 (5)0.39811 (18)0.91652 (13)0.0259 (4)0.932 (2)
C2'0.2461 (6)0.3150 (3)0.9368 (3)0.0288 (4)0.932 (2)
H2'0.11560.36070.95630.035*0.932 (2)
C3'0.2540 (8)0.1634 (3)0.9282 (5)0.0325 (4)0.932 (2)
H3'0.12840.10480.94230.039*0.932 (2)
C4'0.4444 (9)0.0970 (3)0.8992 (5)0.0326 (4)0.932 (2)
H4'0.44850.00650.89310.039*0.932 (2)
C5'0.6269 (9)0.1820 (3)0.8794 (5)0.0298 (4)0.932 (2)
H5'0.75730.13640.85990.036*0.932 (2)
C6'0.6226 (7)0.3343 (2)0.8878 (3)0.0271 (6)0.932 (2)
H6'0.74860.39280.87400.033*0.932 (2)
C1"0.5906 (7)0.6327 (2)0.8993 (3)0.0283 (4)0.068 (2)
C2"0.5392 (7)0.6631 (2)0.8315 (3)0.0321 (4)0.068 (2)
F1"0.3491 (7)0.6043 (2)0.8038 (3)0.038*0.068 (2)
C3"0.6763 (7)0.7518 (2)0.7912 (3)0.0294 (4)0.068 (2)
H3"0.63890.77190.74450.035*0.068 (2)
C4"0.8699 (9)0.8103 (6)0.8211 (4)0.0247 (3)0.068 (2)
Br1"1.0632 (9)0.9322 (6)0.7676 (4)0.03277 (7)0.068 (2)
C5"0.9271 (10)0.7824 (6)0.8890 (4)0.0284 (4)0.068 (2)
H5"1.06080.82380.90860.034*0.068 (2)
C6"0.7854 (10)0.6926 (6)0.9282 (4)0.0295 (4)0.068 (2)
H6"0.82250.67240.97490.035*0.068 (2)
O1"0.4476 (10)0.5431 (6)0.9379 (4)0.0368 (3)0.068 (2)
C1'"0.448 (5)0.3938 (9)0.9202 (16)0.0259 (4)0.068 (2)
C2'"0.254 (7)0.316 (3)0.938 (4)0.0288 (4)0.068 (2)
H2'"0.12720.36410.95840.035*0.068 (2)
C3'"0.250 (10)0.165 (3)0.927 (6)0.0325 (4)0.068 (2)
H3'"0.11880.10970.93920.039*0.068 (2)
C4'"0.437 (11)0.094 (2)0.898 (7)0.0326 (4)0.068 (2)
H4'"0.43280.00890.89020.039*0.068 (2)
C5'"0.627 (12)0.174 (3)0.880 (7)0.0298 (4)0.068 (2)
H5'"0.75400.12590.86030.036*0.068 (2)
C6'"0.634 (9)0.326 (2)0.891 (5)0.0271 (6)0.068 (2)
H6'"0.76580.38090.87910.033*0.068 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0304 (8)0.0199 (7)0.0348 (9)0.0015 (7)0.0074 (8)0.0022 (6)
C20.0369 (9)0.0268 (9)0.0247 (9)0.0044 (7)0.0006 (8)0.0014 (7)
F10.0565 (8)0.0474 (7)0.0291 (6)0.0074 (6)0.0023 (5)0.0088 (5)
C30.0300 (9)0.0283 (8)0.0268 (8)0.0005 (7)0.0041 (7)0.0013 (6)
C40.0268 (8)0.0200 (7)0.0274 (8)0.0027 (6)0.0029 (7)0.0010 (6)
Br10.03409 (12)0.03348 (12)0.03075 (10)0.00160 (10)0.00632 (10)0.00341 (10)
C50.0333 (9)0.0283 (8)0.0266 (9)0.0031 (7)0.0061 (7)0.0022 (6)
C60.0294 (10)0.0285 (8)0.0384 (9)0.0015 (7)0.0039 (7)0.0070 (7)
O10.0399 (7)0.0243 (6)0.0461 (8)0.0029 (6)0.0194 (6)0.0052 (6)
C1'0.0295 (9)0.0250 (7)0.0230 (8)0.0003 (7)0.0019 (7)0.0002 (6)
C2'0.0252 (8)0.0334 (9)0.0279 (9)0.0004 (7)0.0028 (8)0.0010 (7)
C3'0.0335 (9)0.0335 (9)0.0305 (10)0.0090 (8)0.0000 (8)0.0010 (7)
C4'0.0402 (10)0.0264 (8)0.0313 (10)0.0012 (8)0.0067 (10)0.0012 (7)
C5'0.0320 (8)0.0285 (9)0.0290 (9)0.0051 (8)0.0022 (7)0.0004 (10)
C6'0.0250 (9)0.0297 (8)0.0266 (12)0.0022 (7)0.0016 (9)0.0009 (9)
C1"0.0304 (8)0.0199 (7)0.0348 (9)0.0015 (7)0.0074 (8)0.0022 (6)
C2"0.0294 (10)0.0285 (8)0.0384 (9)0.0015 (7)0.0039 (7)0.0070 (7)
C3"0.0333 (9)0.0283 (8)0.0266 (9)0.0031 (7)0.0061 (7)0.0022 (6)
C4"0.0268 (8)0.0200 (7)0.0274 (8)0.0027 (6)0.0029 (7)0.0010 (6)
Br1"0.03409 (12)0.03348 (12)0.03075 (10)0.00160 (10)0.00632 (10)0.00341 (10)
C5"0.0300 (9)0.0283 (8)0.0268 (8)0.0005 (7)0.0041 (7)0.0013 (6)
C6"0.0369 (9)0.0268 (9)0.0247 (9)0.0044 (7)0.0006 (8)0.0014 (7)
O1"0.0399 (7)0.0243 (6)0.0461 (8)0.0029 (6)0.0194 (6)0.0052 (6)
C1'"0.0295 (9)0.0250 (7)0.0230 (8)0.0003 (7)0.0019 (7)0.0002 (6)
C2'"0.0252 (8)0.0334 (9)0.0279 (9)0.0004 (7)0.0028 (8)0.0010 (7)
C3'"0.0335 (9)0.0335 (9)0.0305 (10)0.0090 (8)0.0000 (8)0.0010 (7)
C4'"0.0402 (10)0.0264 (8)0.0313 (10)0.0012 (8)0.0067 (10)0.0012 (7)
C5'"0.0320 (8)0.0285 (9)0.0290 (9)0.0051 (8)0.0022 (7)0.0004 (10)
C6'"0.0250 (9)0.0297 (8)0.0266 (12)0.0022 (7)0.0016 (9)0.0009 (9)
Geometric parameters (Å, º) top
C1—C21.3782 (14)C1"—C2"1.3780
C1—O11.3889 (18)C1"—O1"1.389 (2)
C1—C61.385 (2)C1"—C6"1.385 (3)
C2—F11.3488 (13)C2"—F1"1.3488
C2—C31.3827 (14)C2"—C3"1.3826
C3—C41.383 (2)C3"—C4"1.383 (3)
C3—H30.9500C3"—H3"0.9500
C4—C51.382 (3)C4"—C5"1.382 (3)
C4—Br11.8965 (17)C4"—Br1"1.897 (2)
C5—C61.391 (3)C5"—C6"1.391 (3)
C5—H50.9500C5"—H5"0.9500
C6—H60.9500C6"—H6"0.9500
O1—C1'1.400 (2)O1"—C1'"1.400 (3)
C1'—C6'1.378 (2)C1'"—C6'"1.378 (3)
C1'—C2'1.385 (2)C1'"—C2'"1.385 (3)
C2'—C3'1.389 (3)C2'"—C3'"1.389 (3)
C2'—H2'0.9500C2'"—H2'"0.9500
C3'—C4'1.389 (3)C3'"—C4'"1.389 (3)
C3'—H3'0.9500C3'"—H3'"0.9500
C4'—C5'1.376 (3)C4'"—C5'"1.376 (3)
C4'—H4'0.9500C4'"—H4'"0.9500
C5'—C6'1.395 (2)C5'"—C6'"1.395 (3)
C5'—H5'0.9500C5'"—H5'"0.9500
C6'—H6'0.9500C6'"—H6'"0.9500
C2—C1—O1119.93 (13)C2"—C1"—O1"119.9 (2)
C2—C1—C6119.24 (13)C2"—C1"—C6"119.22 (15)
O1—C1—C6120.80 (14)O1"—C1"—C6"120.8 (2)
F1—C2—C1118.85 (11)F1"—C2"—C1"118.9
F1—C2—C3119.19 (12)F1"—C2"—C3"119.2
C1—C2—C3121.95 (10)C1"—C2"—C3"122.0
C4—C3—C2117.75 (13)C4"—C3"—C2"117.76 (14)
C4—C3—H3121.1C4"—C3"—H3"121.1
C2—C3—H3121.1C2"—C3"—H3"121.1
C3—C4—C5121.95 (16)C3"—C4"—C5"121.94 (19)
C3—C4—Br1119.12 (12)C3"—C4"—Br1"119.11 (19)
C5—C4—Br1118.92 (13)C5"—C4"—Br1"118.9 (2)
C4—C5—C6118.88 (17)C4"—C5"—C6"118.9 (2)
C4—C5—H5120.6C4"—C5"—H5"120.6
C6—C5—H5120.6C6"—C5"—H5"120.6
C5—C6—C1120.23 (16)C5"—C6"—C1"120.2 (2)
C5—C6—H6119.9C5"—C6"—H6"119.9
C1—C6—H6119.9C1"—C6"—H6"119.9
C1—O1—C1'115.96 (12)C1"—O1"—C1'"115.9 (2)
C6'—C1'—C2'121.65 (15)C6'"—C1'"—C2'"121.6 (2)
C6'—C1'—O1122.46 (16)C6'"—C1'"—O1"122.4 (3)
C2'—C1'—O1115.88 (16)C2'"—C1'"—O1"115.8 (3)
C1'—C2'—C3'118.77 (16)C1'"—C2'"—C3'"118.8 (2)
C1'—C2'—H2'120.6C1'"—C2'"—H2'"120.6
C3'—C2'—H2'120.6C3'"—C2'"—H2'"120.6
C2'—C3'—C4'120.46 (16)C2'"—C3'"—C4'"120.5 (2)
C2'—C3'—H3'119.8C2'"—C3'"—H3'"119.8
C4'—C3'—H3'119.8C4'"—C3'"—H3'"119.8
C5'—C4'—C3'119.67 (15)C5'"—C4'"—C3'"119.7 (2)
C5'—C4'—H4'120.2C5'"—C4'"—H4'"120.2
C3'—C4'—H4'120.2C3'"—C4'"—H4'"120.2
C4'—C5'—C6'120.77 (16)C4'"—C5'"—C6'"120.8 (2)
C4'—C5'—H5'119.6C4'"—C5'"—H5'"119.6
C6'—C5'—H5'119.6C6'"—C5'"—H5'"119.6
C1'—C6'—C5'118.67 (16)C1'"—C6'"—C5'"118.7 (2)
C1'—C6'—H6'120.7C1'"—C6'"—H6'"120.7
C5'—C6'—H6'120.7C5'"—C6'"—H6'"120.7
O1—C1—C2—F13.3 (3)O1"—C1"—C2"—F1"0.0 (3)
C6—C1—C2—F1178.91 (16)C6"—C1"—C2"—F1"180.0 (3)
O1—C1—C2—C3178.02 (16)O1"—C1"—C2"—C3"179.9 (3)
C6—C1—C2—C30.2 (3)C6"—C1"—C2"—C3"0.0 (3)
F1—C2—C3—C4178.57 (16)F1"—C2"—C3"—C4"180.0 (3)
C1—C2—C3—C40.1 (3)C1"—C2"—C3"—C4"0.0 (3)
C2—C3—C4—C50.2 (3)C2"—C3"—C4"—C5"0.0 (7)
C2—C3—C4—Br1179.82 (13)C2"—C3"—C4"—Br1"179.8 (3)
C3—C4—C5—C60.0 (3)C3"—C4"—C5"—C6"0.0 (9)
Br1—C4—C5—C6179.57 (13)Br1"—C4"—C5"—C6"179.8 (5)
C4—C5—C6—C10.4 (3)C4"—C5"—C6"—C1"0.0 (9)
C2—C1—C6—C50.4 (3)C2"—C1"—C6"—C5"0.0 (7)
O1—C1—C6—C5178.26 (16)O1"—C1"—C6"—C5"179.9 (5)
C2—C1—O1—C1'102.7 (2)C2"—C1"—O1"—C1'"71 (2)
C6—C1—O1—C1'79.5 (3)C6"—C1"—O1"—C1'"109 (2)
C1—O1—C1'—C6'21.3 (4)C1"—O1"—C1'"—C6'"28 (5)
C1—O1—C1'—C2'160.1 (3)C1"—O1"—C1'"—C2'"157 (4)
C6'—C1'—C2'—C3'0.4 (3)C6'"—C1'"—C2'"—C3'"0.0 (3)
O1—C1'—C2'—C3'178.2 (4)O1"—C1'"—C2'"—C3'"175 (5)
C1'—C2'—C3'—C4'0.6 (3)C1'"—C2'"—C3'"—C4'"0.0 (3)
C2'—C3'—C4'—C5'0.5 (3)C2'"—C3'"—C4'"—C5'"0.0 (7)
C3'—C4'—C5'—C6'0.4 (3)C3'"—C4'"—C5'"—C6'"0.0 (9)
C2'—C1'—C6'—C5'0.2 (3)C2'"—C1'"—C6'"—C5'"0.0 (6)
O1—C1'—C6'—C5'178.3 (4)O1"—C1'"—C6'"—C5'"175 (5)
C4'—C5'—C6'—C1'0.2 (3)C4'"—C5'"—C6'"—C1'"0.0 (9)
(BDE3-2primeF) top
Crystal data top
C12H8BrFOF(000) = 1056
Mr = 267.09Dx = 1.715 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 4514 reflections
a = 23.752 (3) Åθ = 1.0–27.5°
b = 4.3622 (5) ŵ = 3.95 mm1
c = 21.357 (3) ÅT = 150 K
β = 110.762 (5)°Plate, colorless
V = 2069.1 (5) Å30.19 × 0.16 × 0.06 mm
Z = 8
Data collection top
Nonius KappaCCD
diffractometer
2367 independent reflections
Radiation source: fine-focus sealed tube2029 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.039
Detector resolution: 9 pixels mm-1θmax = 27.5°, θmin = 3.2°
CCD phi and ω scansh = 3029
Absorption correction: multi-scan
HKL SCALEPACK (Otwinowski & Minor, 1997)
k = 55
Tmin = 0.520, Tmax = 0.797l = 2727
19505 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.028Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.070H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0358P)2 + 1.6942P]
where P = (Fo2 + 2Fc2)/3
2367 reflections(Δ/σ)max = 0.001
136 parametersΔρmax = 0.67 e Å3
0 restraintsΔρmin = 0.46 e Å3
Crystal data top
C12H8BrFOV = 2069.1 (5) Å3
Mr = 267.09Z = 8
Monoclinic, C2/cMo Kα radiation
a = 23.752 (3) ŵ = 3.95 mm1
b = 4.3622 (5) ÅT = 150 K
c = 21.357 (3) Å0.19 × 0.16 × 0.06 mm
β = 110.762 (5)°
Data collection top
Nonius KappaCCD
diffractometer
2367 independent reflections
Absorption correction: multi-scan
HKL SCALEPACK (Otwinowski & Minor, 1997)
2029 reflections with I > 2σ(I)
Tmin = 0.520, Tmax = 0.797Rint = 0.039
19505 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0280 restraints
wR(F2) = 0.070H-atom parameters constrained
S = 1.05Δρmax = 0.67 e Å3
2367 reflectionsΔρmin = 0.46 e Å3
136 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.44488 (8)0.7133 (5)0.09014 (9)0.0276 (4)
C20.38924 (9)0.6094 (5)0.04813 (10)0.0328 (5)
H20.38660.47020.01300.039*
C30.33756 (9)0.7085 (5)0.05748 (10)0.0333 (4)
H30.29920.63730.02900.040*
C40.34209 (9)0.9125 (5)0.10864 (10)0.0299 (4)
Br10.271130 (9)1.05954 (6)0.120530 (11)0.03931 (10)
C50.39742 (10)1.0157 (5)0.15066 (11)0.0341 (5)
H50.40001.15450.18580.041*
C60.44952 (9)0.9157 (5)0.14131 (10)0.0312 (4)
H60.48790.98620.16990.037*
O10.49374 (6)0.6021 (4)0.07605 (7)0.0344 (3)
C1'0.55085 (8)0.7126 (5)0.11245 (9)0.0301 (4)
C2'0.58143 (10)0.6171 (5)0.17734 (10)0.0333 (5)
F10.55300 (7)0.4306 (3)0.20677 (7)0.0480 (4)
C3'0.63949 (9)0.7086 (5)0.21246 (11)0.0367 (5)
H3'0.65960.64130.25710.044*
C4'0.66800 (10)0.9005 (5)0.18154 (12)0.0396 (5)
H4'0.70810.96620.20510.048*
C5'0.63832 (10)0.9973 (6)0.11634 (13)0.0422 (6)
H5'0.65821.12760.09520.051*
C6'0.57946 (10)0.9040 (5)0.08178 (11)0.0366 (5)
H6'0.55900.97190.03720.044*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0287 (9)0.0307 (10)0.0242 (9)0.0018 (8)0.0104 (7)0.0035 (8)
C20.0339 (11)0.0380 (12)0.0228 (9)0.0000 (8)0.0056 (8)0.0049 (8)
C30.0266 (9)0.0399 (12)0.0284 (10)0.0009 (9)0.0037 (8)0.0019 (9)
C40.0252 (9)0.0356 (11)0.0305 (10)0.0011 (8)0.0118 (8)0.0024 (8)
Br10.02741 (13)0.05074 (16)0.04058 (14)0.00186 (9)0.01304 (10)0.00527 (10)
C50.0314 (10)0.0381 (12)0.0337 (11)0.0038 (8)0.0125 (9)0.0083 (9)
C60.0251 (9)0.0362 (11)0.0311 (10)0.0052 (8)0.0086 (8)0.0050 (9)
O10.0272 (7)0.0457 (9)0.0301 (7)0.0000 (6)0.0097 (6)0.0088 (6)
C1'0.0270 (9)0.0336 (11)0.0303 (10)0.0042 (8)0.0109 (8)0.0026 (8)
C2'0.0362 (11)0.0317 (12)0.0332 (10)0.0007 (8)0.0139 (9)0.0006 (8)
F10.0519 (8)0.0491 (9)0.0376 (7)0.0133 (6)0.0093 (6)0.0101 (6)
C3'0.0334 (11)0.0377 (12)0.0343 (11)0.0039 (9)0.0063 (9)0.0044 (9)
C4'0.0279 (10)0.0434 (14)0.0483 (13)0.0001 (9)0.0144 (10)0.0119 (10)
C5'0.0359 (12)0.0476 (14)0.0511 (14)0.0015 (9)0.0251 (11)0.0009 (11)
C6'0.0329 (11)0.0457 (14)0.0345 (11)0.0058 (9)0.0160 (9)0.0033 (9)
Geometric parameters (Å, º) top
C1—C61.379 (3)O1—C1'1.389 (2)
C1—C21.384 (3)C1'—C6'1.380 (3)
C1—O11.386 (2)C1'—C2'1.381 (3)
C2—C31.381 (3)C2'—F11.347 (2)
C2—H20.9500C2'—C3'1.375 (3)
C3—C41.383 (3)C3'—C4'1.383 (3)
C3—H30.9500C3'—H3'0.9500
C4—C51.378 (3)C4'—C5'1.385 (4)
C4—Br11.903 (2)C4'—H4'0.9500
C5—C61.392 (3)C5'—C6'1.390 (3)
C5—H50.9500C5'—H5'0.9500
C6—H60.9500C6'—H6'0.9500
C6—C1—C2120.87 (18)C6'—C1'—C2'119.11 (19)
C6—C1—O1123.96 (17)C6'—C1'—O1119.48 (18)
C2—C1—O1115.16 (17)C2'—C1'—O1121.24 (19)
C3—C2—C1119.80 (19)F1—C2'—C3'119.52 (19)
C3—C2—H2120.1F1—C2'—C1'118.56 (19)
C1—C2—H2120.1C3'—C2'—C1'121.9 (2)
C2—C3—C4119.43 (18)C2'—C3'—C4'118.8 (2)
C2—C3—H3120.3C2'—C3'—H3'120.6
C4—C3—H3120.3C4'—C3'—H3'120.6
C5—C4—C3120.92 (19)C3'—C4'—C5'120.2 (2)
C5—C4—Br1119.22 (16)C3'—C4'—H4'119.9
C3—C4—Br1119.85 (15)C5'—C4'—H4'119.9
C4—C5—C6119.7 (2)C4'—C5'—C6'120.2 (2)
C4—C5—H5120.2C4'—C5'—H5'119.9
C6—C5—H5120.2C6'—C5'—H5'119.9
C1—C6—C5119.29 (18)C1'—C6'—C5'119.8 (2)
C1—C6—H6120.4C1'—C6'—H6'120.1
C5—C6—H6120.4C5'—C6'—H6'120.1
C1—O1—C1'118.93 (15)
C6—C1—C2—C30.1 (3)C1—O1—C1'—C2'76.1 (3)
O1—C1—C2—C3179.43 (18)C6'—C1'—C2'—F1179.92 (19)
C1—C2—C3—C40.4 (3)O1—C1'—C2'—F14.8 (3)
C2—C3—C4—C50.6 (3)C6'—C1'—C2'—C3'0.3 (3)
C2—C3—C4—Br1178.29 (16)O1—C1'—C2'—C3'175.6 (2)
C3—C4—C5—C60.5 (3)F1—C2'—C3'—C4'179.91 (19)
Br1—C4—C5—C6178.35 (16)C1'—C2'—C3'—C4'0.3 (3)
C2—C1—C6—C50.1 (3)C2'—C3'—C4'—C5'0.1 (3)
O1—C1—C6—C5179.31 (19)C3'—C4'—C5'—C6'0.5 (4)
C4—C5—C6—C10.3 (3)C2'—C1'—C6'—C5'0.1 (3)
C6—C1—O1—C1'4.1 (3)O1—C1'—C6'—C5'175.24 (19)
C2—C1—O1—C1'175.13 (18)C4'—C5'—C6'—C1'0.5 (3)
C1—O1—C1'—C6'108.7 (2)
(BDE3-3primeF) top
Crystal data top
C12H8BrFOF(000) = 528
Mr = 267.09Dx = 1.694 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 4604 reflections
a = 5.9477 (7) Åθ = 1.0–27.5°
b = 9.0635 (10) ŵ = 3.91 mm1
c = 19.481 (2) ÅT = 150 K
β = 94.030 (5)°Needle, colorless
V = 1047.6 (2) Å30.38 × 0.08 × 0.07 mm
Z = 4
Data collection top
Nonius KappaCCD
diffractometer
2390 independent reflections
Radiation source: fine-focus sealed tube1891 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.042
Detector resolution: 9 pixels mm-1θmax = 27.5°, θmin = 3.1°
CCD phi and ω scansh = 77
Absorption correction: multi-scan
HKL SCALEPACK (Otwinowski & Minor,1997)
k = 1111
Tmin = 0.318, Tmax = 0.772l = 2524
21638 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.029Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.082H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0449P)2 + 0.3505P]
where P = (Fo2 + 2Fc2)/3
2390 reflections(Δ/σ)max = 0.001
136 parametersΔρmax = 0.51 e Å3
0 restraintsΔρmin = 0.51 e Å3
Crystal data top
C12H8BrFOV = 1047.6 (2) Å3
Mr = 267.09Z = 4
Monoclinic, P21/nMo Kα radiation
a = 5.9477 (7) ŵ = 3.91 mm1
b = 9.0635 (10) ÅT = 150 K
c = 19.481 (2) Å0.38 × 0.08 × 0.07 mm
β = 94.030 (5)°
Data collection top
Nonius KappaCCD
diffractometer
2390 independent reflections
Absorption correction: multi-scan
HKL SCALEPACK (Otwinowski & Minor,1997)
1891 reflections with I > 2σ(I)
Tmin = 0.318, Tmax = 0.772Rint = 0.042
21638 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0290 restraints
wR(F2) = 0.082H-atom parameters constrained
S = 1.03Δρmax = 0.51 e Å3
2390 reflectionsΔρmin = 0.51 e Å3
136 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.6770 (4)0.6805 (2)0.62281 (11)0.0284 (4)
C20.4858 (4)0.7313 (2)0.58579 (11)0.0339 (5)
H20.45460.70220.53920.041*
C30.3401 (4)0.8250 (2)0.61713 (11)0.0336 (5)
H30.20750.86050.59250.040*
C40.3905 (3)0.8660 (2)0.68479 (10)0.0264 (4)
Br10.19567 (4)0.99890 (2)0.727610 (11)0.03544 (10)
C50.5799 (4)0.8145 (2)0.72189 (11)0.0319 (5)
H50.61080.84320.76850.038*
C60.7248 (4)0.7206 (2)0.69057 (11)0.0322 (5)
H60.85610.68400.71550.039*
O10.8308 (3)0.59279 (16)0.59072 (8)0.0343 (4)
C1'0.7969 (4)0.4418 (2)0.58983 (10)0.0257 (4)
C2'0.9690 (4)0.3600 (2)0.56347 (10)0.0285 (4)
H2'1.09930.40630.54780.034*
C3'0.9427 (4)0.2091 (2)0.56099 (11)0.0313 (5)
F11.1102 (2)0.12924 (14)0.53441 (8)0.0469 (4)
C4'0.7600 (4)0.1359 (2)0.58360 (11)0.0358 (5)
H4'0.74910.03140.58130.043*
C5'0.5923 (4)0.2205 (3)0.60989 (11)0.0332 (5)
H5'0.46400.17300.62620.040*
C6'0.6077 (4)0.3742 (2)0.61292 (10)0.0276 (4)
H6'0.49070.43120.63050.033*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0305 (11)0.0223 (10)0.0332 (10)0.0003 (8)0.0086 (9)0.0002 (8)
C20.0409 (12)0.0358 (11)0.0246 (10)0.0046 (10)0.0008 (9)0.0041 (9)
C30.0311 (11)0.0375 (12)0.0314 (11)0.0053 (9)0.0034 (9)0.0001 (9)
C40.0291 (10)0.0228 (9)0.0281 (10)0.0016 (8)0.0071 (8)0.0007 (8)
Br10.03496 (16)0.03472 (15)0.03812 (16)0.00202 (9)0.01294 (10)0.00459 (8)
C50.0338 (12)0.0341 (11)0.0273 (10)0.0009 (9)0.0022 (8)0.0041 (9)
C60.0299 (11)0.0315 (10)0.0344 (11)0.0030 (9)0.0030 (9)0.0004 (9)
O10.0339 (8)0.0257 (7)0.0454 (9)0.0014 (6)0.0170 (7)0.0020 (6)
C1'0.0307 (11)0.0255 (10)0.0207 (9)0.0003 (9)0.0008 (8)0.0001 (8)
C2'0.0250 (10)0.0327 (11)0.0279 (10)0.0024 (8)0.0019 (8)0.0011 (8)
C3'0.0286 (11)0.0312 (11)0.0333 (11)0.0083 (9)0.0037 (9)0.0041 (8)
F10.0375 (8)0.0367 (7)0.0663 (9)0.0114 (6)0.0035 (7)0.0104 (7)
C4'0.0381 (13)0.0261 (10)0.0421 (12)0.0010 (9)0.0052 (10)0.0001 (9)
C5'0.0322 (11)0.0341 (11)0.0324 (11)0.0071 (9)0.0025 (9)0.0020 (9)
C6'0.0285 (11)0.0321 (11)0.0223 (9)0.0000 (8)0.0026 (8)0.0007 (8)
Geometric parameters (Å, º) top
C1—C61.379 (3)O1—C1'1.384 (3)
C1—C21.382 (3)C1'—C6'1.384 (3)
C1—O11.393 (2)C1'—C2'1.391 (3)
C2—C31.386 (3)C2'—C3'1.377 (3)
C2—H20.9500C2'—H2'0.9500
C3—C41.382 (3)C3'—F11.362 (2)
C3—H30.9500C3'—C4'1.371 (3)
C4—C51.376 (3)C4'—C5'1.385 (3)
C4—Br11.9041 (19)C4'—H4'0.9500
C5—C61.384 (3)C5'—C6'1.397 (3)
C5—H50.9500C5'—H5'0.9500
C6—H60.9500C6'—H6'0.9500
C6—C1—C2121.24 (19)O1—C1'—C6'123.73 (18)
C6—C1—O1118.8 (2)O1—C1'—C2'114.91 (17)
C2—C1—O1119.88 (18)C6'—C1'—C2'121.35 (19)
C1—C2—C3119.45 (19)C3'—C2'—C1'117.2 (2)
C1—C2—H2120.3C3'—C2'—H2'121.4
C3—C2—H2120.3C1'—C2'—H2'121.4
C4—C3—C2119.0 (2)F1—C3'—C4'118.82 (19)
C4—C3—H3120.5F1—C3'—C2'117.15 (19)
C2—C3—H3120.5C4'—C3'—C2'124.0 (2)
C5—C4—C3121.63 (19)C3'—C4'—C5'117.3 (2)
C5—C4—Br1119.01 (15)C3'—C4'—H4'121.4
C3—C4—Br1119.35 (16)C5'—C4'—H4'121.4
C4—C5—C6119.29 (19)C4'—C5'—C6'121.4 (2)
C4—C5—H5120.4C4'—C5'—H5'119.3
C6—C5—H5120.4C6'—C5'—H5'119.3
C1—C6—C5119.4 (2)C1'—C6'—C5'118.7 (2)
C1—C6—H6120.3C1'—C6'—H6'120.6
C5—C6—H6120.3C5'—C6'—H6'120.6
C1'—O1—C1118.05 (15)
C6—C1—C2—C30.4 (3)C1—O1—C1'—C6'6.6 (3)
O1—C1—C2—C3176.51 (19)C1—O1—C1'—C2'173.55 (18)
C1—C2—C3—C40.3 (3)O1—C1'—C2'—C3'179.55 (18)
C2—C3—C4—C50.9 (3)C6'—C1'—C2'—C3'0.3 (3)
C2—C3—C4—Br1178.31 (16)C1'—C2'—C3'—F1179.24 (17)
C3—C4—C5—C60.6 (3)C1'—C2'—C3'—C4'0.9 (3)
Br1—C4—C5—C6178.54 (16)F1—C3'—C4'—C5'179.58 (19)
C2—C1—C6—C50.6 (3)C2'—C3'—C4'—C5'0.6 (3)
O1—C1—C6—C5176.31 (18)C3'—C4'—C5'—C6'0.3 (3)
C4—C5—C6—C10.1 (3)O1—C1'—C6'—C5'179.64 (18)
C6—C1—O1—C1'94.9 (2)C2'—C1'—C6'—C5'0.5 (3)
C2—C1—O1—C1'88.1 (2)C4'—C5'—C6'—C1'0.8 (3)
(BDE3-4primeF) top
Crystal data top
C12H8BrFOF(000) = 528
Mr = 267.09Dx = 1.715 Mg m3
Monoclinic, CcMo Kα radiation, λ = 0.71073 Å
Hall symbol: C -2ycCell parameters from 2317 reflections
a = 6.0033 (7) Åθ = 1.0–27.5°
b = 23.186 (3) ŵ = 3.96 mm1
c = 7.4329 (8) ÅT = 150 K
β = 91.480 (5)°Plate, colorless
V = 1034.3 (2) Å30.33 × 0.16 × 0.03 mm
Z = 4
Data collection top
Nonius KappaCCD
diffractometer
2289 independent reflections
Radiation source: fine-focus sealed tube2170 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.022
Detector resolution: 9 pixels mm-1θmax = 27.5°, θmin = 3.3°
CCD phi and ω scansh = 77
Absorption correction: multi-scan
HKL SCALEPACK (Otwinowski & Minor, 1997)
k = 3030
Tmin = 0.355, Tmax = 0.891l = 99
9753 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.027H-atom parameters constrained
wR(F2) = 0.065 w = 1/[σ2(Fo2) + (0.0435P)2 + 0.0519P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max = 0.001
2289 reflectionsΔρmax = 0.38 e Å3
136 parametersΔρmin = 0.73 e Å3
2 restraintsAbsolute structure: Flack H D (1983), Acta Cryst. A39, 876-881
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.013 (10)
Crystal data top
C12H8BrFOV = 1034.3 (2) Å3
Mr = 267.09Z = 4
Monoclinic, CcMo Kα radiation
a = 6.0033 (7) ŵ = 3.96 mm1
b = 23.186 (3) ÅT = 150 K
c = 7.4329 (8) Å0.33 × 0.16 × 0.03 mm
β = 91.480 (5)°
Data collection top
Nonius KappaCCD
diffractometer
2289 independent reflections
Absorption correction: multi-scan
HKL SCALEPACK (Otwinowski & Minor, 1997)
2170 reflections with I > 2σ(I)
Tmin = 0.355, Tmax = 0.891Rint = 0.022
9753 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.027H-atom parameters constrained
wR(F2) = 0.065Δρmax = 0.38 e Å3
S = 1.03Δρmin = 0.73 e Å3
2289 reflectionsAbsolute structure: Flack H D (1983), Acta Cryst. A39, 876-881
136 parametersAbsolute structure parameter: 0.013 (10)
2 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.4554 (5)0.10860 (13)0.7388 (3)0.0319 (6)
C20.2550 (5)0.11709 (13)0.8224 (4)0.0320 (6)
H20.21190.15470.85890.038*
C30.1168 (4)0.07003 (14)0.8526 (3)0.0302 (5)
H30.02280.07510.90790.036*
C40.1870 (4)0.01555 (13)0.8004 (3)0.0285 (6)
Br10.00105 (6)0.048949 (10)0.83625 (6)0.03478 (9)
C50.3888 (5)0.00713 (13)0.7213 (4)0.0294 (5)
H50.43460.03060.68840.035*
C60.5246 (5)0.05422 (11)0.6899 (4)0.0298 (6)
H60.66440.04910.63510.036*
O10.5914 (4)0.15666 (9)0.7153 (3)0.0424 (5)
C1'0.6675 (5)0.16771 (12)0.5446 (4)0.0310 (6)
C2'0.8637 (5)0.19853 (12)0.5355 (4)0.0342 (6)
H2'0.94150.20950.64310.041*
C3'0.9472 (5)0.21347 (12)0.3700 (4)0.0355 (6)
H3'1.08200.23470.36260.043*
C4'0.8312 (5)0.19692 (13)0.2165 (4)0.0348 (6)
F10.9138 (4)0.21033 (9)0.0540 (3)0.0496 (5)
C5'0.6347 (5)0.16654 (13)0.2224 (4)0.0370 (6)
H5'0.55810.15560.11430.044*
C6'0.5494 (5)0.15205 (12)0.3892 (4)0.0337 (6)
H6'0.41240.13180.39640.040*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0385 (15)0.0325 (15)0.0247 (13)0.0063 (11)0.0010 (10)0.0023 (10)
C20.0386 (15)0.0294 (15)0.0280 (13)0.0054 (11)0.0002 (11)0.0052 (11)
C30.0273 (14)0.0391 (15)0.0243 (13)0.0052 (11)0.0007 (9)0.0021 (11)
C40.0251 (13)0.0359 (15)0.0245 (13)0.0010 (10)0.0023 (9)0.0032 (10)
Br10.03307 (14)0.03829 (15)0.03322 (13)0.00806 (14)0.00551 (8)0.00331 (14)
C50.0282 (13)0.0313 (14)0.0287 (13)0.0011 (10)0.0002 (10)0.0026 (10)
C60.0262 (14)0.0331 (16)0.0303 (15)0.0006 (10)0.0046 (11)0.0042 (10)
O10.0563 (14)0.0341 (12)0.0371 (11)0.0187 (10)0.0085 (9)0.0103 (9)
C1'0.0323 (14)0.0217 (13)0.0390 (15)0.0000 (10)0.0033 (11)0.0005 (10)
C2'0.0329 (14)0.0243 (14)0.0450 (16)0.0025 (10)0.0055 (11)0.0002 (11)
C3'0.0275 (16)0.0267 (14)0.0523 (19)0.0029 (10)0.0002 (11)0.0068 (12)
C4'0.0350 (15)0.0297 (14)0.0399 (15)0.0017 (11)0.0053 (11)0.0065 (11)
F10.0591 (12)0.0466 (11)0.0436 (10)0.0088 (9)0.0133 (8)0.0082 (8)
C5'0.0386 (16)0.0312 (15)0.0410 (16)0.0013 (11)0.0049 (12)0.0003 (12)
C6'0.0328 (15)0.0268 (14)0.0415 (16)0.0023 (10)0.0022 (10)0.0016 (11)
Geometric parameters (Å, º) top
C1—C61.379 (4)O1—C1'1.384 (3)
C1—C21.383 (4)C1'—C2'1.381 (4)
C1—O11.395 (4)C1'—C6'1.388 (4)
C2—C31.392 (4)C2'—C3'1.385 (4)
C2—H20.9500C2'—H2'0.9500
C3—C41.390 (4)C3'—C4'1.376 (4)
C3—H30.9500C3'—H3'0.9500
C4—C51.374 (4)C4'—F11.354 (3)
C4—Br11.897 (3)C4'—C5'1.376 (4)
C5—C61.386 (4)C5'—C6'1.395 (4)
C5—H50.9500C5'—H5'0.9500
C6—H60.9500C6'—H6'0.9500
C6—C1—C2121.3 (3)C2'—C1'—O1116.3 (3)
C6—C1—O1121.1 (3)C2'—C1'—C6'120.9 (3)
C2—C1—O1117.5 (3)O1—C1'—C6'122.7 (3)
C1—C2—C3119.3 (3)C1'—C2'—C3'120.1 (3)
C1—C2—H2120.3C1'—C2'—H2'119.9
C3—C2—H2120.3C3'—C2'—H2'119.9
C4—C3—C2118.8 (3)C4'—C3'—C2'118.7 (3)
C4—C3—H3120.6C4'—C3'—H3'120.7
C2—C3—H3120.6C2'—C3'—H3'120.7
C5—C4—C3121.7 (3)F1—C4'—C5'118.7 (3)
C5—C4—Br1118.8 (2)F1—C4'—C3'119.1 (3)
C3—C4—Br1119.4 (2)C5'—C4'—C3'122.2 (3)
C4—C5—C6119.3 (3)C4'—C5'—C6'119.1 (3)
C4—C5—H5120.4C4'—C5'—H5'120.5
C6—C5—H5120.4C6'—C5'—H5'120.5
C1—C6—C5119.6 (3)C1'—C6'—C5'119.0 (3)
C1—C6—H6120.2C1'—C6'—H6'120.5
C5—C6—H6120.2C5'—C6'—H6'120.5
C1'—O1—C1118.1 (2)
C6—C1—C2—C32.1 (4)C1—O1—C1'—C2'154.5 (3)
O1—C1—C2—C3178.4 (2)C1—O1—C1'—C6'29.2 (4)
C1—C2—C3—C41.2 (4)O1—C1'—C2'—C3'177.5 (3)
C2—C3—C4—C50.4 (4)C6'—C1'—C2'—C3'1.0 (4)
C2—C3—C4—Br1178.8 (2)C1'—C2'—C3'—C4'0.1 (4)
C3—C4—C5—C61.1 (4)C2'—C3'—C4'—F1178.7 (3)
Br1—C4—C5—C6178.2 (2)C2'—C3'—C4'—C5'0.5 (5)
C2—C1—C6—C51.5 (4)F1—C4'—C5'—C6'179.4 (3)
O1—C1—C6—C5177.6 (2)C3'—C4'—C5'—C6'0.2 (5)
C4—C5—C6—C10.1 (4)C2'—C1'—C6'—C5'1.7 (4)
C6—C1—O1—C1'55.9 (4)O1—C1'—C6'—C5'177.9 (3)
C2—C1—O1—C1'127.9 (3)C4'—C5'—C6'—C1'1.3 (4)

Experimental details

(BDE3)(BDE3-3F)(BDE3-2F)(BDE3-2primeF)
Crystal data
Chemical formulaC12H9BrOC12H8BrFOC12H8BrFOC12H8BrFO
Mr249.10267.09267.09267.09
Crystal system, space groupMonoclinic, CcOrthorhombic, Pca21Orthorhombic, P212121Monoclinic, C2/c
Temperature (K)150150150150
a, b, c (Å)23.628 (3), 7.5461 (9), 5.8066 (7)14.9203 (16), 11.6841 (13), 5.8727 (7)5.8708 (7), 9.0974 (10), 19.396 (2)23.752 (3), 4.3622 (5), 21.357 (3)
α, β, γ (°)90, 97.919 (5), 9090, 90, 9090, 90, 9090, 110.762 (5), 90
V3)1025.4 (2)1023.8 (2)1035.9 (2)2069.1 (5)
Z4448
Radiation typeMo KαMo KαMo KαMo Kα
µ (mm1)3.974.003.953.95
Crystal size (mm)0.36 × 0.24 × 0.070.45 × 0.44 × 0.080.34 × 0.31 × 0.190.19 × 0.16 × 0.06
Data collection
DiffractometerNonius KappaCCD
diffractometer
Nonius KappaCCD
diffractometer
Nonius KappaCCD
diffractometer
Nonius KappaCCD
diffractometer
Absorption correctionMulti-scan
HKL SCALEPACK (Otwinowski & Minor, 1997)
Multi-scan
HKL SCALEPACK (Otwinowski & Minor, 1997)
Multi-scan
HKL SCALEPACK (Otwinowski & Minor, 1997)
Multi-scan
HKL SCALEPACK (Otwinowski & Minor, 1997)
Tmin, Tmax0.329, 0.7690.267, 0.7410.315, 0.4730.520, 0.797
No. of measured, independent and
observed [I > 2σ(I)] reflections
11708, 2310, 2216 15796, 2327, 2190 21969, 2373, 2293 19505, 2367, 2029
Rint0.0270.0510.0220.039
(sin θ/λ)max1)0.6470.6470.6500.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.024, 0.063, 1.08 0.029, 0.077, 1.12 0.016, 0.038, 1.03 0.028, 0.070, 1.05
No. of reflections2310232723732367
No. of parameters127136170136
No. of restraints21460
H-atom treatmentH-atom parameters constrainedH-atom parameters constrainedH-atom parameters constrainedH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.28, 0.370.44, 0.320.17, 0.200.67, 0.46
Absolute structureFlack H D (1983), Acta Cryst. A39, 876-881Flack H D (1983), Acta Cryst. A39, 876-881Flack H D (1983), Acta Cryst. A39, 876-881?
Absolute structure parameter0.010 (8)0.021 (11)0.003 (7)?


(BDE3-3primeF)(BDE3-4primeF)
Crystal data
Chemical formulaC12H8BrFOC12H8BrFO
Mr267.09267.09
Crystal system, space groupMonoclinic, P21/nMonoclinic, Cc
Temperature (K)150150
a, b, c (Å)5.9477 (7), 9.0635 (10), 19.481 (2)6.0033 (7), 23.186 (3), 7.4329 (8)
α, β, γ (°)90, 94.030 (5), 9090, 91.480 (5), 90
V3)1047.6 (2)1034.3 (2)
Z44
Radiation typeMo KαMo Kα
µ (mm1)3.913.96
Crystal size (mm)0.38 × 0.08 × 0.070.33 × 0.16 × 0.03
Data collection
DiffractometerNonius KappaCCD
diffractometer
Nonius KappaCCD
diffractometer
Absorption correctionMulti-scan
HKL SCALEPACK (Otwinowski & Minor,1997)
Multi-scan
HKL SCALEPACK (Otwinowski & Minor, 1997)
Tmin, Tmax0.318, 0.7720.355, 0.891
No. of measured, independent and
observed [I > 2σ(I)] reflections
21638, 2390, 1891 9753, 2289, 2170
Rint0.0420.022
(sin θ/λ)max1)0.6500.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.029, 0.082, 1.03 0.027, 0.065, 1.03
No. of reflections23902289
No. of parameters136136
No. of restraints02
H-atom treatmentH-atom parameters constrainedH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.51, 0.510.38, 0.73
Absolute structure?Flack H D (1983), Acta Cryst. A39, 876-881
Absolute structure parameter?0.013 (10)

Computer programs: Collect (Nonius BV, 1997-2000), HKL SCALEPACK (Otwinowski & Minor, 1997), HKL SCALEPACK (Otwinowski & Minor,1997), HKL DENZO, SCALEPACK (Otwinowski & Minor, 1997), HKL DENZO, SCALEPACK (Otwinowski & Minor, 1997, HKL DENZO, SCALEPACK (Otwinowski & Minor,1997), SHELXTL v6.1 (Sheldrick, 1997).

Selected geometric parameters (Å, º) for (BDE3) top
C1—O11.376 (3)O1—C1'1.386 (3)
C1—C61.396 (3)C1'—C2'1.386 (4)
C1—C21.401 (4)C1'—C6'1.396 (3)
C2—C31.377 (4)C2'—C3'1.392 (4)
C3—C41.389 (3)C3'—C4'1.395 (4)
C4—C51.393 (4)C4'—C5'1.389 (4)
C4—Br11.896 (3)C5'—C6'1.388 (4)
C5—C61.385 (4)
O1—C1—C6124.4 (2)C1—O1—C1'121.09 (18)
O1—C1—C2115.4 (2)O1—C1'—C2'116.1 (2)
C6—C1—C2120.1 (2)O1—C1'—C6'122.8 (2)
C3—C2—C1120.2 (2)C2'—C1'—C6'120.8 (2)
C2—C3—C4119.5 (2)C1'—C2'—C3'119.5 (2)
C3—C4—C5120.8 (2)C2'—C3'—C4'120.5 (2)
C3—C4—Br1120.3 (2)C5'—C4'—C3'119.1 (3)
C5—C4—Br1118.90 (18)C6'—C5'—C4'121.2 (2)
C6—C5—C4119.9 (2)C5'—C6'—C1'118.9 (2)
C5—C6—C1119.5 (2)
Selected geometric parameters (Å, º) for (BDE3-3F) top
C1—O11.364 (3)C5—C61.376 (4)
C1—C21.392 (3)O1—C1'1.410 (3)
C1—C61.400 (4)C1'—C2'1.373 (4)
C2—C31.377 (4)C1'—C6'1.380 (4)
C3—F11.357 (3)C2'—C3'1.396 (5)
C3—C41.374 (4)C3'—C4'1.379 (5)
C4—C51.397 (4)C4'—C5'1.382 (5)
C4—Br11.880 (3)C5'—C6'1.385 (4)
O1—C1—C2114.2 (2)C5—C6—C1120.1 (2)
O1—C1—C6126.3 (2)C1—O1—C1'120.9 (2)
C2—C1—C6119.5 (2)C2'—C1'—C6'122.1 (3)
C3—C2—C1118.8 (2)C2'—C1'—O1115.8 (3)
F1—C3—C4119.4 (2)C6'—C1'—O1121.8 (3)
F1—C3—C2117.7 (2)C1'—C2'—C3'118.6 (3)
C4—C3—C2122.9 (2)C4'—C3'—C2'120.2 (3)
C3—C4—C5117.9 (2)C3'—C4'—C5'120.1 (2)
C3—C4—Br1121.0 (2)C4'—C5'—C6'120.4 (3)
C5—C4—Br1121.1 (2)C1'—C6'—C5'118.6 (3)
C6—C5—C4120.9 (2)
Selected geometric parameters (Å, º) for (BDE3-2F) top
C1—C21.3782 (14)C5—C61.391 (3)
C1—O11.3889 (18)O1—C1'1.400 (2)
C1—C61.385 (2)C1'—C6'1.378 (2)
C2—F11.3488 (13)C1'—C2'1.385 (2)
C2—C31.3827 (14)C2'—C3'1.389 (3)
C3—C41.383 (2)C3'—C4'1.389 (3)
C4—C51.382 (3)C4'—C5'1.376 (3)
C4—Br11.8965 (17)C5'—C6'1.395 (2)
C2—C1—O1119.93 (13)C5—C6—C1120.23 (16)
C2—C1—C6119.24 (13)C1—O1—C1'115.96 (12)
O1—C1—C6120.80 (14)C6'—C1'—C2'121.65 (15)
F1—C2—C1118.85 (11)C6'—C1'—O1122.46 (16)
F1—C2—C3119.19 (12)C2'—C1'—O1115.88 (16)
C1—C2—C3121.95 (10)C1'—C2'—C3'118.77 (16)
C4—C3—C2117.75 (13)C2'—C3'—C4'120.46 (16)
C3—C4—C5121.95 (16)C5'—C4'—C3'119.67 (15)
C3—C4—Br1119.12 (12)C4'—C5'—C6'120.77 (16)
C5—C4—Br1118.92 (13)C1'—C6'—C5'118.67 (16)
C4—C5—C6118.88 (17)
Selected geometric parameters (Å, º) for (BDE3-2primeF) top
C1—C61.379 (3)O1—C1'1.389 (2)
C1—C21.384 (3)C1'—C6'1.380 (3)
C1—O11.386 (2)C1'—C2'1.381 (3)
C2—C31.381 (3)C2'—F11.347 (2)
C3—C41.383 (3)C2'—C3'1.375 (3)
C4—C51.378 (3)C3'—C4'1.383 (3)
C4—Br11.903 (2)C4'—C5'1.385 (4)
C5—C61.392 (3)C5'—C6'1.390 (3)
C6—C1—C2120.87 (18)C6'—C1'—C2'119.11 (19)
C6—C1—O1123.96 (17)C6'—C1'—O1119.48 (18)
C2—C1—O1115.16 (17)C2'—C1'—O1121.24 (19)
C3—C2—C1119.80 (19)F1—C2'—C3'119.52 (19)
C2—C3—C4119.43 (18)F1—C2'—C1'118.56 (19)
C5—C4—C3120.92 (19)C3'—C2'—C1'121.9 (2)
C5—C4—Br1119.22 (16)C2'—C3'—C4'118.8 (2)
C3—C4—Br1119.85 (15)C3'—C4'—C5'120.2 (2)
C4—C5—C6119.7 (2)C4'—C5'—C6'120.2 (2)
C1—C6—C5119.29 (18)C1'—C6'—C5'119.8 (2)
C1—O1—C1'118.93 (15)
Selected geometric parameters (Å, º) for (BDE3-3primeF) top
C1—C61.379 (3)O1—C1'1.384 (3)
C1—C21.382 (3)C1'—C6'1.384 (3)
C1—O11.393 (2)C1'—C2'1.391 (3)
C2—C31.386 (3)C2'—C3'1.377 (3)
C3—C41.382 (3)C3'—F11.362 (2)
C4—C51.376 (3)C3'—C4'1.371 (3)
C4—Br11.9041 (19)C4'—C5'1.385 (3)
C5—C61.384 (3)C5'—C6'1.397 (3)
C6—C1—C2121.24 (19)O1—C1'—C6'123.73 (18)
C6—C1—O1118.8 (2)O1—C1'—C2'114.91 (17)
C2—C1—O1119.88 (18)C6'—C1'—C2'121.35 (19)
C1—C2—C3119.45 (19)C3'—C2'—C1'117.2 (2)
C4—C3—C2119.0 (2)F1—C3'—C4'118.82 (19)
C5—C4—C3121.63 (19)F1—C3'—C2'117.15 (19)
C5—C4—Br1119.01 (15)C4'—C3'—C2'124.0 (2)
C3—C4—Br1119.35 (16)C3'—C4'—C5'117.3 (2)
C4—C5—C6119.29 (19)C4'—C5'—C6'121.4 (2)
C1—C6—C5119.4 (2)C1'—C6'—C5'118.7 (2)
C1'—O1—C1118.05 (15)
Selected geometric parameters (Å, º) for (BDE3-4primeF) top
C1—C61.379 (4)O1—C1'1.384 (3)
C1—C21.383 (4)C1'—C2'1.381 (4)
C1—O11.395 (4)C1'—C6'1.388 (4)
C2—C31.392 (4)C2'—C3'1.385 (4)
C3—C41.390 (4)C3'—C4'1.376 (4)
C4—C51.374 (4)C4'—F11.354 (3)
C4—Br11.897 (3)C4'—C5'1.376 (4)
C5—C61.386 (4)C5'—C6'1.395 (4)
C6—C1—C2121.3 (3)C2'—C1'—O1116.3 (3)
C6—C1—O1121.1 (3)C2'—C1'—C6'120.9 (3)
C2—C1—O1117.5 (3)O1—C1'—C6'122.7 (3)
C1—C2—C3119.3 (3)C1'—C2'—C3'120.1 (3)
C4—C3—C2118.8 (3)C4'—C3'—C2'118.7 (3)
C5—C4—C3121.7 (3)F1—C4'—C5'118.7 (3)
C5—C4—Br1118.8 (2)F1—C4'—C3'119.1 (3)
C3—C4—Br1119.4 (2)C5'—C4'—C3'122.2 (3)
C4—C5—C6119.3 (3)C4'—C5'—C6'119.1 (3)
C1—C6—C5119.6 (3)C1'—C6'—C5'119.0 (3)
C1'—O1—C1118.1 (2)
 

Follow Acta Cryst. B
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds