Download citation
Download citation
link to html
The ligand 1,2,3,4-tetra­methyl-5-(2-pyridyl)­cyclo­penta­diene (cp*py) forms a dinuclear complex with UIV, i.e. di-μ-oxo-bis­{chloro­(diethyl ether-κO)[(η5N)-1,2,3,4-tetra­methyl-5-(2-pyridyl)­cyclo­penta­dienyl]uranium(IV)}, [U2Cl2O2(C14H16N)2(C4H10O)2], in which cp*py acts as a chelating ligand, being bound to the metal atom by the cyclo­penta­dienyl unit and also by the N atom of the pyridyl ring.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270101016961/bm1473sup1.cif
Contains datablocks (I), global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270101016961/bm1473Isup2.hkl
Contains datablock I

CCDC reference: 180126

Comment top

In the course of our studies on the uranium-complexing properties of the ligand tetramethyl-5-(2-pyridyl)cyclopentadiene, denoted cp*py, in view of obtaining uranium-containing heterobimetallic species, we obtained the title compound (I), which is a dinuclear U(IV) complex presenting some interesting features.

The asymmetric unit in (I) comprises one neutral complex molecule, which possesses approximate inversion symmetry. The ligand cp*py acts as a chelating ligand, as in another previously described U(IV)-cp*py complex (Moisan et al., 2001a). Whereas several examples have been reported in which the two ligating sites of cp*py are bound to different metal atoms (Neumann et al., 1997), these uranium complexes are the first examples in which cp*py (or its equivalent without methyl groups, cppy) is bound by the η5-cp* ring and the N atom to the same metal centre. The mean U—C bond length is 2.78 (8) Å, U···centroid distances are 2.509 and 2.519 Å for U1 and U2, respectively, and the mean U—N bond length 2.57 (3) Å: the U—C distance in particular is slightly longer than in the previous complex [mean U—C 2.72 (9), U—N 2.553 (9) Å]. Such a coordination mode of cp*py bringing the N atom closer to U results in a distortion which is evidenced by the displacement of atoms C2, C5 and C16, C19 out of the corresponding tetramethylcyclopentadienyl mean planes. These displacements are of 1.76 (6), 0.52 (4), 1.69 (5) and 0.47 (4) Å, respectively, slightly larger than in the previous complex [1.62 (3) and 0.42 (2) Å] because of the larger U—C bond lengths. The dihedral angles between the five- and six-membered rings are 74 (1) and 73 (1)° for the two ligands, slightly greater than in the previous compound [71.7 (4)°], probably for the same reason. The two cyclopentadienyl rings in (I) are nearly parallel with a dihedral angle of 3(1)°, as are the pyridyl units, with a dihedral angle of 4.0 (9)°, in accord with the presence of a pseudo-symmetry centre.

U1 and U2 are each also bound to a chloride ion, with a mean bond length of 2.62 (2) Å and to a diethyl ether molecule, with a mean U—O bond length of 2.15 (4) Å, much smaller than the mean UO(diethylether) bond length found from the Cambridge Structural Database (Allen & Kennard, 1993), which is 2.50 (3) Å. Two µ2-oxo ions bridge the two metal atoms, with a mean U—O bond length of 2.10 (3) Å and a mean U—O—U angle of 108.6 (4)°, in good agreement with the mean values for structures of bis(µ2-oxo)-bridged uranium(IV) dimers found in the CSD [2.14 (4) Å and 106.7 (5)°].

If the cyclopentadienyl ring is represented by its centroid and the difference in nature between the donor atoms is neglected, the U ions are in very distorted octahedral environments, with the common edge O1···O2. U1, U2, O1 and O2 define a plane with a maximum deviation of 0.03 (2) Å. This plane is nearly orthogonal to that defined by U1, U2, Cl1 and Cl2 [maximum deviation 0.054 (9) Å], with a dihedral angle of 80.4 (5)°. N1 and N2 are close to the second plane, with deviations of 0.15 (2) and -0.02 (2) Å, but O3, O4 and the centroids of the cyclopentadienyl rings are more distant from the first one, with deviations in the range 0.22 (3)–1.00 (2) Å. The U···U distance, 3.401 (2) Å, matches the mean distance in the three dinuclear, bis(µ2-oxo)-bridged, U(IV) complexes reported in the CSD [3.43 (7) Å]. This U···U distance is much larger than that corresponding to a U—U single bond (2.85 Å, Cayton et al., 1991), indicating that no bonding interaction is present between the metal atoms in (I).

Experimental top

The lithium salt of the ligand cp*py has been synthesized by a procedure described in the literature (Siemeling et al., 1995). The reaction of two equivalents of Li(cp*py) with UCl4 in THF at ambient temperature gives the complex UCl2(cp*py)2 (Moisan et al., 2001b). Single crystals of (I) were obtained from a solution of UCl2(cp*py)2 in THF/Et2O, in the presence of adventitious traces of oxygen.

Refinement top

The atoms of the diethylether units have been refined with anisotropic displacement ellipsoids restrained to an approximate isotropic behaviour. All hydrogen atoms were introduced at calculated positions as riding atoms with C—H bond lengths of 0.93 (CH), 0.97 (CH2) and 0.96 (CH3) Å and a displacement parameter equal to 1.2 (CH, CH2) or 1.5 (CH3) times that of the parent atom. The methyl groups have been refined as rigid rotating units.

Computing details top

Data collection: kappaCCD software (Nonius, 1997); cell refinement: DENZO-SMN (Otwinowski & Minor, 1997); data reduction: DENZO-SMN; program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 1997); software used to prepare material for publication: SHELXTL and PARST97 (Nardelli, 1995).

Figures top
[Figure 1] Fig. 1. The title molecule with the atom-numbering scheme. H atoms have been omitted for clarity. Displacement ellipsoids are drawn at the 10% probability level.
(I) top
Crystal data top
C36H52Cl2N2O4U2F(000) = 2128
Mr = 1123.76Dx = 1.908 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 11.6695 (8) ÅCell parameters from 20390 reflections
b = 18.2129 (12) Åθ = 3.2–25.7°
c = 19.1940 (13) ŵ = 8.44 mm1
β = 106.420 (4)°T = 100 K
V = 3913.0 (5) Å3Parallelepiped, black
Z = 40.35 × 0.15 × 0.10 mm
Data collection top
Nonius kappaCCD
diffractometer
7087 independent reflections
Radiation source: fine-focus sealed tube2097 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.093
Detector resolution: 18 pixels mm-1θmax = 25.7°, θmin = 3.2°
ϕ scansh = 1414
Absorption correction: empirical (using intensity measurements)
PLATON DELABS (Spek, 2000)
k = 2222
Tmin = 0.108, Tmax = 0.430l = 2323
20386 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.087Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.184H atoms treated by a mixture of independent and constrained refinement
S = 0.92 w = 1/[σ2(Fo2) + (0.0166P)2]
where P = (Fo2 + 2Fc2)/3
7087 reflections(Δ/σ)max = 0.001
427 parametersΔρmax = 0.81 e Å3
60 restraintsΔρmin = 1.13 e Å3
Crystal data top
C36H52Cl2N2O4U2V = 3913.0 (5) Å3
Mr = 1123.76Z = 4
Monoclinic, P21/cMo Kα radiation
a = 11.6695 (8) ŵ = 8.44 mm1
b = 18.2129 (12) ÅT = 100 K
c = 19.1940 (13) Å0.35 × 0.15 × 0.10 mm
β = 106.420 (4)°
Data collection top
Nonius kappaCCD
diffractometer
7087 independent reflections
Absorption correction: empirical (using intensity measurements)
PLATON DELABS (Spek, 2000)
2097 reflections with I > 2σ(I)
Tmin = 0.108, Tmax = 0.430Rint = 0.093
20386 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.08760 restraints
wR(F2) = 0.184H atoms treated by a mixture of independent and constrained refinement
S = 0.92Δρmax = 0.81 e Å3
7087 reflectionsΔρmin = 1.13 e Å3
427 parameters
Special details top

Experimental. crystal-to-detector distance 28 mm

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. A 180° range in ϕ was scanned during data collection, with 2° ϕ steps. Crystal-to-detector distance fixed at 28 mm.

Structure solved by direct methods and expanded by subsequent Fourier-difference synthesis. All non-hydrogen atoms have been refined anisotropically. All hydrogen atoms were introduced at calculated positions as riding atoms, with a displacement parameter equal to 1.2 (CH, CH2) or 1.5 (CH3) times that of the parent atom. Some restraints on displacement parameters have been applied to the atoms of the diethylether units.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
U10.10341 (11)0.16882 (6)0.30735 (7)0.0598 (4)
U20.34633 (12)0.28100 (6)0.34764 (7)0.0628 (4)
Cl10.2239 (7)0.0498 (4)0.3624 (4)0.073 (2)
Cl20.2217 (7)0.3978 (4)0.2973 (5)0.084 (3)
O10.2213 (16)0.2268 (9)0.3909 (9)0.064 (5)
O20.2338 (17)0.2209 (9)0.2659 (9)0.071 (6)
O30.0370 (18)0.1138 (12)0.2064 (11)0.089 (7)
O40.412 (2)0.3357 (13)0.4522 (12)0.109 (8)
N10.028 (2)0.2777 (13)0.2452 (13)0.071 (7)
N20.4801 (18)0.1733 (11)0.4032 (12)0.051 (6)
C10.025 (3)0.3243 (16)0.1930 (15)0.074 (9)
H10.04460.32970.17880.089*
C20.123 (4)0.3639 (19)0.1605 (19)0.109 (13)
H20.11720.39870.12630.131*
C30.234 (3)0.3562 (15)0.1746 (16)0.081 (10)
H30.30070.38380.15030.097*
C40.239 (3)0.3032 (14)0.2287 (14)0.061 (8)
H40.30910.29190.24000.073*
C50.128 (3)0.2692 (16)0.2638 (17)0.070 (9)
C60.107 (2)0.2157 (14)0.3248 (16)0.060 (8)
C70.127 (2)0.1405 (13)0.3157 (15)0.060 (8)
C80.057 (2)0.1044 (14)0.3775 (14)0.077 (10)
C90.005 (2)0.1561 (15)0.4267 (14)0.057 (8)
C100.023 (2)0.2259 (14)0.3920 (13)0.042 (6)
C110.219 (3)0.0995 (15)0.2516 (15)0.083 (10)
H11A0.19740.04870.25150.124*
H11B0.21930.12150.20610.124*
H11C0.29770.10320.25810.124*
C120.062 (3)0.0237 (13)0.3878 (13)0.071 (9)
H12A0.01740.00500.40680.106*
H12B0.09950.00080.34190.106*
H12C0.10760.01340.42120.106*
C130.094 (3)0.1447 (15)0.5033 (14)0.082 (10)
H13A0.05120.14360.53910.123*
H13B0.15080.18440.51390.123*
H13C0.13620.09910.50430.123*
C140.017 (2)0.3007 (13)0.4240 (14)0.069 (10)
H14A0.08630.29530.46500.104*
H14B0.04620.32320.43940.104*
H14C0.03630.33100.38800.104*
C150.487 (3)0.1226 (15)0.4575 (15)0.059 (9)
H150.41860.11180.47140.070*
C160.589 (3)0.0889 (13)0.4906 (14)0.059 (8)
H160.58850.05400.52590.070*
C170.697 (3)0.1025 (17)0.4756 (16)0.094 (11)
H170.76720.07770.49840.113*
C180.690 (4)0.1564 (19)0.4237 (19)0.109 (13)
H180.75990.17030.41300.130*
C190.584 (3)0.1904 (15)0.387 (2)0.074 (11)
C200.562 (3)0.2454 (18)0.3309 (16)0.072 (9)
C210.572 (3)0.3227 (16)0.3404 (14)0.055 (7)
C220.503 (3)0.3590 (15)0.2785 (18)0.073 (9)
C230.445 (3)0.3013 (18)0.228 (2)0.091 (11)
C240.474 (3)0.2348 (14)0.2592 (15)0.067 (9)
C250.662 (3)0.3572 (16)0.4015 (17)0.106 (12)
H25A0.62820.40070.41630.159*
H25B0.73100.37010.38670.159*
H25C0.68380.32340.44150.159*
C260.496 (2)0.4400 (12)0.2675 (14)0.067 (9)
H26A0.53390.46420.31270.100*
H26B0.41420.45470.25070.100*
H26C0.53660.45340.23210.100*
C270.353 (2)0.3212 (15)0.1539 (15)0.080 (9)
H27A0.39490.33500.11960.119*
H27B0.30390.36140.16070.119*
H27C0.30320.27940.13580.119*
C280.437 (2)0.1606 (12)0.2232 (15)0.076 (10)
H28A0.38030.16790.17650.114*
H28B0.40050.13170.25310.114*
H28C0.50570.13540.21740.114*
C290.003 (3)0.0347 (15)0.1959 (16)0.084 (11)
H29A0.07370.03000.15940.101*
H29B0.00480.01420.24100.101*
C300.099 (3)0.0071 (16)0.1716 (17)0.098 (11)
H30A0.09960.00940.12410.147*
H30B0.08260.05870.17010.147*
H30C0.17610.00210.20530.147*
C310.028 (3)0.1530 (18)0.1367 (18)0.107 (12)
H31A0.07010.12500.10880.128*
H31B0.06650.20040.14750.128*
C320.104 (3)0.1650 (17)0.0891 (16)0.100 (11)
H32A0.15560.16910.12010.151*
H32B0.12870.12410.05680.151*
H32C0.10870.20930.06130.151*
C330.414 (3)0.4186 (19)0.4632 (19)0.122 (14)
H33A0.48690.43140.50050.146*
H33B0.41770.44220.41840.146*
C340.310 (3)0.4484 (15)0.4844 (16)0.095 (11)
H34A0.23740.43590.44790.142*
H34B0.31650.50080.48900.142*
H34C0.30820.42750.53010.142*
C350.425 (3)0.2941 (16)0.5206 (17)0.092 (11)
H35A0.39180.24520.50950.111*
H35B0.38190.31890.55010.111*
C360.554 (3)0.2889 (16)0.5613 (16)0.104 (12)
H36A0.59580.26120.53330.155*
H36B0.56290.26490.60700.155*
H36C0.58800.33740.56970.155*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
U10.0621 (9)0.0551 (7)0.0622 (7)0.0005 (7)0.0176 (7)0.0027 (7)
U20.0657 (9)0.0557 (7)0.0683 (8)0.0022 (7)0.0209 (7)0.0001 (7)
Cl10.072 (6)0.059 (5)0.093 (6)0.001 (4)0.029 (5)0.005 (5)
Cl20.075 (7)0.064 (5)0.112 (7)0.013 (5)0.026 (6)0.006 (5)
O10.071 (15)0.053 (11)0.075 (13)0.019 (11)0.031 (12)0.018 (11)
O20.091 (16)0.046 (10)0.088 (14)0.030 (11)0.044 (13)0.019 (11)
O30.081 (18)0.102 (17)0.088 (17)0.002 (14)0.030 (14)0.013 (15)
O40.112 (11)0.107 (10)0.112 (11)0.001 (9)0.037 (9)0.005 (9)
N10.062 (11)0.073 (10)0.076 (10)0.004 (9)0.018 (8)0.004 (9)
N20.036 (12)0.047 (11)0.071 (13)0.010 (10)0.016 (11)0.013 (11)
C10.072 (17)0.077 (15)0.066 (15)0.007 (14)0.009 (14)0.017 (14)
C20.112 (15)0.112 (15)0.107 (15)0.003 (9)0.035 (10)0.004 (9)
C30.082 (13)0.077 (13)0.081 (13)0.004 (9)0.017 (9)0.000 (9)
C40.05 (2)0.08 (2)0.052 (18)0.030 (16)0.002 (16)0.001 (16)
C50.076 (17)0.061 (15)0.073 (16)0.011 (14)0.022 (14)0.009 (14)
C60.039 (19)0.069 (19)0.07 (2)0.032 (17)0.015 (17)0.012 (19)
C70.058 (12)0.061 (11)0.061 (11)0.012 (9)0.017 (9)0.007 (9)
C80.092 (18)0.060 (15)0.087 (17)0.016 (14)0.040 (15)0.009 (14)
C90.052 (15)0.066 (15)0.059 (14)0.001 (13)0.023 (13)0.006 (13)
C100.038 (14)0.048 (12)0.047 (13)0.010 (11)0.024 (11)0.000 (12)
C110.083 (17)0.074 (16)0.101 (17)0.014 (14)0.041 (15)0.010 (14)
C120.10 (3)0.08 (2)0.036 (17)0.012 (19)0.029 (18)0.021 (16)
C130.07 (3)0.11 (3)0.07 (2)0.035 (19)0.03 (2)0.012 (19)
C140.08 (2)0.08 (2)0.07 (2)0.003 (17)0.05 (2)0.013 (17)
C150.05 (2)0.08 (2)0.06 (2)0.035 (17)0.032 (18)0.047 (17)
C160.075 (17)0.041 (13)0.052 (14)0.004 (13)0.005 (13)0.019 (12)
C170.099 (19)0.111 (19)0.080 (17)0.010 (15)0.036 (15)0.016 (15)
C180.111 (17)0.108 (17)0.101 (17)0.002 (13)0.020 (13)0.022 (13)
C190.08 (3)0.041 (17)0.12 (3)0.034 (17)0.06 (3)0.028 (19)
C200.086 (18)0.074 (16)0.054 (15)0.016 (14)0.015 (14)0.007 (14)
C210.060 (16)0.058 (14)0.035 (13)0.003 (13)0.008 (12)0.009 (13)
C220.06 (2)0.053 (18)0.10 (3)0.016 (16)0.01 (2)0.01 (2)
C230.10 (2)0.080 (17)0.095 (18)0.004 (15)0.032 (15)0.009 (15)
C240.058 (16)0.087 (17)0.065 (15)0.010 (14)0.031 (13)0.013 (14)
C250.091 (19)0.110 (19)0.117 (19)0.021 (15)0.029 (16)0.005 (15)
C260.07 (2)0.036 (15)0.09 (2)0.006 (16)0.016 (19)0.001 (17)
C270.064 (17)0.095 (17)0.081 (16)0.004 (14)0.022 (14)0.022 (14)
C280.07 (2)0.049 (17)0.12 (3)0.024 (17)0.04 (2)0.014 (19)
C290.10 (3)0.06 (2)0.09 (2)0.026 (19)0.02 (2)0.050 (19)
C300.106 (19)0.083 (17)0.105 (18)0.003 (15)0.030 (16)0.006 (15)
C310.11 (2)0.110 (19)0.097 (18)0.006 (16)0.029 (16)0.007 (16)
C320.096 (19)0.117 (18)0.084 (17)0.019 (16)0.017 (15)0.018 (15)
C330.125 (18)0.115 (17)0.126 (18)0.000 (13)0.036 (13)0.013 (13)
C340.097 (19)0.088 (17)0.102 (18)0.017 (15)0.032 (15)0.022 (15)
C350.095 (14)0.094 (14)0.089 (13)0.006 (9)0.028 (10)0.004 (9)
C360.104 (14)0.113 (14)0.094 (14)0.003 (9)0.029 (10)0.003 (9)
Geometric parameters (Å, º) top
U1—O12.081 (17)C14—H14B0.9600
U1—O22.129 (16)C14—H14C0.9600
U1—O32.12 (2)C15—C161.33 (3)
U1—N12.59 (2)C15—H150.9300
U1—Cl12.637 (7)C16—C171.39 (4)
U1—C62.71 (3)C16—H160.9300
U1—C72.78 (3)C17—C181.38 (4)
U1—C82.85 (3)C17—H170.9300
U1—C92.84 (2)C18—C191.39 (4)
U1—C102.69 (2)C18—H180.9300
U2—O12.116 (15)C19—C201.44 (4)
U2—O22.054 (17)C20—C211.42 (3)
U2—O42.18 (2)C20—C241.48 (4)
U2—N22.55 (2)C21—C221.40 (3)
U2—Cl22.604 (8)C21—C251.47 (3)
U2—C202.70 (3)C22—C231.46 (4)
U2—C212.79 (3)C22—C261.49 (3)
U2—C222.92 (3)C23—C241.35 (4)
U2—C232.87 (3)C23—C271.56 (4)
U2—C242.69 (3)C24—C281.52 (4)
U1—U23.4013 (18)C25—H25A0.9600
O3—C291.49 (3)C25—H25B0.9600
O3—C311.49 (3)C25—H25C0.9600
O4—C351.49 (3)C26—H26A0.9600
O4—C331.52 (3)C26—H26B0.9600
N1—C11.32 (3)C26—H26C0.9600
N1—C51.32 (3)C27—H27A0.9600
N2—C191.37 (3)C27—H27B0.9600
N2—C151.38 (3)C27—H27C0.9600
C1—C21.35 (4)C28—H28A0.9600
C1—H10.9300C28—H28B0.9600
C2—C31.40 (4)C28—H28C0.9600
C2—H20.9300C29—C301.54 (3)
C3—C41.43 (3)C29—H29A0.9700
C3—H30.9300C29—H29B0.9700
C4—C51.41 (3)C30—H30A0.9600
C4—H40.9300C30—H30B0.9600
C5—C61.49 (3)C30—H30C0.9600
C6—C71.39 (3)C31—C321.56 (4)
C6—C101.40 (3)C31—H31A0.9700
C7—C81.40 (4)C31—H31B0.9700
C7—C111.58 (3)C32—H32A0.9600
C8—C91.38 (4)C32—H32B0.9600
C8—C121.49 (3)C32—H32C0.9600
C9—C101.43 (3)C33—C341.49 (3)
C9—C131.56 (3)C33—H33A0.9700
C10—C141.51 (3)C33—H33B0.9700
C11—H11A0.9600C34—H34A0.9600
C11—H11B0.9600C34—H34B0.9600
C11—H11C0.9600C34—H34C0.9600
C12—H12A0.9600C35—C361.49 (4)
C12—H12B0.9600C35—H35A0.9700
C12—H12C0.9600C35—H35B0.9700
C13—H13A0.9600C36—H36A0.9600
C13—H13B0.9600C36—H36B0.9600
C13—H13C0.9600C36—H36C0.9600
C14—H14A0.9600
O1—U1—O271.0 (6)C18—C17—H17123.1
O1—U1—O3159.0 (7)C16—C17—H17123.1
O1—U1—N198.3 (7)C17—C18—C19123 (4)
O3—U1—N185.7 (8)C17—C18—H18118.6
O2—U1—N183.2 (8)C19—C18—H18118.6
O2—U1—O389.1 (7)N2—C19—C18120 (3)
O1—U1—Cl186.9 (5)N2—C19—C20110 (3)
O3—U1—Cl189.6 (6)C18—C19—C20130 (3)
O2—U1—Cl199.2 (5)C21—C20—C19127 (3)
N1—U1—Cl1174.8 (5)C21—C20—C24105 (3)
O2—U2—O171.8 (6)C19—C20—C24123 (3)
O2—U2—O4158.5 (7)C22—C21—C20111 (3)
O1—U2—O487.4 (7)C22—C21—C25126 (3)
O2—U2—N295.3 (7)C20—C21—C25123 (3)
O1—U2—N283.4 (7)C21—C22—C23106 (3)
O4—U2—N287.3 (8)C21—C22—C26126 (3)
O2—U2—Cl289.0 (6)C23—C22—C26128 (3)
O1—U2—Cl298.8 (5)C24—C23—C22110 (3)
O4—U2—Cl289.0 (7)C24—C23—C27129 (3)
N2—U2—Cl2175.6 (5)C22—C23—C27121 (3)
U1—O1—U2108.3 (7)C23—C24—C20109 (3)
U1—O2—U2108.8 (7)C23—C24—C28126 (3)
C31—O3—C29113 (2)C20—C24—C28125 (3)
C31—O3—U1120.5 (19)C21—C25—H25A109.5
C29—O3—U1126.4 (18)C21—C25—H25B109.5
C35—O4—C33113 (2)H25A—C25—H25B109.5
C35—O4—U2120.2 (18)C21—C25—H25C109.5
C33—O4—U2125 (2)H25A—C25—H25C109.5
C1—N1—C5120 (3)H25B—C25—H25C109.5
C1—N1—U1134 (2)C22—C26—H26A109.5
C5—N1—U1104 (2)C22—C26—H26B109.5
C19—N2—C15117 (3)H26A—C26—H26B109.5
C19—N2—U2102.0 (19)C22—C26—H26C109.5
C15—N2—U2136.8 (17)H26A—C26—H26C109.5
N1—C1—C2119 (3)H26B—C26—H26C109.5
N1—C1—H1120.4C23—C27—H27A109.5
C2—C1—H1120.4C23—C27—H27B109.5
C1—C2—C3125 (4)H27A—C27—H27B109.5
C1—C2—H2117.6C23—C27—H27C109.5
C3—C2—H2117.6H27A—C27—H27C109.5
C2—C3—C4116 (3)H27B—C27—H27C109.5
C2—C3—H3122.2C24—C28—H28A109.5
C4—C3—H3122.2C24—C28—H28B109.5
C5—C4—C3115 (3)H28A—C28—H28B109.5
C5—C4—H4122.4C24—C28—H28C109.5
C3—C4—H4122.4H28A—C28—H28C109.5
N1—C5—C4125 (3)H28B—C28—H28C109.5
N1—C5—C6109 (3)O3—C29—C30109 (2)
C4—C5—C6126 (3)O3—C29—H29A109.9
C7—C6—C10107 (3)C30—C29—H29A109.9
C7—C6—C5124 (3)O3—C29—H29B109.9
C10—C6—C5124 (2)C30—C29—H29B109.9
C6—C7—C8109 (3)H29A—C29—H29B108.3
C6—C7—C11128 (2)C29—C30—H30A109.5
C8—C7—C11123 (2)C29—C30—H30B109.5
C9—C8—C7109 (2)H30A—C30—H30B109.5
C9—C8—C12128 (3)C29—C30—H30C109.5
C7—C8—C12123 (2)H30A—C30—H30C109.5
C8—C9—C10106 (2)H30B—C30—H30C109.5
C8—C9—C13130 (3)O3—C31—C32114 (3)
C10—C9—C13124 (2)O3—C31—H31A108.8
C6—C10—C9109 (2)C32—C31—H31A108.8
C6—C10—C14124 (2)O3—C31—H31B108.8
C9—C10—C14127 (2)C32—C31—H31B108.8
C7—C11—H11A109.5H31A—C31—H31B107.7
C7—C11—H11B109.5C31—C32—H32A109.5
H11A—C11—H11B109.5C31—C32—H32B109.5
C7—C11—H11C109.5H32A—C32—H32B109.5
H11A—C11—H11C109.5C31—C32—H32C109.5
H11B—C11—H11C109.5H32A—C32—H32C109.5
C8—C12—H12A109.5H32B—C32—H32C109.5
C8—C12—H12B109.5C34—C33—O4114 (3)
H12A—C12—H12B109.5C34—C33—H33A108.7
C8—C12—H12C109.5O4—C33—H33A108.7
H12A—C12—H12C109.5C34—C33—H33B108.7
H12B—C12—H12C109.5O4—C33—H33B108.7
C9—C13—H13A109.5H33A—C33—H33B107.6
C9—C13—H13B109.5C33—C34—H34A109.5
H13A—C13—H13B109.5C33—C34—H34B109.5
C9—C13—H13C109.5H34A—C34—H34B109.5
H13A—C13—H13C109.5C33—C34—H34C109.5
H13B—C13—H13C109.5H34A—C34—H34C109.5
C10—C14—H14A109.5H34B—C34—H34C109.5
C10—C14—H14B109.5O4—C35—C36109 (3)
H14A—C14—H14B109.5O4—C35—H35A109.8
C10—C14—H14C109.5C36—C35—H35A109.8
H14A—C14—H14C109.5O4—C35—H35B109.8
H14B—C14—H14C109.5C36—C35—H35B109.8
C16—C15—N2121 (2)H35A—C35—H35B108.3
C16—C15—H15119.3C35—C36—H36A109.5
N2—C15—H15119.3C35—C36—H36B109.5
C15—C16—C17124 (3)H36A—C36—H36B109.5
C15—C16—H16117.9C35—C36—H36C109.5
C17—C16—H16117.9H36A—C36—H36C109.5
C18—C17—C16114 (3)H36B—C36—H36C109.5

Experimental details

Crystal data
Chemical formulaC36H52Cl2N2O4U2
Mr1123.76
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)11.6695 (8), 18.2129 (12), 19.1940 (13)
β (°) 106.420 (4)
V3)3913.0 (5)
Z4
Radiation typeMo Kα
µ (mm1)8.44
Crystal size (mm)0.35 × 0.15 × 0.10
Data collection
DiffractometerNonius kappaCCD
diffractometer
Absorption correctionEmpirical (using intensity measurements)
PLATON DELABS (Spek, 2000)
Tmin, Tmax0.108, 0.430
No. of measured, independent and
observed [I > 2σ(I)] reflections
20386, 7087, 2097
Rint0.093
(sin θ/λ)max1)0.610
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.087, 0.184, 0.92
No. of reflections7087
No. of parameters427
No. of restraints60
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.81, 1.13

Computer programs: kappaCCD software (Nonius, 1997), DENZO-SMN (Otwinowski & Minor, 1997), DENZO-SMN, SHELXS97 (Sheldrick, 1990), SHELXL97 (Sheldrick, 1997), SHELXTL (Bruker, 1997), SHELXTL and PARST97 (Nardelli, 1995).

Selected geometric parameters (Å, º) top
U1—O12.081 (17)U2—O22.054 (17)
U1—O22.129 (16)U2—O42.18 (2)
U1—O32.12 (2)U2—N22.55 (2)
U1—N12.59 (2)U2—Cl22.604 (8)
U1—Cl12.637 (7)U2—C202.70 (3)
U1—C62.71 (3)U2—C212.79 (3)
U1—C72.78 (3)U2—C222.92 (3)
U1—C82.85 (3)U2—C232.87 (3)
U1—C92.84 (2)U2—C242.69 (3)
U1—C102.69 (2)U1—U23.4013 (18)
U2—O12.116 (15)
U1—O1—U2108.3 (7)U1—O2—U2108.8 (7)
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds