Solvent-free (2
S)-methyl 2-ammonio-3-(4-hydroxyphenyl)propionate chloride, C
10H
14NO
3+·Cl
−, (I), and its methanol solvate, C
10H
14NO
3+·Cl
−·CH
3OH, (II), are obtained from different solvents: crystallization from ethanol or propan-2-ol gives the same solvent-free crystals of (I) in both cases, while crystals of (II) were obtained by crystallization from methanol. The structure of (I) is characterized by the presence of two-dimensional layers linked together by N—H
Cl and O—H
Cl hydrogen bonds and also by C—H
O contacts. Incorporation of the methanol solvent molecule in (II) introduces additional O—H
O hydrogen bonds linking the two-dimensional layers, resulting in the formation of a three-dimensional network.
Supporting information
CCDC references: 603187; 603188
The methyl ester of L-tyrosine hydrochloride was prepared according to the standard procedure of Wróbel et al. (1983). L-tyrosine (30 g, 0.166 mol) was suspended in absolute methanol (450 ml) and saturated with gaseous hydrogen chloride until it dissolved completely. The resulting solution was cooled in an ice bath for 3 h and left in a refrigerator overnight. After the solvent had been removed in vacuo, the product was isolated (yield 33.37 g, 0.144 mol, 87%). Single crystals of (I) suitable for X-ray diffraction studies were obtained by slow evaporation from solutions of L-tyrosine hydrochloride in either ethanol or propan-2-ol. Single crystals of (II) were obtained by slow evaporation from a methanolic solution of L-tyrosine hydrochloride.
The known absolute configuration of L-tyrosine was assumed and confirmed by refinement of the Flack (1983) parameter. All H atoms were located in difference Fourier maps, and in the final refinement cycles they were treated as riding on their parent atoms, with C—H = 0.95–1.00 Å, N—H = 0.91 Å and O—H = 0.84 Å, and with Uiso(H) = 1.2Ueq(parent atom), except for methyl H atoms where Uiso(H) = 1.5Ueq(C).
For both compounds, data collection: CrysAlis CCD (Oxford Diffraction, 2003); cell refinement: CrysAlis RED (Oxford Diffraction, 2003); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: XP (Bruker, 1997); software used to prepare material for publication: SHELXL97.
(I) methyl 2-ammonio-3-(4-hydroxyphenyl)propionate chloride
top
Crystal data top
C10H14NO3+·Cl− | F(000) = 244 |
Mr = 231.67 | Dx = 1.345 Mg m−3 |
Monoclinic, P21 | Melting point: 463 K |
Hall symbol: P 2yb | Mo Kα radiation, λ = 0.71073 Å |
a = 9.943 (3) Å | Cell parameters from 8187 reflections |
b = 5.351 (2) Å | θ = 4.8–35° |
c = 11.154 (3) Å | µ = 0.32 mm−1 |
β = 105.38 (3)° | T = 100 K |
V = 572.2 (3) Å3 | Plate, colourless |
Z = 2 | 0.40 × 0.35 × 0.10 mm |
Data collection top
Kuma KM4 CCD κ-geometry diffractometer | 3754 independent reflections |
Radiation source: fine-focus sealed tube | 2890 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.054 |
Detector resolution: 0 pixels mm-1 | θmax = 35.0°, θmin = 4.8° |
ω scans | h = −15→16 |
Absorption correction: numerical (Clark & Reid, 1995) | k = −8→6 |
Tmin = 0.882, Tmax = 0.969 | l = −18→18 |
13013 measured reflections | |
Refinement top
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.042 | H-atom parameters constrained |
wR(F2) = 0.091 | w = 1/[σ2(Fo2) + (0.0431P)2] where P = (Fo2 + 2Fc2)/3 |
S = 1.00 | (Δ/σ)max = 0.001 |
3754 reflections | Δρmax = 0.62 e Å−3 |
139 parameters | Δρmin = −0.23 e Å−3 |
1 restraint | Absolute structure: Flack (1983), with how many Friedel pairs |
Primary atom site location: structure-invariant direct methods | Absolute structure parameter: 0.06 (5) |
Crystal data top
C10H14NO3+·Cl− | V = 572.2 (3) Å3 |
Mr = 231.67 | Z = 2 |
Monoclinic, P21 | Mo Kα radiation |
a = 9.943 (3) Å | µ = 0.32 mm−1 |
b = 5.351 (2) Å | T = 100 K |
c = 11.154 (3) Å | 0.40 × 0.35 × 0.10 mm |
β = 105.38 (3)° | |
Data collection top
Kuma KM4 CCD κ-geometry diffractometer | 3754 independent reflections |
Absorption correction: numerical (Clark & Reid, 1995) | 2890 reflections with I > 2σ(I) |
Tmin = 0.882, Tmax = 0.969 | Rint = 0.054 |
13013 measured reflections | |
Refinement top
R[F2 > 2σ(F2)] = 0.042 | H-atom parameters constrained |
wR(F2) = 0.091 | Δρmax = 0.62 e Å−3 |
S = 1.00 | Δρmin = −0.23 e Å−3 |
3754 reflections | Absolute structure: Flack (1983), with how many Friedel pairs |
139 parameters | Absolute structure parameter: 0.06 (5) |
1 restraint | |
Special details top
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Diffraction data for I were collected on a Xcalibur PX ω-geometry diffractometer equipped with an Oxford Cryosystems low-temperature device. The crystal structure was solved by direct methods using the SHELXS97 program (Sheldrick, 1990) and refined using SHELXL97 (Sheldrick, 1997). The full-matrix least-squares were completed, using anisotropic parameters for all non H-atoms. For I the analytical numeric absorption correction using a multifaced crystal model based on expressions derived by Clark (Clark et al., 1995). All Figures were made using XP. |
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top | x | y | z | Uiso*/Ueq | |
Cl | 0.03854 (4) | 0.40089 (8) | 0.83527 (3) | 0.01977 (9) | |
O1 | 0.20259 (14) | 0.0622 (3) | 0.69078 (11) | 0.0257 (3) | |
H1 | 0.1593 | 0.1525 | 0.7296 | 0.031* | |
O2 | 0.30256 (14) | 0.0529 (2) | 0.10206 (12) | 0.0245 (3) | |
O3 | 0.48734 (14) | 0.3073 (3) | 0.16742 (12) | 0.0251 (3) | |
N | 0.11903 (13) | 0.4057 (3) | 0.12501 (11) | 0.0173 (2) | |
H1N | 0.0895 | 0.3701 | 0.0424 | 0.021* | |
H2N | 0.0675 | 0.5338 | 0.1432 | 0.021* | |
H3N | 0.1085 | 0.2683 | 0.1698 | 0.021* | |
C1 | 0.35278 (19) | 0.2531 (3) | 0.13858 (15) | 0.0174 (3) | |
C2 | 0.26911 (18) | 0.4791 (3) | 0.15735 (15) | 0.0168 (3) | |
H2 | 0.2800 | 0.6097 | 0.0965 | 0.020* | |
C3 | 0.31368 (18) | 0.5958 (3) | 0.28748 (15) | 0.0173 (3) | |
H31 | 0.4156 | 0.6246 | 0.3092 | 0.021* | |
H32 | 0.2680 | 0.7610 | 0.2843 | 0.021* | |
C4 | 0.28019 (17) | 0.4442 (3) | 0.39032 (14) | 0.0172 (3) | |
C5 | 0.17951 (18) | 0.5313 (3) | 0.44590 (15) | 0.0193 (3) | |
H5 | 0.1295 | 0.6793 | 0.4150 | 0.023* | |
C6 | 0.15013 (16) | 0.4071 (4) | 0.54571 (13) | 0.0191 (3) | |
H6 | 0.0812 | 0.4704 | 0.5825 | 0.023* | |
C7 | 0.22214 (18) | 0.1909 (3) | 0.59084 (15) | 0.0186 (3) | |
C8 | 0.32103 (17) | 0.0968 (3) | 0.53435 (15) | 0.0180 (3) | |
H8 | 0.3687 | −0.0543 | 0.5636 | 0.022* | |
C9 | 0.34980 (18) | 0.2232 (3) | 0.43583 (15) | 0.0176 (3) | |
H9 | 0.4180 | 0.1586 | 0.3985 | 0.021* | |
C10 | 0.5808 (2) | 0.1090 (4) | 0.1513 (2) | 0.0319 (4) | |
H101 | 0.5544 | 0.0529 | 0.0646 | 0.048* | |
H102 | 0.5742 | −0.0315 | 0.2059 | 0.048* | |
H103 | 0.6768 | 0.1717 | 0.1727 | 0.048* | |
Atomic displacement parameters (Å2) top | U11 | U22 | U33 | U12 | U13 | U23 |
Cl | 0.02294 (18) | 0.01974 (17) | 0.01706 (16) | −0.00036 (19) | 0.00605 (13) | −0.00079 (18) |
O1 | 0.0320 (7) | 0.0254 (7) | 0.0238 (6) | 0.0060 (6) | 0.0149 (5) | 0.0075 (6) |
O2 | 0.0299 (7) | 0.0140 (5) | 0.0306 (7) | 0.0004 (6) | 0.0097 (5) | −0.0017 (5) |
O3 | 0.0228 (6) | 0.0232 (6) | 0.0298 (7) | 0.0023 (5) | 0.0079 (5) | −0.0060 (5) |
N | 0.0205 (6) | 0.0158 (5) | 0.0147 (5) | −0.0003 (8) | 0.0028 (4) | −0.0017 (7) |
C1 | 0.0235 (8) | 0.0164 (7) | 0.0131 (7) | 0.0016 (6) | 0.0061 (6) | 0.0019 (6) |
C2 | 0.0200 (8) | 0.0145 (7) | 0.0157 (7) | −0.0008 (6) | 0.0043 (6) | 0.0006 (6) |
C3 | 0.0201 (8) | 0.0152 (7) | 0.0163 (7) | −0.0022 (7) | 0.0040 (6) | −0.0011 (6) |
C4 | 0.0172 (7) | 0.0193 (9) | 0.0140 (6) | −0.0005 (6) | 0.0021 (5) | −0.0008 (6) |
C5 | 0.0218 (8) | 0.0170 (8) | 0.0168 (7) | 0.0029 (7) | 0.0012 (6) | 0.0002 (6) |
C6 | 0.0186 (7) | 0.0219 (7) | 0.0179 (7) | 0.0027 (9) | 0.0066 (5) | 0.0002 (9) |
C7 | 0.0203 (8) | 0.0198 (8) | 0.0160 (7) | −0.0028 (7) | 0.0057 (6) | −0.0014 (7) |
C8 | 0.0181 (8) | 0.0158 (7) | 0.0194 (8) | 0.0024 (7) | 0.0039 (6) | 0.0004 (7) |
C9 | 0.0170 (8) | 0.0180 (8) | 0.0171 (7) | −0.0004 (6) | 0.0031 (6) | −0.0029 (6) |
C10 | 0.0264 (10) | 0.0337 (11) | 0.0373 (10) | 0.0065 (9) | 0.0115 (8) | −0.0070 (9) |
Geometric parameters (Å, º) top
O1—C7 | 1.368 (2) | C3—H32 | 0.9900 |
O1—H1 | 0.8400 | C4—C5 | 1.390 (2) |
O2—C1 | 1.206 (2) | C4—C9 | 1.396 (2) |
O3—C1 | 1.323 (2) | C5—C6 | 1.392 (2) |
O3—C10 | 1.453 (2) | C5—H5 | 0.9500 |
N—C2 | 1.492 (2) | C6—C7 | 1.383 (3) |
N—H1N | 0.9100 | C6—H6 | 0.9500 |
N—H2N | 0.9100 | C7—C8 | 1.395 (2) |
N—H3N | 0.9100 | C8—C9 | 1.383 (2) |
C1—C2 | 1.514 (2) | C8—H8 | 0.9500 |
C2—C3 | 1.534 (2) | C9—H9 | 0.9500 |
C2—H2 | 1.0000 | C10—H101 | 0.9800 |
C3—C4 | 1.513 (2) | C10—H102 | 0.9800 |
C3—H31 | 0.9900 | C10—H103 | 0.9800 |
| | | |
C7—O1—H1 | 109.5 | C5—C4—C3 | 119.18 (15) |
C1—O3—C10 | 116.64 (15) | C9—C4—C3 | 122.85 (15) |
C2—N—H1N | 109.5 | C4—C5—C6 | 121.67 (17) |
C2—N—H2N | 109.5 | C4—C5—H5 | 119.2 |
H1N—N—H2N | 109.5 | C6—C5—H5 | 119.2 |
C2—N—H3N | 109.5 | C7—C6—C5 | 119.47 (15) |
H1N—N—H3N | 109.5 | C7—C6—H6 | 120.3 |
H2N—N—H3N | 109.5 | C5—C6—H6 | 120.3 |
O2—C1—O3 | 125.35 (16) | O1—C7—C6 | 123.11 (15) |
O2—C1—C2 | 124.26 (16) | O1—C7—C8 | 117.12 (16) |
O3—C1—C2 | 110.39 (14) | C6—C7—C8 | 119.76 (15) |
N—C2—C1 | 107.89 (14) | C9—C8—C7 | 120.08 (16) |
N—C2—C3 | 110.83 (13) | C9—C8—H8 | 120.0 |
C1—C2—C3 | 115.14 (14) | C7—C8—H8 | 120.0 |
N—C2—H2 | 107.6 | C8—C9—C4 | 121.06 (16) |
C1—C2—H2 | 107.6 | C8—C9—H9 | 119.5 |
C3—C2—H2 | 107.6 | C4—C9—H9 | 119.5 |
C4—C3—C2 | 115.65 (14) | O3—C10—H101 | 109.5 |
C4—C3—H31 | 108.4 | O3—C10—H102 | 109.5 |
C2—C3—H31 | 108.4 | H101—C10—H102 | 109.5 |
C4—C3—H32 | 108.4 | O3—C10—H103 | 109.5 |
C2—C3—H32 | 108.4 | H101—C10—H103 | 109.5 |
H31—C3—H32 | 107.4 | H102—C10—H103 | 109.5 |
C5—C4—C9 | 117.92 (15) | | |
| | | |
C10—O3—C1—O2 | 1.1 (3) | C9—C4—C5—C6 | 1.4 (2) |
C10—O3—C1—C2 | −178.70 (14) | C3—C4—C5—C6 | −176.24 (16) |
N—C2—C1—O2 | 0.9 (2) | C4—C5—C6—C7 | −0.3 (3) |
O3—C1—C2—N | −179.29 (12) | C5—C6—C7—O1 | 177.95 (16) |
O2—C1—C2—C3 | 125.26 (18) | C5—C6—C7—C8 | −1.4 (3) |
O3—C1—C2—C3 | −54.94 (19) | O1—C7—C8—C9 | −177.51 (16) |
N—C2—C3—C4 | 52.0 (2) | C6—C7—C8—C9 | 1.9 (3) |
C1—C2—C3—C4 | −70.82 (19) | C7—C8—C9—C4 | −0.7 (3) |
C2—C3—C4—C5 | −111.3 (2) | C5—C4—C9—C8 | −0.9 (2) |
C2—C3—C4—C9 | 71.2 (2) | C3—C4—C9—C8 | 176.63 (16) |
Hydrogen-bond geometry (Å, º) top
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H1···Cl | 0.84 | 2.31 | 3.1524 (15) | 180 |
N—H1N···Cli | 0.91 | 2.24 | 3.1166 (15) | 163 |
N—H3N···Clii | 0.91 | 2.44 | 3.2118 (19) | 142 |
N—H2N···Cliii | 0.91 | 2.27 | 3.1686 (19) | 168 |
C2—H2···O2iv | 1.00 | 2.38 | 3.166 (2) | 135 |
Symmetry codes: (i) x, y, z−1; (ii) −x, y−1/2, −z+1; (iii) −x, y+1/2, −z+1; (iv) x, y+1, z. |
(II) methyl 2-ammonio-3-(4-hydroxyphenyl)propionate chloride methanol solvate
top
Crystal data top
C10H14NO3+·Cl−·CH4O | Dx = 1.346 Mg m−3 |
Mr = 263.71 | Melting point: 463 K |
Orthorhombic, P212121 | Cu Kα radiation, λ = 1.54180 Å |
Hall symbol: P 2ac 2ab | Cell parameters from 11981 reflections |
a = 5.424 (2) Å | θ = 4.1–75.9° |
b = 11.080 (3) Å | µ = 2.65 mm−1 |
c = 21.647 (5) Å | T = 100 K |
V = 1300.9 (7) Å3 | Plate, colourless |
Z = 4 | 0.52 × 0.15 × 0.06 mm |
F(000) = 560 | |
Data collection top
Kuma KM4 CCD κ-geometry diffractometer | 2563 independent reflections |
Radiation source: fine-focus sealed tube | 2462 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.046 |
ω scans | θmax = 75.9°, θmin = 4.1° |
Absorption correction: analytical (CrysAlis RED; Oxford Diffraction, 2003) | h = −6→4 |
Tmin = 0.339, Tmax = 0.857 | k = −13→13 |
12812 measured reflections | l = −23→27 |
Refinement top
Refinement on F2 | Hydrogen site location: inferred from neighbouring sites |
Least-squares matrix: full | H-atom parameters constrained |
R[F2 > 2σ(F2)] = 0.040 | w = 1/[σ2(Fo2) + (0.0765P)2 + 0.4385P] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.108 | (Δ/σ)max = 0.001 |
S = 1.06 | Δρmax = 0.48 e Å−3 |
2563 reflections | Δρmin = −0.34 e Å−3 |
160 parameters | Extinction correction: SHELXL97 (Sheldrick, 1997), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
0 restraints | Extinction coefficient: 0.0101 (11) |
Primary atom site location: structure-invariant direct methods | Absolute structure: Flack (1983), with how many Friedel pairs |
Secondary atom site location: difference Fourier map | Absolute structure parameter: −0.02 (2) |
Crystal data top
C10H14NO3+·Cl−·CH4O | V = 1300.9 (7) Å3 |
Mr = 263.71 | Z = 4 |
Orthorhombic, P212121 | Cu Kα radiation |
a = 5.424 (2) Å | µ = 2.65 mm−1 |
b = 11.080 (3) Å | T = 100 K |
c = 21.647 (5) Å | 0.52 × 0.15 × 0.06 mm |
Data collection top
Kuma KM4 CCD κ-geometry diffractometer | 2563 independent reflections |
Absorption correction: analytical (CrysAlis RED; Oxford Diffraction, 2003) | 2462 reflections with I > 2σ(I) |
Tmin = 0.339, Tmax = 0.857 | Rint = 0.046 |
12812 measured reflections | |
Refinement top
R[F2 > 2σ(F2)] = 0.040 | H-atom parameters constrained |
wR(F2) = 0.108 | Δρmax = 0.48 e Å−3 |
S = 1.06 | Δρmin = −0.34 e Å−3 |
2563 reflections | Absolute structure: Flack (1983), with how many Friedel pairs |
160 parameters | Absolute structure parameter: −0.02 (2) |
0 restraints | |
Special details top
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Diffraction data for II were collected on a Xcalibur PX ω-geometry diffractometer equipped with an Oxford Cryosystems low-temperature device. The crystal structure was solved by direct methods using SHELXS97 (Sheldrick, 1990) and refined using SHELXL97 (Sheldrick, 1997). The full-matrix least-squares were completed using anisotropic parameters for all non H-atoms. All figures and packing diagrams were made using XP. |
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top | x | y | z | Uiso*/Ueq | |
Cl | 0.49594 (9) | 0.66526 (4) | 0.90812 (2) | 0.01987 (17) | |
O1 | 0.4936 (3) | 0.24977 (13) | 0.81774 (7) | 0.0258 (3) | |
H1 | 0.5736 | 0.3034 | 0.8364 | 0.031* | |
O2 | 0.4029 (3) | 0.43158 (14) | 0.52895 (7) | 0.0217 (3) | |
O3 | 0.2138 (3) | 0.60732 (14) | 0.55071 (7) | 0.0241 (4) | |
N | 0.0024 (4) | 0.29849 (15) | 0.55319 (7) | 0.0183 (3) | |
H1N | 0.0125 | 0.2836 | 0.5119 | 0.022* | |
H2N | −0.1322 | 0.2604 | 0.5690 | 0.022* | |
H3N | 0.1406 | 0.2706 | 0.5722 | 0.022* | |
C1 | 0.2246 (4) | 0.48728 (19) | 0.54612 (9) | 0.0179 (4) | |
C2 | −0.0202 (4) | 0.43061 (18) | 0.56370 (9) | 0.0188 (4) | |
H2 | −0.1488 | 0.4624 | 0.5349 | 0.023* | |
C3 | −0.1041 (4) | 0.4575 (2) | 0.63007 (10) | 0.0209 (5) | |
H31 | −0.1095 | 0.5461 | 0.6359 | 0.025* | |
H32 | −0.2738 | 0.4264 | 0.6355 | 0.025* | |
C4 | 0.0588 (4) | 0.4034 (2) | 0.67962 (10) | 0.0196 (4) | |
C5 | 0.0094 (5) | 0.28870 (18) | 0.70304 (9) | 0.0211 (4) | |
H5 | −0.1287 | 0.2449 | 0.6880 | 0.025* | |
C6 | 0.1593 (4) | 0.2374 (2) | 0.74811 (10) | 0.0232 (5) | |
H6 | 0.1250 | 0.1586 | 0.7632 | 0.028* | |
C7 | 0.3591 (4) | 0.3015 (2) | 0.77104 (9) | 0.0207 (4) | |
C8 | 0.4124 (4) | 0.41596 (19) | 0.74803 (9) | 0.0201 (5) | |
H8 | 0.5499 | 0.4597 | 0.7635 | 0.024* | |
C9 | 0.2634 (4) | 0.46629 (19) | 0.70221 (10) | 0.0201 (4) | |
H9 | 0.3012 | 0.5440 | 0.6862 | 0.024* | |
C10 | 0.4393 (4) | 0.6708 (2) | 0.53444 (11) | 0.0263 (5) | |
H101 | 0.4885 | 0.6488 | 0.4924 | 0.039* | |
H102 | 0.5705 | 0.6484 | 0.5634 | 0.039* | |
H103 | 0.4109 | 0.7581 | 0.5366 | 0.039* | |
O4 | 0.7358 (3) | 0.41512 (14) | 0.88760 (7) | 0.0261 (4) | |
H4 | 0.6493 | 0.4767 | 0.8940 | 0.031* | |
C11 | 0.9791 (5) | 0.4510 (2) | 0.87049 (12) | 0.0325 (5) | |
H11 | 0.9785 | 0.4797 | 0.8277 | 0.049* | |
H12 | 1.0909 | 0.3819 | 0.8742 | 0.049* | |
H13 | 1.0349 | 0.5160 | 0.8978 | 0.049* | |
Atomic displacement parameters (Å2) top | U11 | U22 | U33 | U12 | U13 | U23 |
Cl | 0.0151 (2) | 0.0227 (3) | 0.0218 (3) | 0.0011 (2) | 0.0001 (2) | −0.00282 (15) |
O1 | 0.0310 (8) | 0.0210 (7) | 0.0252 (7) | 0.0018 (8) | −0.0091 (8) | 0.0010 (5) |
O2 | 0.0158 (7) | 0.0235 (8) | 0.0259 (8) | 0.0011 (6) | 0.0024 (6) | −0.0002 (6) |
O3 | 0.0224 (8) | 0.0187 (7) | 0.0310 (8) | −0.0004 (6) | 0.0042 (7) | 0.0011 (6) |
N | 0.0140 (7) | 0.0223 (8) | 0.0188 (8) | −0.0025 (8) | −0.0001 (8) | −0.0006 (6) |
C1 | 0.0174 (10) | 0.0177 (9) | 0.0185 (9) | −0.0003 (8) | −0.0037 (8) | 0.0010 (7) |
C2 | 0.0128 (9) | 0.0224 (10) | 0.0213 (9) | −0.0013 (9) | 0.0005 (9) | 0.0001 (7) |
C3 | 0.0167 (9) | 0.0249 (11) | 0.0211 (10) | 0.0011 (8) | 0.0007 (8) | 0.0000 (8) |
C4 | 0.0160 (11) | 0.0234 (10) | 0.0195 (9) | 0.0012 (7) | 0.0034 (7) | −0.0029 (8) |
C5 | 0.0195 (9) | 0.0239 (10) | 0.0198 (9) | −0.0032 (10) | 0.0011 (9) | −0.0023 (7) |
C6 | 0.0264 (11) | 0.0226 (11) | 0.0205 (10) | −0.0032 (9) | 0.0011 (9) | 0.0007 (8) |
C7 | 0.0200 (10) | 0.0226 (10) | 0.0194 (10) | 0.0027 (8) | −0.0009 (8) | 0.0004 (8) |
C8 | 0.0177 (10) | 0.0221 (11) | 0.0205 (10) | −0.0011 (8) | −0.0002 (8) | −0.0026 (9) |
C9 | 0.0168 (9) | 0.0204 (10) | 0.0232 (10) | 0.0002 (8) | 0.0028 (8) | 0.0000 (8) |
C10 | 0.0233 (11) | 0.0224 (10) | 0.0331 (11) | −0.0057 (8) | 0.0022 (9) | 0.0011 (9) |
O4 | 0.0243 (8) | 0.0219 (8) | 0.0321 (8) | 0.0023 (7) | −0.0010 (7) | −0.0026 (6) |
C11 | 0.0268 (12) | 0.0355 (12) | 0.0351 (12) | 0.0034 (12) | 0.0053 (11) | −0.0003 (10) |
Geometric parameters (Å, º) top
O1—C7 | 1.372 (3) | C5—C6 | 1.392 (3) |
O1—H1 | 0.8400 | C5—H5 | 0.9500 |
O2—C1 | 1.206 (3) | C6—C7 | 1.388 (3) |
O3—C1 | 1.335 (3) | C6—H6 | 0.9500 |
O3—C10 | 1.454 (3) | C7—C8 | 1.392 (3) |
N—C2 | 1.487 (2) | C8—C9 | 1.396 (3) |
N—H1N | 0.9100 | C8—H8 | 0.9500 |
N—H2N | 0.9100 | C9—H9 | 0.9500 |
N—H3N | 0.9100 | C10—H101 | 0.9800 |
C1—C2 | 1.517 (3) | C10—H102 | 0.9800 |
C2—C3 | 1.536 (3) | C10—H103 | 0.9800 |
C2—H2 | 1.0000 | O4—C11 | 1.427 (3) |
C3—C4 | 1.513 (3) | O4—H4 | 0.8400 |
C3—H31 | 0.9900 | C11—H11 | 0.9800 |
C3—H32 | 0.9900 | C11—H12 | 0.9800 |
C4—C5 | 1.394 (3) | C11—H13 | 0.9800 |
C4—C9 | 1.399 (3) | | |
| | | |
C7—O1—H1 | 109.5 | C6—C5—H5 | 119.5 |
C1—O3—C10 | 115.28 (17) | C4—C5—H5 | 119.5 |
C2—N—H1N | 109.5 | C7—C6—C5 | 119.8 (2) |
C2—N—H2N | 109.5 | C7—C6—H6 | 120.1 |
H1N—N—H2N | 109.5 | C5—C6—H6 | 120.1 |
C2—N—H3N | 109.5 | O1—C7—C6 | 117.67 (19) |
H1N—N—H3N | 109.5 | O1—C7—C8 | 122.3 (2) |
H2N—N—H3N | 109.5 | C6—C7—C8 | 120.0 (2) |
O2—C1—O3 | 124.6 (2) | C7—C8—C9 | 119.9 (2) |
O2—C1—C2 | 124.56 (19) | C7—C8—H8 | 120.1 |
O3—C1—C2 | 110.80 (18) | C9—C8—H8 | 120.1 |
N—C2—C1 | 107.28 (17) | C8—C9—C4 | 120.6 (2) |
N—C2—C3 | 111.00 (16) | C8—C9—H9 | 119.7 |
C1—C2—C3 | 114.44 (17) | C4—C9—H9 | 119.7 |
N—C2—H2 | 108.0 | O3—C10—H101 | 109.5 |
C1—C2—H2 | 108.0 | O3—C10—H102 | 109.5 |
C3—C2—H2 | 108.0 | H101—C10—H102 | 109.5 |
C4—C3—C2 | 114.41 (17) | O3—C10—H103 | 109.5 |
C4—C3—H31 | 108.7 | H101—C10—H103 | 109.5 |
C2—C3—H31 | 108.7 | H102—C10—H103 | 109.5 |
C4—C3—H32 | 108.7 | C11—O4—H4 | 109.5 |
C2—C3—H32 | 108.7 | O4—C11—H11 | 109.5 |
H31—C3—H32 | 107.6 | O4—C11—H12 | 109.5 |
C5—C4—C9 | 118.7 (2) | H11—C11—H12 | 109.5 |
C5—C4—C3 | 120.45 (19) | O4—C11—H13 | 109.5 |
C9—C4—C3 | 120.9 (2) | H11—C11—H13 | 109.5 |
C6—C5—C4 | 121.0 (2) | H12—C11—H13 | 109.5 |
| | | |
C10—O3—C1—O2 | −1.2 (3) | C9—C4—C5—C6 | 0.2 (3) |
C10—O3—C1—C2 | −179.62 (17) | C3—C4—C5—C6 | 179.3 (2) |
N—C2—C1—O2 | −2.2 (3) | C4—C5—C6—C7 | 1.0 (3) |
O3—C1—C2—N | 176.15 (16) | C5—C6—C7—O1 | 176.60 (19) |
O2—C1—C2—C3 | 121.4 (2) | C5—C6—C7—C8 | −1.4 (3) |
O3—C1—C2—C3 | −60.2 (2) | O1—C7—C8—C9 | −177.39 (19) |
N—C2—C3—C4 | 55.8 (2) | C6—C7—C8—C9 | 0.5 (3) |
C1—C2—C3—C4 | −65.8 (2) | C7—C8—C9—C4 | 0.8 (3) |
C2—C3—C4—C5 | −90.8 (2) | C5—C4—C9—C8 | −1.1 (3) |
C2—C3—C4—C9 | 88.3 (2) | C3—C4—C9—C8 | 179.83 (19) |
Hydrogen-bond geometry (Å, º) top
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H1···O4 | 0.84 | 1.88 | 2.715 (2) | 173 |
O4—H4···Cl | 0.84 | 2.27 | 3.0938 (18) | 167 |
N—H1N···Cli | 0.91 | 2.32 | 3.1659 (18) | 155 |
N—H2N···Clii | 0.91 | 2.29 | 3.192 (2) | 170 |
N—H3N···Cliii | 0.91 | 2.33 | 3.207 (2) | 162 |
C2—H2···O2iv | 1.00 | 2.46 | 3.219 (3) | 132 |
C9—H9···O1v | 0.95 | 2.54 | 3.434 (3) | 157 |
C10—H103···O4v | 0.98 | 2.52 | 3.328 (3) | 140 |
Symmetry codes: (i) −x+1/2, −y+1, z−1/2; (ii) −x, y−1/2, −z+3/2; (iii) −x+1, y−1/2, −z+3/2; (iv) x−1, y, z; (v) −x+1, y+1/2, −z+3/2. |
Experimental details
| (I) | (II) |
Crystal data |
Chemical formula | C10H14NO3+·Cl− | C10H14NO3+·Cl−·CH4O |
Mr | 231.67 | 263.71 |
Crystal system, space group | Monoclinic, P21 | Orthorhombic, P212121 |
Temperature (K) | 100 | 100 |
a, b, c (Å) | 9.943 (3), 5.351 (2), 11.154 (3) | 5.424 (2), 11.080 (3), 21.647 (5) |
α, β, γ (°) | 90, 105.38 (3), 90 | 90, 90, 90 |
V (Å3) | 572.2 (3) | 1300.9 (7) |
Z | 2 | 4 |
Radiation type | Mo Kα | Cu Kα |
µ (mm−1) | 0.32 | 2.65 |
Crystal size (mm) | 0.40 × 0.35 × 0.10 | 0.52 × 0.15 × 0.06 |
|
Data collection |
Diffractometer | Kuma KM4 CCD κ-geometry diffractometer | Kuma KM4 CCD κ-geometry diffractometer |
Absorption correction | Numerical (Clark & Reid, 1995) | Analytical (CrysAlis RED; Oxford Diffraction, 2003) |
Tmin, Tmax | 0.882, 0.969 | 0.339, 0.857 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 13013, 3754, 2890 | 12812, 2563, 2462 |
Rint | 0.054 | 0.046 |
(sin θ/λ)max (Å−1) | 0.807 | 0.629 |
|
Refinement |
R[F2 > 2σ(F2)], wR(F2), S | 0.042, 0.091, 1.00 | 0.040, 0.108, 1.06 |
No. of reflections | 3754 | 2563 |
No. of parameters | 139 | 160 |
No. of restraints | 1 | 0 |
H-atom treatment | H-atom parameters constrained | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.62, −0.23 | 0.48, −0.34 |
Absolute structure | Flack (1983), with how many Friedel pairs | Flack (1983), with how many Friedel pairs |
Absolute structure parameter | 0.06 (5) | −0.02 (2) |
Selected geometric parameters (Å, º) for (I) topO1—C7 | 1.368 (2) | C3—C4 | 1.513 (2) |
O2—C1 | 1.206 (2) | C4—C5 | 1.390 (2) |
O3—C1 | 1.323 (2) | C4—C9 | 1.396 (2) |
O3—C10 | 1.453 (2) | C5—C6 | 1.392 (2) |
N—C2 | 1.492 (2) | C6—C7 | 1.383 (3) |
C1—C2 | 1.514 (2) | C7—C8 | 1.395 (2) |
C2—C3 | 1.534 (2) | C8—C9 | 1.383 (2) |
| | | |
C10—O3—C1—O2 | 1.1 (3) | N—C2—C3—C4 | 52.0 (2) |
N—C2—C1—O2 | 0.9 (2) | C2—C3—C4—C5 | −111.3 (2) |
O2—C1—C2—C3 | 125.26 (18) | C2—C3—C4—C9 | 71.2 (2) |
Hydrogen-bond geometry (Å, º) for (I) top
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H1···Cl | 0.84 | 2.31 | 3.1524 (15) | 180 |
N—H1N···Cli | 0.91 | 2.24 | 3.1166 (15) | 163 |
N—H3N···Clii | 0.91 | 2.44 | 3.2118 (19) | 142 |
N—H2N···Cliii | 0.91 | 2.27 | 3.1686 (19) | 168 |
C2—H2···O2iv | 1.00 | 2.38 | 3.166 (2) | 135 |
Symmetry codes: (i) x, y, z−1; (ii) −x, y−1/2, −z+1; (iii) −x, y+1/2, −z+1; (iv) x, y+1, z. |
Selected geometric parameters (Å, º) for (II) topO1—C7 | 1.372 (3) | C2—C3 | 1.536 (3) |
O2—C1 | 1.206 (3) | C3—C4 | 1.513 (3) |
O3—C1 | 1.335 (3) | C6—C7 | 1.388 (3) |
O3—C10 | 1.454 (3) | C7—C8 | 1.392 (3) |
N—C2 | 1.487 (2) | C8—C9 | 1.396 (3) |
C1—C2 | 1.517 (3) | | |
| | | |
C10—O3—C1—O2 | −1.2 (3) | N—C2—C3—C4 | 55.8 (2) |
N—C2—C1—O2 | −2.2 (3) | C2—C3—C4—C5 | −90.8 (2) |
O2—C1—C2—C3 | 121.4 (2) | C2—C3—C4—C9 | 88.3 (2) |
Hydrogen-bond geometry (Å, º) for (II) top
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H1···O4 | 0.84 | 1.88 | 2.715 (2) | 173 |
O4—H4···Cl | 0.84 | 2.27 | 3.0938 (18) | 167 |
N—H1N···Cli | 0.91 | 2.32 | 3.1659 (18) | 155 |
N—H2N···Clii | 0.91 | 2.29 | 3.192 (2) | 170 |
N—H3N···Cliii | 0.91 | 2.33 | 3.207 (2) | 162 |
C2—H2···O2iv | 1.00 | 2.46 | 3.219 (3) | 132 |
C9—H9···O1v | 0.95 | 2.54 | 3.434 (3) | 157 |
C10—H103···O4v | 0.98 | 2.52 | 3.328 (3) | 140 |
Symmetry codes: (i) −x+1/2, −y+1, z−1/2; (ii) −x, y−1/2, −z+3/2; (iii) −x+1, y−1/2, −z+3/2; (iv) x−1, y, z; (v) −x+1, y+1/2, −z+3/2. |
Although L-tyrosine is one of the twenty natural amino acids which are the basic building blocks of proteins, there are surprisingly few references in the literature to the structures of short peptides containing L-tyrosine methyl ester. The simplest of the peptides described, N-acetyl-L-leucyl-L-tyrosyl methyl ester, containing the two amino acids L-leucine and L-tyrosine, was reported by Karle & Flippen-Anderson (1989). Another paper (Claeys-Bruno et al., 2001) describes the structure of a cobalt(III) chiroporphyrin complex containing the methyl ester of D-tyrosine hydrochloride. [From the Co-Editor: Please approve substitution of `phorphirynoid' with `chiroporphyrin'.] The present paper describes the first solid-state study of L-tyrosine methyl ester hydrochloride, both solvent-free [compound (I)] and as a methanol monosolvate [compound (II)].
Crystals of (I) were obtained from ethanol or propan-2-ol, while crystals of (II) were isolated from methanol, crystallizing in space groups P212121 and P21, respectively (Figs. 1 and 2). We have compared the crystal structures of (I) and (II), principally by analysis of selected torsion angles and hydrogen-bond graph-set analysis (Bernstein et al., 1995). The superposition of the L-tyrosine methyl ester cations is shown in Fig. 3. The values of the C2—C3—C4—C9 (χ22) and C2—C3—C4—C5 (χ21) torsion angles [88.3 (2) and −90.8 (2)°, respectively, in (II), and 71.2 (2) and −111.3 (2)°, respectively, in (I)] show only small differences in the orientation of the aromatic rings towards the plane defined by atoms C1/C2/N. The angle between the plane defined by atoms C1/C2/N and that defined by atoms C4–C9 is 68.2 (1)° in (I) and 64.6 (2)° in (II). Previously reported values for the torsion angles of L-tyrosine sulfate (Sridhar et al., 2002) are noticeably different because of the possible rotation around the C2—C3 and C3—C4 bonds, showing their dependence on crystal-packing forces. The backbone conformation angles N—C2—C1—O2 (ψ1) are 0.9 (2) and −2.2 (3)° in (I) and (II), respectively. Previous reports of the structures of L-tyrosine (Mostad et al., 1972) and L-tyrosinamide hydrochloride monohydrate (Kolev et al., 2005) have noted that the backbone torsion angles can adopt very different values for similar compounds, depending on the molecules present and their arrangement in the solid state. Significant differences can also exist within one crystal structure, as reported for bis(L-tyrosinium) sulfate monohydrate, where two independent cations are present in the asymmetric unit (Sridhar et al., 2002).
The crystal structures of compounds (I) and (II) are characterized by the presence of Cl− anions which engage in numerous interactions. The N···Cl distances are in the ranges 3.117 (2)–3.212 (2) and 3.166 (2)–3.207 (2) Å for (I) and (II), respectively, and are comparable with the average value of 3.207 (4) Å for this type of interaction (Steiner, 1998). In addition to strong N—H···Cl and O—H···Cl hydrogen bonds, both crystal structures also feature weak C—H···O interactions (Figs. 4 and 5).
In compound (I), the ester cations are indirectly linked via Cl− anions through intermolecular N—H···Cl and O—H···Cl hydrogen bonds. Each Cl− anion acts as an acceptor for three hydrogen bonds with protonated amino groups. Therefore, the N—H1···N···Cl hydrogen bond is common to two adjacent ring motifs, forming a ring motif of a `puckered ladder' of hydrogen bonds, which can be described as R42(8). The fourth hydrogen bond, O1—H1···Cl, exists between the Cl− anion and the hydroxyl group of another ester cation. The participation of the hydroxyl group in the hydrogen-bonding network causes the formation of two-dimensional antiparallel molecular layers containing ester cations and Cl− anions. Within these layers, the ester cations are linked directly by C2—H2···O2iv interactions [symmetry code: (iv) x, y + 1, z; Table 2] between the methyl and carboxyl groups of adjacent ester cations. Propagation of the hydrogen-bonding C(4) motif generates a chain running along the b axis (Fig. 4).
In compound (II), each Cl− anion accepts four hydrogen bonds which can be divided into two groups. The first group is part of a group of hydrogen bonds linking each Cl− anion with three different cations via their protonated amino groups and its arrangement is analogous to that seen in (I). The second type of hydrogen bond, in which the Cl− anion is the acceptor, is a linkage between the methanol molecule and the Cl− anion, consisting of a single O4—H4···Cl hydrogen bond only. The ester cations are linked via the ring of four hydrogen bonds between two different Cl− anions and two amino groups of the ester cations, which can be described as R42(8). Thus a `puckered ladder' motif of hydrogen bonds analogous to that observed in (I) can be also be recognized. However, the presence of the methanol solvent molecule results in a different arrangement observed for (II), namely a three-dimensional network. Additionally, the ester cations of (II) are linked directly by C2—H2···O2iv interactions [symmetry code: (iv) x − 1, y, z], resulting in a C(4) hydrogen-bonding motif similar to that in (I), with the chains running along the a axis (Fig. 5).