Download citation
Download citation
link to html
In the two title complexes of cinnamaldehyde salicyloylhydra­zone [or 2-hydr­oxy-N′-(3-phenyl­prop-2-enyl­idene)­benzo­hy­dra­zide], [Ni(C16H13N2O2)2(CH4O)2], (I), and [Ni(C16H13N2O2)2(C5H5N)2], (II), the NiII atoms lie on crystallographic inversion centres and have distorted octa­hedral geometries. The equatorial plane is defined by two carbonyl O atoms and two hydrazine N atoms of two bidentate trans-oriented salicyloylhydrazone ligands. The axial positions are occupied by two O atoms from two coordinated methanol mol­ecules in (I) and by two N atoms from two coordinated pyridine mol­ecules in (II). There is an extended chain structure in (I) resulting from inter­molecular O—H...O hydrogen bonds between coordinated methanol mol­ecules and phenol O atoms, while (II) comprises discrete mol­ecules. Complex (I) also exhibits weak π–π stacking inter­actions, and intra­molecular O—H...N hydrogen bonds are present in both (I) and (II). The salicyloylhydrazone ligands in (I) and (II) are coordinated to the metal atom through the carbohydrazide O and N2 atoms, not via the phenol O atom. We have established a link between the reagents used and the nuclearity of the complex formed: the ligand produced by condensation between salicylhydrazide and an aldehyde leads to mononuclear complexes, while replacing the aldehyde in the reaction by a ketone leads to multinuclear complexes.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270108006240/bm3048sup1.cif
Contains datablocks I, II, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270108006240/bm3048Isup2.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270108006240/bm3048IIsup3.hkl
Contains datablock II

CCDC references: 690170; 690171

Comment top

The design and construction of the hydrazone complexes are of great interest, due to their intriguing structural topologies and potential applications (Sreekanth et al., 2004; Bai et al., 2006). To date, only a few structures of cinnamaldehyde hydrazone complexes have been reported (Son et al., 2002; Chumakov et al., 2006), although many hydrazone complexes have been synthesized and characterized. We present here the syntheses and structural characterization of the title nickel(II) complexes, [NiL2(CH3OH)2], (I), and [NiL2(C5H5N)2], (II), where L is the monoanionic cinnamaldehyde salicyloylhydrazone. To the best of our knowledge, the title complexes represent the first examples of structurally characterized cinnamaldehyde salicyloylhydrazone complexes.

As shown in Fig. 1, compound (I) contains a distorted octahedrally coordinated NiII ion located on a crystallographic inversion centre, with two cinnamaldehyde salicyloylhydrazone L ligands acting in a bidentate manner to form five-membered chelate rings. Two methanol molecules coordinate axially via their O atoms. The four atoms O2, O2i, N2 and N2i [symmetry code: (i) −x + 1, −y, −z + 1] of the two hydrazone ligands form the equatorial plane, while the two O atoms (O3 and O3i) from the methanol molecules occupy the two axial positions. The Ni1—N2(hydrazine) bond distance of 2.0845 (15) Å in (I) is longer than the corresponding Ni—N values of 1.988 (2), 1.995 (2) and 1.983 (2) Å in similar complexes (Table 1). The Ni1—O3(methanol) bond length of 2.0970 (14) Å in (I) falls within the range 2.0661 (7)–2.148 (3) Å found for octahedral nickel complexes containing CH3OH in axial positions (Table 2).

The NiII centre in complex (II) displays a slightly distorted octahedral coordination and lies on the inversion centre. The NiII centre is coordinated by two O (O2 and O2i) and two N atoms (N2 and N2i) of two cinnamaldehyde salicyloylhydrazone L ligands [symmetry code: (i) −x, −y + 1, −z + 1], and two N atoms (N3 and N3i ) of two coordinated pyridine molecules (see Fig. 2). In the equatorial plane, the Ni1—N2(hydrazine) bond distances of 2.082 (2) Å and Ni1—O2(carboxyl) bond distances of 2.0182 (15) Å are similar to the corresponding values in (I). The Ni1—N3(pyridine) bond length of 2.1487 (19) Å lies within the range 2.140 (2)—2.165 (2) Å found for related nickel complexes (Table 3).

The dihedral angles between the two benzene rings (C1–C6 and C11–C16) of the hydrazone ligand in complexes (I) and (II) are 8.1 (1) and 18.8 (1)°, respectively. These values indicate slightly different degrees of coplanarity for the cinnamaldehyde salicyloylhydrazone ligands in the two complexes.

Adjacent complex molecules in (I) are linked by two intermolecular OH(methanol)···Oii(phenol) hydrogen bonds [symmetry code: (ii) x, y − 1, z] to form an extended one-dimensional chain along the b axis (see Table 4 and Fig. 3). However, as there is no comparable intermolecular hydrogen bonding in (II), this complex exists as discrete molecules. There are intramolecular O—H(phenol)···N(hydrazine) hydrogen bonds in complexes (I) and (II), forming a six-membered ring (H1/O1/C1/C2/C7/N1) (Tables 4 and 5).

The structure of (I) also exhibits weak ππ stacking interactions between the C9C10 double bond and the phenyl ring (C1–C6) in adjacent molecules (Fig. 3). The distance between their centroids is 3.467 (1) Å.

Important structural conclusions can be drawn from the synthetic reactions and structural characterization of known salicyloylhydrazone complexes and the salicyloylhydrazone complexes synthesized in our group. Firstly, the salicyloylhydrazone product of the condensation between salicylhydrazide and an aldehyde coordinates to a metal atom through its carboxyl O atom and hydrazine N atoms, not via its phenolate O atom. Therefore, the salicyloylhydrazone complexes formed between a metal and this type of hydrazone are usually mononuclear (Bonardi et al., 1991; Bermejo et al., 2000; Dang et al., 2006) (see top of second scheme). Secondly, when a salicyloylhydrazone is synthesized by condensation between salicylhydrazide and a ketone, the salicyloylhydrazone is coordinated through its carboxyl O atom, hydrazine N atom and phenolate O atom. Therefore, this type of hydrazone ligand is trianionic, and the salicyloylhydrazone complexes formed between a metal and this type of hydrazone are usually linear multinuclear or cyclic multinuclear complexes (Liu et al., 2001; John et al., 2005; Moon et al., 2006) (see bottom of second scheme).

Experimental top

The ligand H2L was prepared by the reaction of salicyloylhydrazide and cinnamaldehyde in a molar ratio of 1:1 under reflux in ethanol for 2 h. The yellow product obtained on cooling was washed first with anhydrous ethanol and then with ethoxyethane.

H2L (0.1 mmol, 27 mg) and NiCl2·6H2O (0.1 mmol, 24 mg) were dissolved in a mixture of CH3OH (8 ml) and CH2Cl2 (8 ml). The mixed solution was stirred for 1 h and then filtered. Yellow block-like crystals of complex (I) were obtained after 4 d.

H2L (0.1 mmol, 27 mg) and NiCl2·6H2O (0.1 mmol, 24 mg) were dissolved in a mixture of CH3OH (8 ml) and CH2Cl2 (8 ml). After stirring for 5 min, one drop of pyridine was added to the mixed solution, which was stirred for another 1 h and filtered. Yellow prismatic crystals of complex (II) were formed after 3 d.

The band at 3255 cm−1 in the IR spectrum of the free cinnamaldehyde salicyloylhydrazone ligand is assigned to ν(NH) (Casabó et al., 1989). This absorption of ν(NH) is absent in the IR spectra of the two title nickel complexes, suggesting that the diazine N atom in the two complexes is coordinated to a NiII centre and that the hydrazone ligand is monoanionic. The bands at 3051 cm−1 in (I) and 3055 cm−1 in (II) are due to ν(OH) of the phenolate (Ding, Hu & Zhang, 2006 or Ding, Zhang et al., 2006 ?). Two bands at 1521 cm−1 and 1563 cm−1 in the spectrum of (II) are assigned to ν[C N—NC(O)] of the hydrazone and the coordinated pyridine N atom (Hu et al., 2006). The thermogravimetric and differential thermal analysis curves of complex (II) show that the decomposition of the mixed-ligand complex occurs in two regions. Loss of two pyridine molecules takes place in the first region between 436 and 531 K with a mass loss of 21.96% (calculated 21.14%). The second stage between 556 and 773 K corresponds to decomposition of the ligands with a mass loss of 68.43% (calculated 70.90%). The complex finally degraded completely into NiO with a mass of 9.01% (calculated 9.99%).

Refinement top

The H atom of the phenolate OH group in (I) and (II) and the H atom of the CH3OH molecule in (I) were located in difference Fourier maps, and then allowed to ride on their parent O atoms, with Ueq(H) = 1.5Ueq(O) and O—H between 0.948 and 0.975 Å. The other H atoms in (I) and (II) were placed in idealized positions and treated as riding, with C—H = 0.93 Å and Uiso(H) = 1.2Ueq(C) for aromatic H, and C—H = 0.96 Å and Uiso(H) = 1.5Ueq(C) for methyl H.

Computing details top

For both compounds, data collection: TEXRAY (Molecular Structure Corporation, 1999); cell refinement: TEXRAY (Molecular Structure Corporation, 1999); data reduction: TEXSAN (Molecular Structure Corporation, 1999); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEX (McArdle, 1995); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of compound (I), showing the atomic numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. Dashed lines indicate hydrogen bonding. H atoms not involved in the hydrogen bonding have been omitted for clarity. [Symmetry code: (i) x, −y, 1 − z.]
[Figure 2] Fig. 2. A view of compound (II), showing the atomic numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. Dashed lines indicate hydrogen bonding. H atoms not involved in the hydrogen bonding have been omitted for clarity. [Symmetry code: (i) −x, 1 − y, 1 − z.]
[Figure 3] Fig. 3. A packing diagram for (I), with hydrogen bonds shown as dashed lines and ππ stacking shown as double-dashed lines. H atoms not involved in hydrogen bonding have been omitted.
(I) Bis[2-hydroxy-N'-(3-phenylprop-2-enylidene)benzohydrazidato- κ2N,O]bis(methanol-κO)nickel(II) top
Crystal data top
[Ni(C16H13N2O2)2(CH4O)2]Dx = 1.353 Mg m3
Mr = 653.36Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, PbcaCell parameters from 3677 reflections
a = 17.536 (5) Åθ = 3.3–27.5°
b = 8.016 (2) ŵ = 0.66 mm1
c = 22.814 (8) ÅT = 293 K
V = 3207.2 (17) Å3Block, yellow
Z = 40.31 × 0.25 × 0.20 mm
F(000) = 1368
Data collection top
Rigaku R-AXIS RAPID Imaging Plate
diffractometer
3677 independent reflections
Radiation source: fine-focus sealed tube2696 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.046
ω scansθmax = 27.5°, θmin = 3.3°
Absorption correction: multi-scan
(TEXRAY; Molecular Structure Corporation, 1999)
h = 2222
Tmin = 0.721, Tmax = 0.906k = 109
27936 measured reflectionsl = 2929
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.102H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0497P)2 + 0.7005P]
where P = (Fo2 + 2Fc2)/3
3677 reflections(Δ/σ)max = 0.001
206 parametersΔρmax = 0.25 e Å3
0 restraintsΔρmin = 0.42 e Å3
Crystal data top
[Ni(C16H13N2O2)2(CH4O)2]V = 3207.2 (17) Å3
Mr = 653.36Z = 4
Orthorhombic, PbcaMo Kα radiation
a = 17.536 (5) ŵ = 0.66 mm1
b = 8.016 (2) ÅT = 293 K
c = 22.814 (8) Å0.31 × 0.25 × 0.20 mm
Data collection top
Rigaku R-AXIS RAPID Imaging Plate
diffractometer
3677 independent reflections
Absorption correction: multi-scan
(TEXRAY; Molecular Structure Corporation, 1999)
2696 reflections with I > 2σ(I)
Tmin = 0.721, Tmax = 0.906Rint = 0.046
27936 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0350 restraints
wR(F2) = 0.102H-atom parameters constrained
S = 1.06Δρmax = 0.25 e Å3
3677 reflectionsΔρmin = 0.42 e Å3
206 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni10.50000.00000.50000.03518 (11)
O10.64110 (8)0.58785 (16)0.49628 (5)0.0478 (3)
H10.60770.50570.51200.072*
O20.54359 (7)0.14615 (14)0.43587 (5)0.0441 (3)
N10.56470 (9)0.32859 (18)0.51127 (7)0.0407 (3)
N20.52531 (8)0.21672 (17)0.54659 (6)0.0379 (3)
C10.64876 (10)0.5423 (2)0.43998 (9)0.0423 (4)
C20.61404 (10)0.3961 (2)0.41775 (8)0.0391 (4)
C30.62221 (11)0.3582 (2)0.35885 (9)0.0481 (4)
H30.59840.26370.34380.058*
C40.66491 (13)0.4578 (3)0.32213 (10)0.0549 (5)
H40.66960.43130.28260.066*
C50.70066 (12)0.5972 (3)0.34458 (10)0.0561 (5)
H50.73030.66340.32010.067*
C60.69303 (11)0.6393 (2)0.40242 (10)0.0524 (5)
H60.71770.73350.41680.063*
C70.57072 (9)0.2811 (2)0.45565 (8)0.0374 (4)
C80.51641 (10)0.2663 (2)0.59974 (8)0.0430 (4)
H80.53840.36730.61050.052*
C90.47495 (11)0.1762 (2)0.64321 (8)0.0437 (4)
H90.45280.07420.63400.052*
C100.46797 (11)0.2387 (3)0.69731 (8)0.0474 (4)
H100.49530.33570.70500.057*
C110.42278 (11)0.1732 (3)0.74552 (8)0.0480 (4)
C120.37153 (12)0.0419 (3)0.73913 (9)0.0572 (5)
H120.36610.00990.70290.069*
C130.32865 (15)0.0120 (4)0.78620 (11)0.0731 (7)
H130.29430.09940.78150.088*
C140.33662 (17)0.0630 (5)0.83975 (11)0.0846 (9)
H140.30790.02600.87150.102*
C150.38651 (18)0.1915 (5)0.84669 (10)0.0886 (9)
H150.39180.24190.88320.106*
C160.42918 (14)0.2474 (3)0.79998 (10)0.0680 (6)
H160.46270.33610.80510.082*
O30.60897 (7)0.09436 (16)0.51828 (6)0.0503 (3)
H180.61230.20820.50730.075*
C170.67884 (13)0.0134 (3)0.52493 (16)0.0794 (8)
H17D0.71600.09080.53960.119*
H17A0.67330.07730.55210.119*
H17B0.69530.02910.48770.119*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.03923 (18)0.02983 (17)0.03647 (18)0.00613 (12)0.00374 (12)0.00047 (12)
O10.0534 (8)0.0366 (7)0.0534 (8)0.0093 (6)0.0001 (6)0.0004 (6)
O20.0555 (7)0.0352 (6)0.0416 (7)0.0124 (6)0.0057 (6)0.0009 (5)
N10.0442 (8)0.0332 (7)0.0446 (9)0.0060 (6)0.0072 (6)0.0010 (6)
N20.0395 (7)0.0345 (7)0.0396 (8)0.0028 (6)0.0027 (6)0.0005 (6)
C10.0371 (9)0.0351 (8)0.0548 (11)0.0003 (7)0.0001 (8)0.0066 (8)
C20.0374 (8)0.0325 (8)0.0472 (10)0.0006 (7)0.0040 (7)0.0054 (8)
C30.0532 (11)0.0411 (10)0.0499 (11)0.0008 (9)0.0085 (9)0.0022 (9)
C40.0599 (12)0.0538 (11)0.0510 (12)0.0042 (10)0.0154 (10)0.0081 (10)
C50.0503 (11)0.0500 (11)0.0680 (14)0.0027 (9)0.0162 (10)0.0177 (11)
C60.0477 (10)0.0413 (10)0.0682 (14)0.0087 (9)0.0032 (9)0.0083 (10)
C70.0366 (8)0.0309 (8)0.0448 (10)0.0017 (7)0.0029 (7)0.0022 (7)
C80.0449 (9)0.0390 (9)0.0450 (10)0.0032 (8)0.0004 (8)0.0059 (8)
C90.0474 (9)0.0430 (9)0.0406 (9)0.0010 (9)0.0022 (8)0.0038 (8)
C100.0504 (10)0.0491 (10)0.0427 (10)0.0016 (9)0.0023 (8)0.0070 (9)
C110.0506 (10)0.0579 (11)0.0354 (9)0.0082 (10)0.0026 (8)0.0025 (9)
C120.0612 (12)0.0689 (13)0.0414 (11)0.0038 (11)0.0042 (9)0.0015 (10)
C130.0646 (14)0.0930 (19)0.0618 (15)0.0054 (14)0.0073 (11)0.0163 (13)
C140.0758 (17)0.134 (3)0.0436 (13)0.0173 (19)0.0148 (12)0.0185 (15)
C150.102 (2)0.128 (3)0.0361 (12)0.011 (2)0.0057 (13)0.0111 (14)
C160.0779 (15)0.0836 (16)0.0425 (12)0.0042 (14)0.0033 (10)0.0146 (11)
O30.0427 (7)0.0408 (7)0.0674 (9)0.0018 (6)0.0020 (6)0.0050 (7)
C170.0474 (13)0.0563 (14)0.135 (2)0.0051 (11)0.0158 (15)0.0056 (15)
Geometric parameters (Å, º) top
Ni1—O22.0242 (12)C8—H80.9300
Ni1—N22.0845 (15)C9—C101.338 (3)
Ni1—O32.0970 (14)C9—H90.9300
O1—C11.342 (2)C10—C111.454 (3)
O1—H10.9512C10—H100.9300
O2—C71.265 (2)C11—C161.382 (3)
N1—C71.329 (2)C11—C121.392 (3)
N1—N21.390 (2)C12—C131.380 (3)
N2—C81.285 (2)C12—H120.9300
C1—C61.393 (3)C13—C141.369 (4)
C1—C21.415 (2)C13—H130.9300
C2—C31.385 (3)C14—C151.361 (5)
C2—C71.474 (2)C14—H140.9300
C3—C41.378 (3)C15—C161.377 (4)
C3—H30.9300C15—H150.9300
C4—C51.380 (3)C16—H160.9300
C4—H40.9300O3—C171.395 (3)
C5—C61.368 (3)O3—H180.9484
C5—H50.9300C17—H17D0.9600
C6—H60.9300C17—H17A0.9600
C8—C91.426 (3)C17—H17B0.9600
O2—Ni1—N278.80 (6)C10—C9—C8119.94 (18)
O2—Ni1—O390.48 (6)C10—C9—H9120.0
N2—Ni1—O390.30 (6)C8—C9—H9120.0
C1—O1—H1103.6C9—C10—C11127.77 (19)
C7—O2—Ni1112.29 (11)C9—C10—H10116.1
C7—N1—N2114.11 (14)C11—C10—H10116.1
C8—N2—N1114.08 (15)C16—C11—C12118.2 (2)
C8—N2—Ni1135.45 (13)C16—C11—C10118.7 (2)
N1—N2—Ni1110.37 (11)C12—C11—C10123.10 (18)
O1—C1—C6119.52 (18)C13—C12—C11120.5 (2)
O1—C1—C2121.69 (16)C13—C12—H12119.8
C6—C1—C2118.78 (18)C11—C12—H12119.8
C3—C2—C1119.02 (16)C14—C13—C12120.1 (3)
C3—C2—C7119.02 (16)C14—C13—H13120.0
C1—C2—C7121.95 (17)C12—C13—H13120.0
C4—C3—C2121.24 (19)C15—C14—C13120.1 (2)
C4—C3—H3119.4C15—C14—H14119.9
C2—C3—H3119.4C13—C14—H14119.9
C3—C4—C5119.4 (2)C14—C15—C16120.4 (2)
C3—C4—H4120.3C14—C15—H15119.8
C5—C4—H4120.3C16—C15—H15119.8
C6—C5—C4120.87 (19)C15—C16—C11120.8 (3)
C6—C5—H5119.6C15—C16—H16119.6
C4—C5—H5119.6C11—C16—H16119.6
C5—C6—C1120.67 (19)C17—O3—Ni1130.86 (13)
C5—C6—H6119.7C17—O3—H18115.0
C1—C6—H6119.7Ni1—O3—H18110.5
O2—C7—N1123.73 (15)O3—C17—H17D109.5
O2—C7—C2121.28 (16)O3—C17—H17A109.5
N1—C7—C2114.97 (15)H17D—C17—H17A109.5
N2—C8—C9124.18 (17)O3—C17—H17B109.5
N2—C8—H8117.9H17D—C17—H17B109.5
C9—C8—H8117.9H17A—C17—H17B109.5
N2i—Ni1—O2—C7173.08 (12)Ni1—O2—C7—C2172.08 (12)
N2—Ni1—O2—C76.92 (12)N2—N1—C7—O20.3 (2)
O3i—Ni1—O2—C796.72 (12)N2—N1—C7—C2178.50 (14)
O3—Ni1—O2—C783.28 (12)C3—C2—C7—O22.7 (3)
C7—N1—N2—C8176.92 (16)C1—C2—C7—O2175.99 (16)
C7—N1—N2—Ni16.16 (17)C3—C2—C7—N1178.96 (16)
O2i—Ni1—N2—C82.94 (19)C1—C2—C7—N12.3 (2)
O2—Ni1—N2—C8177.06 (19)N1—N2—C8—C9177.06 (17)
O3i—Ni1—N2—C887.49 (18)Ni1—N2—C8—C97.1 (3)
O3—Ni1—N2—C892.51 (18)N2—C8—C9—C10179.22 (18)
O2i—Ni1—N2—N1173.04 (11)C8—C9—C10—C11174.13 (19)
O2—Ni1—N2—N16.96 (11)C9—C10—C11—C16173.6 (2)
O3i—Ni1—N2—N196.53 (11)C9—C10—C11—C128.3 (3)
O3—Ni1—N2—N183.47 (11)C16—C11—C12—C130.1 (3)
O1—C1—C2—C3178.16 (17)C10—C11—C12—C13178.2 (2)
C6—C1—C2—C33.0 (3)C11—C12—C13—C140.4 (4)
O1—C1—C2—C73.1 (3)C12—C13—C14—C150.4 (4)
C6—C1—C2—C7175.78 (17)C13—C14—C15—C160.1 (5)
C1—C2—C3—C41.6 (3)C14—C15—C16—C110.7 (4)
C7—C2—C3—C4177.17 (18)C12—C11—C16—C150.7 (4)
C2—C3—C4—C50.5 (3)C10—C11—C16—C15178.8 (2)
C3—C4—C5—C61.2 (3)O2i—Ni1—O3—C17134.3 (2)
C4—C5—C6—C10.2 (3)O2—Ni1—O3—C1745.7 (2)
O1—C1—C6—C5178.83 (18)N2i—Ni1—O3—C17146.9 (2)
C2—C1—C6—C52.3 (3)N2—Ni1—O3—C1733.1 (2)
Ni1—O2—C7—N16.1 (2)
Symmetry code: (i) x+1, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N10.951.612.496 (2)154
O3—H18···O1ii0.951.732.657 (2)165
Symmetry code: (ii) x, y1, z.
(II) bis[2-hydroxy-N'-(3-phenylprop-2-enylidene)benzohydrazidato- κ2N,O]bis(pyridine-κN)nickel(II) top
Crystal data top
[Ni(C16H13N2O2)2(C5H5N)2]Z = 1
Mr = 747.48F(000) = 390
Triclinic, P1Dx = 1.384 Mg m3
a = 7.699 (6) ÅMo Kα radiation, λ = 0.71073 Å
b = 9.814 (5) ÅCell parameters from 4060 reflections
c = 12.412 (7) Åθ = 3.1–27.7°
α = 78.02 (2)°µ = 0.59 mm1
β = 82.59 (3)°T = 293 K
γ = 79.00 (3)°Prism, yellow
V = 896.6 (10) Å30.20 × 0.20 × 0.11 mm
Data collection top
Rigaku R-AXIS RAPID Imaging Plate
diffractometer
3177 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.041
Graphite monochromatorθmax = 27.7°, θmin = 3.1°
ω scansh = 99
8839 measured reflectionsk = 1212
4060 independent reflectionsl = 1613
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.100H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.0493P)2]
where P = (Fo2 + 2Fc2)/3
4060 reflections(Δ/σ)max = 0.001
241 parametersΔρmax = 0.55 e Å3
0 restraintsΔρmin = 0.37 e Å3
Crystal data top
[Ni(C16H13N2O2)2(C5H5N)2]γ = 79.00 (3)°
Mr = 747.48V = 896.6 (10) Å3
Triclinic, P1Z = 1
a = 7.699 (6) ÅMo Kα radiation
b = 9.814 (5) ŵ = 0.59 mm1
c = 12.412 (7) ÅT = 293 K
α = 78.02 (2)°0.20 × 0.20 × 0.11 mm
β = 82.59 (3)°
Data collection top
Rigaku R-AXIS RAPID Imaging Plate
diffractometer
3177 reflections with I > 2σ(I)
8839 measured reflectionsRint = 0.041
4060 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0420 restraints
wR(F2) = 0.100H-atom parameters constrained
S = 1.00Δρmax = 0.55 e Å3
4060 reflectionsΔρmin = 0.37 e Å3
241 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni10.00000.50000.50000.03495 (12)
O10.3758 (2)0.4223 (2)0.85177 (14)0.0728 (6)
H10.36800.40320.77870.109*
O20.01315 (17)0.59205 (13)0.63258 (10)0.0388 (3)
N10.2561 (2)0.45066 (18)0.66275 (12)0.0413 (4)
N20.2449 (2)0.41453 (16)0.56100 (12)0.0381 (4)
N30.1076 (2)0.67528 (17)0.39805 (13)0.0401 (4)
C10.2408 (3)0.5250 (2)0.87246 (16)0.0460 (5)
C20.1180 (3)0.5882 (2)0.79660 (15)0.0381 (4)
C30.0129 (3)0.6954 (2)0.82375 (17)0.0507 (5)
H30.09590.73950.77390.061*
C40.0234 (4)0.7387 (3)0.9236 (2)0.0615 (6)
H40.11140.81270.93990.074*
C50.0957 (3)0.6730 (3)0.99868 (18)0.0596 (6)
H50.08650.70061.06680.071*
C60.2266 (3)0.5681 (3)0.97415 (18)0.0573 (6)
H60.30780.52431.02530.069*
C70.1173 (3)0.54223 (18)0.68994 (14)0.0350 (4)
C80.3820 (3)0.3312 (2)0.52883 (17)0.0457 (5)
H80.47440.30090.57420.055*
C90.3995 (3)0.2824 (2)0.42630 (16)0.0445 (5)
H90.31300.31890.37730.053*
C100.5356 (3)0.1865 (2)0.39919 (18)0.0532 (6)
H100.61770.15020.45110.064*
C110.5696 (3)0.1319 (2)0.29584 (18)0.0472 (5)
C120.6757 (3)0.0015 (3)0.2947 (2)0.0624 (7)
H120.72450.04990.35870.075*
C130.7093 (4)0.0527 (3)0.1968 (3)0.0761 (8)
H130.77980.14080.19620.091*
C140.6399 (4)0.0223 (3)0.1029 (2)0.0736 (8)
H140.66290.01430.03820.088*
C150.5367 (4)0.1513 (3)0.1035 (2)0.0627 (7)
H150.48960.20270.03890.075*
C160.5015 (3)0.2057 (2)0.19881 (18)0.0506 (5)
H160.43050.29390.19800.061*
C170.0723 (3)0.8012 (2)0.42732 (18)0.0512 (5)
H170.00230.81040.49320.061*
C180.1335 (4)0.9182 (2)0.3656 (2)0.0627 (7)
H180.10541.00390.38990.075*
C190.2366 (3)0.9086 (2)0.2677 (2)0.0571 (6)
H190.27880.98690.22430.069*
C200.2748 (3)0.7800 (2)0.23638 (19)0.0538 (5)
H200.34490.76880.17090.065*
C210.2088 (3)0.6671 (2)0.30252 (17)0.0469 (5)
H210.23580.58030.27980.056*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.0415 (2)0.03634 (19)0.02703 (18)0.00144 (14)0.00781 (13)0.00795 (14)
O10.0700 (11)0.0925 (13)0.0543 (9)0.0261 (10)0.0325 (8)0.0301 (10)
O20.0427 (8)0.0420 (7)0.0321 (6)0.0011 (6)0.0106 (6)0.0107 (6)
N10.0454 (9)0.0472 (9)0.0335 (8)0.0014 (7)0.0121 (7)0.0156 (8)
N20.0445 (9)0.0400 (8)0.0309 (8)0.0036 (7)0.0080 (7)0.0097 (7)
N30.0423 (9)0.0421 (8)0.0360 (8)0.0044 (7)0.0068 (7)0.0084 (7)
C10.0503 (12)0.0528 (12)0.0378 (10)0.0072 (10)0.0098 (9)0.0131 (10)
C20.0443 (11)0.0405 (10)0.0323 (9)0.0104 (8)0.0050 (8)0.0093 (8)
C30.0606 (14)0.0500 (12)0.0428 (11)0.0005 (10)0.0120 (10)0.0163 (10)
C40.0728 (16)0.0629 (14)0.0518 (13)0.0002 (12)0.0046 (12)0.0287 (12)
C50.0718 (16)0.0779 (16)0.0384 (11)0.0186 (13)0.0023 (11)0.0283 (12)
C60.0636 (15)0.0776 (16)0.0361 (11)0.0148 (13)0.0176 (10)0.0123 (12)
C70.0442 (11)0.0327 (9)0.0292 (9)0.0091 (8)0.0059 (8)0.0048 (8)
C80.0422 (11)0.0515 (11)0.0447 (11)0.0035 (9)0.0122 (9)0.0172 (10)
C90.0444 (11)0.0480 (11)0.0411 (11)0.0008 (9)0.0061 (9)0.0137 (9)
C100.0456 (12)0.0632 (14)0.0524 (12)0.0061 (10)0.0134 (10)0.0226 (12)
C110.0374 (11)0.0533 (12)0.0538 (12)0.0049 (9)0.0002 (9)0.0218 (11)
C120.0513 (14)0.0619 (14)0.0730 (16)0.0073 (11)0.0064 (12)0.0256 (14)
C130.0639 (17)0.0673 (16)0.102 (2)0.0033 (14)0.0084 (16)0.0486 (18)
C140.0748 (18)0.088 (2)0.0684 (17)0.0220 (15)0.0178 (15)0.0456 (17)
C150.0721 (16)0.0718 (16)0.0475 (13)0.0219 (13)0.0076 (12)0.0175 (13)
C160.0565 (13)0.0476 (11)0.0481 (12)0.0123 (10)0.0061 (10)0.0133 (10)
C170.0615 (14)0.0427 (11)0.0479 (12)0.0056 (10)0.0016 (10)0.0122 (10)
C180.0795 (18)0.0413 (11)0.0657 (15)0.0089 (11)0.0006 (13)0.0112 (12)
C190.0574 (14)0.0519 (12)0.0588 (14)0.0162 (11)0.0063 (11)0.0039 (11)
C200.0522 (13)0.0605 (13)0.0447 (12)0.0090 (11)0.0008 (10)0.0045 (11)
C210.0548 (13)0.0449 (11)0.0390 (10)0.0056 (9)0.0018 (9)0.0077 (9)
Geometric parameters (Å, º) top
Ni1—O22.0182 (15)C9—C101.327 (3)
Ni1—N22.082 (2)C9—H90.9300
Ni1—N32.1487 (19)C10—C111.465 (3)
O1—C11.342 (3)C10—H100.9300
O1—H10.9748C11—C161.381 (3)
O2—C71.268 (2)C11—C121.382 (3)
N1—C71.315 (2)C12—C131.400 (3)
N1—N21.398 (2)C12—H120.9300
N2—C81.280 (2)C13—C141.357 (4)
N3—C171.329 (3)C13—H130.9300
N3—C211.340 (2)C14—C151.361 (4)
C1—C21.388 (3)C14—H140.9300
C1—C61.397 (3)C15—C161.373 (3)
C2—C31.375 (3)C15—H150.9300
C2—C71.486 (2)C16—H160.9300
C3—C41.380 (3)C17—C181.369 (3)
C3—H30.9300C17—H170.9300
C4—C51.367 (4)C18—C191.373 (3)
C4—H40.9300C18—H180.9300
C5—C61.350 (3)C19—C201.365 (3)
C5—H50.9300C19—H190.9300
C6—H60.9300C20—C211.375 (3)
C8—C91.432 (3)C20—H200.9300
C8—H80.9300C21—H210.9300
O2—Ni1—N277.85 (6)C8—C9—H9119.0
O2—Ni1—N389.47 (7)C9—C10—C11126.6 (2)
N2—Ni1—N391.13 (8)C9—C10—H10116.7
C1—O1—H1108.4C11—C10—H10116.7
C7—O2—Ni1112.54 (10)C16—C11—C12118.32 (19)
C7—N1—N2111.90 (15)C16—C11—C10122.83 (19)
C8—N2—N1113.80 (16)C12—C11—C10118.8 (2)
C8—N2—Ni1134.16 (13)C11—C12—C13119.7 (2)
N1—N2—Ni1111.91 (11)C11—C12—H12120.1
C17—N3—C21116.18 (19)C13—C12—H12120.1
C17—N3—Ni1120.19 (14)C14—C13—C12120.5 (2)
C21—N3—Ni1123.61 (14)C14—C13—H13119.7
O1—C1—C2122.20 (17)C12—C13—H13119.7
O1—C1—C6117.74 (19)C13—C14—C15119.9 (2)
C2—C1—C6120.06 (19)C13—C14—H14120.0
C3—C2—C1118.08 (17)C15—C14—H14120.0
C3—C2—C7118.61 (17)C14—C15—C16120.3 (3)
C1—C2—C7123.26 (16)C14—C15—H15119.8
C2—C3—C4121.2 (2)C16—C15—H15119.8
C2—C3—H3119.4C15—C16—C11121.2 (2)
C4—C3—H3119.4C15—C16—H16119.4
C5—C4—C3120.0 (2)C11—C16—H16119.4
C5—C4—H4120.0N3—C17—C18123.5 (2)
C3—C4—H4120.0N3—C17—H17118.3
C6—C5—C4120.14 (19)C18—C17—H17118.3
C6—C5—H5119.9C17—C18—C19119.8 (2)
C4—C5—H5119.9C17—C18—H18120.1
C5—C6—C1120.4 (2)C19—C18—H18120.1
C5—C6—H6119.8C20—C19—C18117.6 (2)
C1—C6—H6119.8C20—C19—H19121.2
O2—C7—N1125.00 (15)C18—C19—H19121.2
O2—C7—C2119.15 (15)C19—C20—C21119.4 (2)
N1—C7—C2115.85 (16)C19—C20—H20120.3
N2—C8—C9123.08 (19)C21—C20—H20120.3
N2—C8—H8118.5N3—C21—C20123.53 (19)
C9—C8—H8118.5N3—C21—H21118.2
C10—C9—C8121.9 (2)C20—C21—H21118.2
C10—C9—H9119.0
N2—Ni1—O2—C77.23 (13)C2—C1—C6—C51.1 (4)
N2i—Ni1—O2—C7172.76 (13)Ni1—O2—C7—N16.2 (2)
N3i—Ni1—O2—C781.49 (14)Ni1—O2—C7—C2173.76 (13)
N3—Ni1—O2—C798.51 (14)N2—N1—C7—O20.7 (3)
C7—N1—N2—C8176.55 (18)N2—N1—C7—C2179.41 (15)
C7—N1—N2—Ni16.9 (2)C3—C2—C7—O27.3 (3)
O2—Ni1—N2—C8176.8 (2)C1—C2—C7—O2170.26 (19)
O2i—Ni1—N2—C83.2 (2)C3—C2—C7—N1172.77 (18)
N3i—Ni1—N2—C892.5 (2)C1—C2—C7—N19.7 (3)
N3—Ni1—N2—C887.5 (2)N1—N2—C8—C9179.14 (18)
O2—Ni1—N2—N17.63 (12)Ni1—N2—C8—C95.3 (3)
O2i—Ni1—N2—N1172.37 (12)N2—C8—C9—C10174.0 (2)
N3i—Ni1—N2—N183.16 (13)C8—C9—C10—C11178.2 (2)
N3—Ni1—N2—N196.84 (13)C9—C10—C11—C1623.3 (4)
O2—Ni1—N3—C1725.85 (16)C9—C10—C11—C12157.3 (2)
O2i—Ni1—N3—C17154.15 (16)C16—C11—C12—C130.8 (4)
N2—Ni1—N3—C17103.69 (16)C10—C11—C12—C13179.8 (2)
N2i—Ni1—N3—C1776.31 (16)C11—C12—C13—C140.6 (4)
O2—Ni1—N3—C21155.48 (17)C12—C13—C14—C150.1 (4)
O2i—Ni1—N3—C2124.52 (17)C13—C14—C15—C160.3 (4)
N2—Ni1—N3—C2177.64 (17)C14—C15—C16—C110.1 (4)
N2i—Ni1—N3—C21102.36 (17)C12—C11—C16—C150.4 (3)
O1—C1—C2—C3178.1 (2)C10—C11—C16—C15179.8 (2)
C6—C1—C2—C31.6 (3)C21—N3—C17—C180.0 (3)
O1—C1—C2—C74.3 (3)Ni1—N3—C17—C18178.8 (2)
C6—C1—C2—C7176.0 (2)N3—C17—C18—C190.3 (4)
C1—C2—C3—C40.4 (3)C17—C18—C19—C200.5 (4)
C7—C2—C3—C4177.3 (2)C18—C19—C20—C210.4 (4)
C2—C3—C4—C51.3 (4)C17—N3—C21—C200.0 (3)
C3—C4—C5—C61.8 (4)Ni1—N3—C21—C20178.74 (17)
C4—C5—C6—C10.6 (4)C19—C20—C21—N30.2 (4)
O1—C1—C6—C5178.6 (2)
Symmetry code: (i) x, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N10.971.712.573 (3)146

Experimental details

(I)(II)
Crystal data
Chemical formula[Ni(C16H13N2O2)2(CH4O)2][Ni(C16H13N2O2)2(C5H5N)2]
Mr653.36747.48
Crystal system, space groupOrthorhombic, PbcaTriclinic, P1
Temperature (K)293293
a, b, c (Å)17.536 (5), 8.016 (2), 22.814 (8)7.699 (6), 9.814 (5), 12.412 (7)
α, β, γ (°)90, 90, 9078.02 (2), 82.59 (3), 79.00 (3)
V3)3207.2 (17)896.6 (10)
Z41
Radiation typeMo KαMo Kα
µ (mm1)0.660.59
Crystal size (mm)0.31 × 0.25 × 0.200.20 × 0.20 × 0.11
Data collection
DiffractometerRigaku R-AXIS RAPID Imaging Plate
diffractometer
Rigaku R-AXIS RAPID Imaging Plate
diffractometer
Absorption correctionMulti-scan
(TEXRAY; Molecular Structure Corporation, 1999)
Tmin, Tmax0.721, 0.906
No. of measured, independent and
observed [I > 2σ(I)] reflections
27936, 3677, 2696 8839, 4060, 3177
Rint0.0460.041
(sin θ/λ)max1)0.6490.654
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.102, 1.06 0.042, 0.100, 1.00
No. of reflections36774060
No. of parameters206241
H-atom treatmentH-atom parameters constrainedH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.25, 0.420.55, 0.37

Computer programs: TEXRAY (Molecular Structure Corporation, 1999), TEXSAN (Molecular Structure Corporation, 1999), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEX (McArdle, 1995).

Hydrogen-bond geometry (Å, º) for (I) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N10.951.612.496 (2)154
O3—H18···O1i0.951.732.657 (2)165
Symmetry code: (i) x, y1, z.
Hydrogen-bond geometry (Å, º) for (II) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N10.971.712.573 (3)146
Comparative geometric parameters (Å) for Ni—N(hydrazine) in nickel complexes top
ComplexNi—N(hydrazine)
(I) a2.0845 (15)
(II) a2.082 (2)
Ni(C12H14N3O3)(C2H3O2)(C5H5N)2 b1.988 (2)
[Ni(C5H5N)3(C14H10N2O3)]·1.5(C5H5N) c1.995 (2)
Ni(C14H12N3O2)2 d1.983 (2)
References: (a) this work; (b) Gao et al. (2005); (c) Ding, Hu & Zhang (2006) or Ding, Zhang et al. (2006) ?; (d) Dang et al. (2006).
Comparative geometric parameters (Å) for Ni—O(methanol) in nickel complexes top
ComplexNi—O(methanol)
(I) a2.0970 (14)
[Ni(C3H4NO3)2(CH3OH)2]·2CH3OH e2.0661 (7)
Ni(C14H9N2O2)2(CH3OH)2 f2.112 (2)
Ni(C24H18N4O3)(C10H8N2)(CH3OH) g2.148 (3)
References: (a) this work; (e) Lampeka et al. (1994); (f) Angulo-Cornejo et al. (2000); (g) Hu et al. (2006).
Comparative geometric parameters (Å) for Ni—N(pyridine) in nickel complexes top
ComplexNi—N(pyridine)
(II) a2.1487 (19)
Ni(C12H14N3O3)(C2H3O2)(C5H5N)2 b2.140 (2), 2.154 (2)
Ni3(C11H11N2O3)2(C5H5N)4 h2.149 (3)
Ni(C7H7N4O3)2(C5H5N)2 i2.1652 (18)
References: (a) this work; (b) Gao et al. (2005); (h) Yang et al. (2003); (i) Hörner et al. (2002).
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds