In the two title complexes of cinnamaldehyde salicyloylhydrazone [or 2-hydroxy-
N′-(3-phenylprop-2-enylidene)benzohydrazide], [Ni(C
16H
13N
2O
2)
2(CH
4O)
2], (I), and [Ni(C
16H
13N
2O
2)
2(C
5H
5N)
2], (II), the Ni
II atoms lie on crystallographic inversion centres and have distorted octahedral geometries. The equatorial plane is defined by two carbonyl O atoms and two hydrazine N atoms of two bidentate
trans-oriented salicyloylhydrazone ligands. The axial positions are occupied by two O atoms from two coordinated methanol molecules in (I) and by two N atoms from two coordinated pyridine molecules in (II). There is an extended chain structure in (I) resulting from intermolecular O—H
O hydrogen bonds between coordinated methanol molecules and phenol O atoms, while (II) comprises discrete molecules. Complex (I) also exhibits weak π–π stacking interactions, and intramolecular O—H
N hydrogen bonds are present in both (I) and (II). The salicyloylhydrazone ligands in (I) and (II) are coordinated to the metal atom through the carbohydrazide O and N
2 atoms, not
via the phenol O atom. We have established a link between the reagents used and the nuclearity of the complex formed: the ligand produced by condensation between salicylhydrazide and an aldehyde leads to mononuclear complexes, while replacing the aldehyde in the reaction by a ketone leads to multinuclear complexes.
Supporting information
CCDC references: 690170; 690171
The ligand H2L was prepared by the reaction of salicyloylhydrazide and cinnamaldehyde in a molar ratio of 1:1 under reflux in ethanol for 2 h. The yellow product obtained on cooling was washed first with anhydrous ethanol and then with ethoxyethane.
H2L (0.1 mmol, 27 mg) and NiCl2·6H2O (0.1 mmol, 24 mg) were dissolved in a mixture of CH3OH (8 ml) and CH2Cl2 (8 ml). The mixed solution was stirred for 1 h and then filtered. Yellow block-like crystals of complex (I) were obtained after 4 d.
H2L (0.1 mmol, 27 mg) and NiCl2·6H2O (0.1 mmol, 24 mg) were dissolved in a mixture of CH3OH (8 ml) and CH2Cl2 (8 ml). After stirring for 5 min, one drop of pyridine was added to the mixed solution, which was stirred for another 1 h and filtered. Yellow prismatic crystals of complex (II) were formed after 3 d.
The band at 3255 cm−1 in the IR spectrum of the free cinnamaldehyde salicyloylhydrazone ligand is assigned to ν(NH) (Casabó et al., 1989). This absorption of ν(NH) is absent in the IR spectra of the two title nickel complexes, suggesting that the diazine N atom in the two complexes is coordinated to a NiII centre and that the hydrazone ligand is monoanionic. The bands at 3051 cm−1 in (I) and 3055 cm−1 in (II) are due to ν(OH) of the phenolate (Ding, Hu & Zhang, 2006 or Ding, Zhang et al., 2006 ?). Two bands at 1521 cm−1 and 1563 cm−1 in the spectrum of (II) are assigned to ν[C═ N—N═C(O−)] of the hydrazone and the coordinated pyridine N atom (Hu et al., 2006). The thermogravimetric and differential thermal analysis curves of complex (II) show that the decomposition of the mixed-ligand complex occurs in two regions. Loss of two pyridine molecules takes place in the first region between 436 and 531 K with a mass loss of 21.96% (calculated 21.14%). The second stage between 556 and 773 K corresponds to decomposition of the ligands with a mass loss of 68.43% (calculated 70.90%). The complex finally degraded completely into NiO with a mass of 9.01% (calculated 9.99%).
The H atom of the phenolate OH group in (I) and (II) and the H atom of the CH3OH molecule in (I) were located in difference Fourier maps, and then allowed to ride on their parent O atoms, with Ueq(H) = 1.5Ueq(O) and O—H between 0.948 and 0.975 Å. The other H atoms in (I) and (II) were placed in idealized positions and treated as riding, with C—H = 0.93 Å and Uiso(H) = 1.2Ueq(C) for aromatic H, and C—H = 0.96 Å and Uiso(H) = 1.5Ueq(C) for methyl H.
For both compounds, data collection: TEXRAY (Molecular Structure Corporation, 1999); cell refinement: TEXRAY (Molecular Structure Corporation, 1999); data reduction: TEXSAN (Molecular Structure Corporation, 1999); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEX (McArdle, 1995); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).
(I) Bis[2-hydroxy-
N'-(3-phenylprop-2-enylidene)benzohydrazidato-
κ2N,
O]bis(methanol-
κO)nickel(II)
top
Crystal data top
[Ni(C16H13N2O2)2(CH4O)2] | Dx = 1.353 Mg m−3 |
Mr = 653.36 | Mo Kα radiation, λ = 0.71073 Å |
Orthorhombic, Pbca | Cell parameters from 3677 reflections |
a = 17.536 (5) Å | θ = 3.3–27.5° |
b = 8.016 (2) Å | µ = 0.66 mm−1 |
c = 22.814 (8) Å | T = 293 K |
V = 3207.2 (17) Å3 | Block, yellow |
Z = 4 | 0.31 × 0.25 × 0.20 mm |
F(000) = 1368 | |
Data collection top
Rigaku R-AXIS RAPID Imaging Plate diffractometer | 3677 independent reflections |
Radiation source: fine-focus sealed tube | 2696 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.046 |
ω scans | θmax = 27.5°, θmin = 3.3° |
Absorption correction: multi-scan (TEXRAY; Molecular Structure Corporation, 1999) | h = −22→22 |
Tmin = 0.721, Tmax = 0.906 | k = −10→9 |
27936 measured reflections | l = −29→29 |
Refinement top
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.035 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.102 | H-atom parameters constrained |
S = 1.06 | w = 1/[σ2(Fo2) + (0.0497P)2 + 0.7005P] where P = (Fo2 + 2Fc2)/3 |
3677 reflections | (Δ/σ)max = 0.001 |
206 parameters | Δρmax = 0.25 e Å−3 |
0 restraints | Δρmin = −0.42 e Å−3 |
Crystal data top
[Ni(C16H13N2O2)2(CH4O)2] | V = 3207.2 (17) Å3 |
Mr = 653.36 | Z = 4 |
Orthorhombic, Pbca | Mo Kα radiation |
a = 17.536 (5) Å | µ = 0.66 mm−1 |
b = 8.016 (2) Å | T = 293 K |
c = 22.814 (8) Å | 0.31 × 0.25 × 0.20 mm |
Data collection top
Rigaku R-AXIS RAPID Imaging Plate diffractometer | 3677 independent reflections |
Absorption correction: multi-scan (TEXRAY; Molecular Structure Corporation, 1999) | 2696 reflections with I > 2σ(I) |
Tmin = 0.721, Tmax = 0.906 | Rint = 0.046 |
27936 measured reflections | |
Refinement top
R[F2 > 2σ(F2)] = 0.035 | 0 restraints |
wR(F2) = 0.102 | H-atom parameters constrained |
S = 1.06 | Δρmax = 0.25 e Å−3 |
3677 reflections | Δρmin = −0.42 e Å−3 |
206 parameters | |
Special details top
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top | x | y | z | Uiso*/Ueq | |
Ni1 | 0.5000 | 0.0000 | 0.5000 | 0.03518 (11) | |
O1 | 0.64110 (8) | 0.58785 (16) | 0.49628 (5) | 0.0478 (3) | |
H1 | 0.6077 | 0.5057 | 0.5120 | 0.072* | |
O2 | 0.54359 (7) | 0.14615 (14) | 0.43587 (5) | 0.0441 (3) | |
N1 | 0.56470 (9) | 0.32859 (18) | 0.51127 (7) | 0.0407 (3) | |
N2 | 0.52531 (8) | 0.21672 (17) | 0.54659 (6) | 0.0379 (3) | |
C1 | 0.64876 (10) | 0.5423 (2) | 0.43998 (9) | 0.0423 (4) | |
C2 | 0.61404 (10) | 0.3961 (2) | 0.41775 (8) | 0.0391 (4) | |
C3 | 0.62221 (11) | 0.3582 (2) | 0.35885 (9) | 0.0481 (4) | |
H3 | 0.5984 | 0.2637 | 0.3438 | 0.058* | |
C4 | 0.66491 (13) | 0.4578 (3) | 0.32213 (10) | 0.0549 (5) | |
H4 | 0.6696 | 0.4313 | 0.2826 | 0.066* | |
C5 | 0.70066 (12) | 0.5972 (3) | 0.34458 (10) | 0.0561 (5) | |
H5 | 0.7303 | 0.6634 | 0.3201 | 0.067* | |
C6 | 0.69303 (11) | 0.6393 (2) | 0.40242 (10) | 0.0524 (5) | |
H6 | 0.7177 | 0.7335 | 0.4168 | 0.063* | |
C7 | 0.57072 (9) | 0.2811 (2) | 0.45565 (8) | 0.0374 (4) | |
C8 | 0.51641 (10) | 0.2663 (2) | 0.59974 (8) | 0.0430 (4) | |
H8 | 0.5384 | 0.3673 | 0.6105 | 0.052* | |
C9 | 0.47495 (11) | 0.1762 (2) | 0.64321 (8) | 0.0437 (4) | |
H9 | 0.4528 | 0.0742 | 0.6340 | 0.052* | |
C10 | 0.46797 (11) | 0.2387 (3) | 0.69731 (8) | 0.0474 (4) | |
H10 | 0.4953 | 0.3357 | 0.7050 | 0.057* | |
C11 | 0.42278 (11) | 0.1732 (3) | 0.74552 (8) | 0.0480 (4) | |
C12 | 0.37153 (12) | 0.0419 (3) | 0.73913 (9) | 0.0572 (5) | |
H12 | 0.3661 | −0.0099 | 0.7029 | 0.069* | |
C13 | 0.32865 (15) | −0.0120 (4) | 0.78620 (11) | 0.0731 (7) | |
H13 | 0.2943 | −0.0994 | 0.7815 | 0.088* | |
C14 | 0.33662 (17) | 0.0630 (5) | 0.83975 (11) | 0.0846 (9) | |
H14 | 0.3079 | 0.0260 | 0.8715 | 0.102* | |
C15 | 0.38651 (18) | 0.1915 (5) | 0.84669 (10) | 0.0886 (9) | |
H15 | 0.3918 | 0.2419 | 0.8832 | 0.106* | |
C16 | 0.42918 (14) | 0.2474 (3) | 0.79998 (10) | 0.0680 (6) | |
H16 | 0.4627 | 0.3361 | 0.8051 | 0.082* | |
O3 | 0.60897 (7) | −0.09436 (16) | 0.51828 (6) | 0.0503 (3) | |
H18 | 0.6123 | −0.2082 | 0.5073 | 0.075* | |
C17 | 0.67884 (13) | −0.0134 (3) | 0.52493 (16) | 0.0794 (8) | |
H17D | 0.7160 | −0.0908 | 0.5396 | 0.119* | |
H17A | 0.6733 | 0.0773 | 0.5521 | 0.119* | |
H17B | 0.6953 | 0.0291 | 0.4877 | 0.119* | |
Atomic displacement parameters (Å2) top | U11 | U22 | U33 | U12 | U13 | U23 |
Ni1 | 0.03923 (18) | 0.02983 (17) | 0.03647 (18) | −0.00613 (12) | 0.00374 (12) | −0.00047 (12) |
O1 | 0.0534 (8) | 0.0366 (7) | 0.0534 (8) | −0.0093 (6) | 0.0001 (6) | −0.0004 (6) |
O2 | 0.0555 (7) | 0.0352 (6) | 0.0416 (7) | −0.0124 (6) | 0.0057 (6) | −0.0009 (5) |
N1 | 0.0442 (8) | 0.0332 (7) | 0.0446 (9) | −0.0060 (6) | 0.0072 (6) | 0.0010 (6) |
N2 | 0.0395 (7) | 0.0345 (7) | 0.0396 (8) | −0.0028 (6) | 0.0027 (6) | −0.0005 (6) |
C1 | 0.0371 (9) | 0.0351 (8) | 0.0548 (11) | 0.0003 (7) | −0.0001 (8) | 0.0066 (8) |
C2 | 0.0374 (8) | 0.0325 (8) | 0.0472 (10) | 0.0006 (7) | 0.0040 (7) | 0.0054 (8) |
C3 | 0.0532 (11) | 0.0411 (10) | 0.0499 (11) | −0.0008 (9) | 0.0085 (9) | 0.0022 (9) |
C4 | 0.0599 (12) | 0.0538 (11) | 0.0510 (12) | 0.0042 (10) | 0.0154 (10) | 0.0081 (10) |
C5 | 0.0503 (11) | 0.0500 (11) | 0.0680 (14) | −0.0027 (9) | 0.0162 (10) | 0.0177 (11) |
C6 | 0.0477 (10) | 0.0413 (10) | 0.0682 (14) | −0.0087 (9) | 0.0032 (9) | 0.0083 (10) |
C7 | 0.0366 (8) | 0.0309 (8) | 0.0448 (10) | −0.0017 (7) | 0.0029 (7) | 0.0022 (7) |
C8 | 0.0449 (9) | 0.0390 (9) | 0.0450 (10) | −0.0032 (8) | 0.0004 (8) | −0.0059 (8) |
C9 | 0.0474 (9) | 0.0430 (9) | 0.0406 (9) | −0.0010 (9) | 0.0022 (8) | −0.0038 (8) |
C10 | 0.0504 (10) | 0.0491 (10) | 0.0427 (10) | −0.0016 (9) | −0.0023 (8) | −0.0070 (9) |
C11 | 0.0506 (10) | 0.0579 (11) | 0.0354 (9) | 0.0082 (10) | −0.0026 (8) | −0.0025 (9) |
C12 | 0.0612 (12) | 0.0689 (13) | 0.0414 (11) | −0.0038 (11) | 0.0042 (9) | −0.0015 (10) |
C13 | 0.0646 (14) | 0.0930 (19) | 0.0618 (15) | −0.0054 (14) | 0.0073 (11) | 0.0163 (13) |
C14 | 0.0758 (17) | 0.134 (3) | 0.0436 (13) | 0.0173 (19) | 0.0148 (12) | 0.0185 (15) |
C15 | 0.102 (2) | 0.128 (3) | 0.0361 (12) | 0.011 (2) | 0.0057 (13) | −0.0111 (14) |
C16 | 0.0779 (15) | 0.0836 (16) | 0.0425 (12) | 0.0042 (14) | −0.0033 (10) | −0.0146 (11) |
O3 | 0.0427 (7) | 0.0408 (7) | 0.0674 (9) | −0.0018 (6) | −0.0020 (6) | −0.0050 (7) |
C17 | 0.0474 (13) | 0.0563 (14) | 0.135 (2) | −0.0051 (11) | −0.0158 (15) | −0.0056 (15) |
Geometric parameters (Å, º) top
Ni1—O2 | 2.0242 (12) | C8—H8 | 0.9300 |
Ni1—N2 | 2.0845 (15) | C9—C10 | 1.338 (3) |
Ni1—O3 | 2.0970 (14) | C9—H9 | 0.9300 |
O1—C1 | 1.342 (2) | C10—C11 | 1.454 (3) |
O1—H1 | 0.9512 | C10—H10 | 0.9300 |
O2—C7 | 1.265 (2) | C11—C16 | 1.382 (3) |
N1—C7 | 1.329 (2) | C11—C12 | 1.392 (3) |
N1—N2 | 1.390 (2) | C12—C13 | 1.380 (3) |
N2—C8 | 1.285 (2) | C12—H12 | 0.9300 |
C1—C6 | 1.393 (3) | C13—C14 | 1.369 (4) |
C1—C2 | 1.415 (2) | C13—H13 | 0.9300 |
C2—C3 | 1.385 (3) | C14—C15 | 1.361 (5) |
C2—C7 | 1.474 (2) | C14—H14 | 0.9300 |
C3—C4 | 1.378 (3) | C15—C16 | 1.377 (4) |
C3—H3 | 0.9300 | C15—H15 | 0.9300 |
C4—C5 | 1.380 (3) | C16—H16 | 0.9300 |
C4—H4 | 0.9300 | O3—C17 | 1.395 (3) |
C5—C6 | 1.368 (3) | O3—H18 | 0.9484 |
C5—H5 | 0.9300 | C17—H17D | 0.9600 |
C6—H6 | 0.9300 | C17—H17A | 0.9600 |
C8—C9 | 1.426 (3) | C17—H17B | 0.9600 |
| | | |
O2—Ni1—N2 | 78.80 (6) | C10—C9—C8 | 119.94 (18) |
O2—Ni1—O3 | 90.48 (6) | C10—C9—H9 | 120.0 |
N2—Ni1—O3 | 90.30 (6) | C8—C9—H9 | 120.0 |
C1—O1—H1 | 103.6 | C9—C10—C11 | 127.77 (19) |
C7—O2—Ni1 | 112.29 (11) | C9—C10—H10 | 116.1 |
C7—N1—N2 | 114.11 (14) | C11—C10—H10 | 116.1 |
C8—N2—N1 | 114.08 (15) | C16—C11—C12 | 118.2 (2) |
C8—N2—Ni1 | 135.45 (13) | C16—C11—C10 | 118.7 (2) |
N1—N2—Ni1 | 110.37 (11) | C12—C11—C10 | 123.10 (18) |
O1—C1—C6 | 119.52 (18) | C13—C12—C11 | 120.5 (2) |
O1—C1—C2 | 121.69 (16) | C13—C12—H12 | 119.8 |
C6—C1—C2 | 118.78 (18) | C11—C12—H12 | 119.8 |
C3—C2—C1 | 119.02 (16) | C14—C13—C12 | 120.1 (3) |
C3—C2—C7 | 119.02 (16) | C14—C13—H13 | 120.0 |
C1—C2—C7 | 121.95 (17) | C12—C13—H13 | 120.0 |
C4—C3—C2 | 121.24 (19) | C15—C14—C13 | 120.1 (2) |
C4—C3—H3 | 119.4 | C15—C14—H14 | 119.9 |
C2—C3—H3 | 119.4 | C13—C14—H14 | 119.9 |
C3—C4—C5 | 119.4 (2) | C14—C15—C16 | 120.4 (2) |
C3—C4—H4 | 120.3 | C14—C15—H15 | 119.8 |
C5—C4—H4 | 120.3 | C16—C15—H15 | 119.8 |
C6—C5—C4 | 120.87 (19) | C15—C16—C11 | 120.8 (3) |
C6—C5—H5 | 119.6 | C15—C16—H16 | 119.6 |
C4—C5—H5 | 119.6 | C11—C16—H16 | 119.6 |
C5—C6—C1 | 120.67 (19) | C17—O3—Ni1 | 130.86 (13) |
C5—C6—H6 | 119.7 | C17—O3—H18 | 115.0 |
C1—C6—H6 | 119.7 | Ni1—O3—H18 | 110.5 |
O2—C7—N1 | 123.73 (15) | O3—C17—H17D | 109.5 |
O2—C7—C2 | 121.28 (16) | O3—C17—H17A | 109.5 |
N1—C7—C2 | 114.97 (15) | H17D—C17—H17A | 109.5 |
N2—C8—C9 | 124.18 (17) | O3—C17—H17B | 109.5 |
N2—C8—H8 | 117.9 | H17D—C17—H17B | 109.5 |
C9—C8—H8 | 117.9 | H17A—C17—H17B | 109.5 |
| | | |
N2i—Ni1—O2—C7 | −173.08 (12) | Ni1—O2—C7—C2 | 172.08 (12) |
N2—Ni1—O2—C7 | 6.92 (12) | N2—N1—C7—O2 | −0.3 (2) |
O3i—Ni1—O2—C7 | 96.72 (12) | N2—N1—C7—C2 | −178.50 (14) |
O3—Ni1—O2—C7 | −83.28 (12) | C3—C2—C7—O2 | 2.7 (3) |
C7—N1—N2—C8 | −176.92 (16) | C1—C2—C7—O2 | −175.99 (16) |
C7—N1—N2—Ni1 | 6.16 (17) | C3—C2—C7—N1 | −178.96 (16) |
O2i—Ni1—N2—C8 | −2.94 (19) | C1—C2—C7—N1 | 2.3 (2) |
O2—Ni1—N2—C8 | 177.06 (19) | N1—N2—C8—C9 | 177.06 (17) |
O3i—Ni1—N2—C8 | 87.49 (18) | Ni1—N2—C8—C9 | −7.1 (3) |
O3—Ni1—N2—C8 | −92.51 (18) | N2—C8—C9—C10 | −179.22 (18) |
O2i—Ni1—N2—N1 | 173.04 (11) | C8—C9—C10—C11 | 174.13 (19) |
O2—Ni1—N2—N1 | −6.96 (11) | C9—C10—C11—C16 | 173.6 (2) |
O3i—Ni1—N2—N1 | −96.53 (11) | C9—C10—C11—C12 | −8.3 (3) |
O3—Ni1—N2—N1 | 83.47 (11) | C16—C11—C12—C13 | −0.1 (3) |
O1—C1—C2—C3 | 178.16 (17) | C10—C11—C12—C13 | −178.2 (2) |
C6—C1—C2—C3 | −3.0 (3) | C11—C12—C13—C14 | −0.4 (4) |
O1—C1—C2—C7 | −3.1 (3) | C12—C13—C14—C15 | 0.4 (4) |
C6—C1—C2—C7 | 175.78 (17) | C13—C14—C15—C16 | 0.1 (5) |
C1—C2—C3—C4 | 1.6 (3) | C14—C15—C16—C11 | −0.7 (4) |
C7—C2—C3—C4 | −177.17 (18) | C12—C11—C16—C15 | 0.7 (4) |
C2—C3—C4—C5 | 0.5 (3) | C10—C11—C16—C15 | 178.8 (2) |
C3—C4—C5—C6 | −1.2 (3) | O2i—Ni1—O3—C17 | −134.3 (2) |
C4—C5—C6—C1 | −0.2 (3) | O2—Ni1—O3—C17 | 45.7 (2) |
O1—C1—C6—C5 | −178.83 (18) | N2i—Ni1—O3—C17 | 146.9 (2) |
C2—C1—C6—C5 | 2.3 (3) | N2—Ni1—O3—C17 | −33.1 (2) |
Ni1—O2—C7—N1 | −6.1 (2) | | |
Symmetry code: (i) −x+1, −y, −z+1. |
Hydrogen-bond geometry (Å, º) top
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H1···N1 | 0.95 | 1.61 | 2.496 (2) | 154 |
O3—H18···O1ii | 0.95 | 1.73 | 2.657 (2) | 165 |
Symmetry code: (ii) x, y−1, z. |
(II) bis[2-hydroxy-
N'-(3-phenylprop-2-enylidene)benzohydrazidato-
κ2N,
O]bis(pyridine-
κN)nickel(II)
top
Crystal data top
[Ni(C16H13N2O2)2(C5H5N)2] | Z = 1 |
Mr = 747.48 | F(000) = 390 |
Triclinic, P1 | Dx = 1.384 Mg m−3 |
a = 7.699 (6) Å | Mo Kα radiation, λ = 0.71073 Å |
b = 9.814 (5) Å | Cell parameters from 4060 reflections |
c = 12.412 (7) Å | θ = 3.1–27.7° |
α = 78.02 (2)° | µ = 0.59 mm−1 |
β = 82.59 (3)° | T = 293 K |
γ = 79.00 (3)° | Prism, yellow |
V = 896.6 (10) Å3 | 0.20 × 0.20 × 0.11 mm |
Data collection top
Rigaku R-AXIS RAPID Imaging Plate diffractometer | 3177 reflections with I > 2σ(I) |
Radiation source: fine-focus sealed tube | Rint = 0.041 |
Graphite monochromator | θmax = 27.7°, θmin = 3.1° |
ω scans | h = −9→9 |
8839 measured reflections | k = −12→12 |
4060 independent reflections | l = −16→13 |
Refinement top
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.042 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.100 | H-atom parameters constrained |
S = 1.00 | w = 1/[σ2(Fo2) + (0.0493P)2] where P = (Fo2 + 2Fc2)/3 |
4060 reflections | (Δ/σ)max = 0.001 |
241 parameters | Δρmax = 0.55 e Å−3 |
0 restraints | Δρmin = −0.37 e Å−3 |
Crystal data top
[Ni(C16H13N2O2)2(C5H5N)2] | γ = 79.00 (3)° |
Mr = 747.48 | V = 896.6 (10) Å3 |
Triclinic, P1 | Z = 1 |
a = 7.699 (6) Å | Mo Kα radiation |
b = 9.814 (5) Å | µ = 0.59 mm−1 |
c = 12.412 (7) Å | T = 293 K |
α = 78.02 (2)° | 0.20 × 0.20 × 0.11 mm |
β = 82.59 (3)° | |
Data collection top
Rigaku R-AXIS RAPID Imaging Plate diffractometer | 3177 reflections with I > 2σ(I) |
8839 measured reflections | Rint = 0.041 |
4060 independent reflections | |
Refinement top
R[F2 > 2σ(F2)] = 0.042 | 0 restraints |
wR(F2) = 0.100 | H-atom parameters constrained |
S = 1.00 | Δρmax = 0.55 e Å−3 |
4060 reflections | Δρmin = −0.37 e Å−3 |
241 parameters | |
Special details top
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top | x | y | z | Uiso*/Ueq | |
Ni1 | 0.0000 | 0.5000 | 0.5000 | 0.03495 (12) | |
O1 | 0.3758 (2) | 0.4223 (2) | 0.85177 (14) | 0.0728 (6) | |
H1 | 0.3680 | 0.4032 | 0.7787 | 0.109* | |
O2 | −0.01315 (17) | 0.59205 (13) | 0.63258 (10) | 0.0388 (3) | |
N1 | 0.2561 (2) | 0.45066 (18) | 0.66275 (12) | 0.0413 (4) | |
N2 | 0.2449 (2) | 0.41453 (16) | 0.56100 (12) | 0.0381 (4) | |
N3 | 0.1076 (2) | 0.67528 (17) | 0.39805 (13) | 0.0401 (4) | |
C1 | 0.2408 (3) | 0.5250 (2) | 0.87246 (16) | 0.0460 (5) | |
C2 | 0.1180 (3) | 0.5882 (2) | 0.79660 (15) | 0.0381 (4) | |
C3 | −0.0129 (3) | 0.6954 (2) | 0.82375 (17) | 0.0507 (5) | |
H3 | −0.0959 | 0.7395 | 0.7739 | 0.061* | |
C4 | −0.0234 (4) | 0.7387 (3) | 0.9236 (2) | 0.0615 (6) | |
H4 | −0.1114 | 0.8127 | 0.9399 | 0.074* | |
C5 | 0.0957 (3) | 0.6730 (3) | 0.99868 (18) | 0.0596 (6) | |
H5 | 0.0865 | 0.7006 | 1.0668 | 0.071* | |
C6 | 0.2266 (3) | 0.5681 (3) | 0.97415 (18) | 0.0573 (6) | |
H6 | 0.3078 | 0.5243 | 1.0253 | 0.069* | |
C7 | 0.1173 (3) | 0.54223 (18) | 0.68994 (14) | 0.0350 (4) | |
C8 | 0.3820 (3) | 0.3312 (2) | 0.52883 (17) | 0.0457 (5) | |
H8 | 0.4744 | 0.3009 | 0.5742 | 0.055* | |
C9 | 0.3995 (3) | 0.2824 (2) | 0.42630 (16) | 0.0445 (5) | |
H9 | 0.3130 | 0.3189 | 0.3773 | 0.053* | |
C10 | 0.5356 (3) | 0.1865 (2) | 0.39919 (18) | 0.0532 (6) | |
H10 | 0.6177 | 0.1502 | 0.4511 | 0.064* | |
C11 | 0.5696 (3) | 0.1319 (2) | 0.29584 (18) | 0.0472 (5) | |
C12 | 0.6757 (3) | 0.0015 (3) | 0.2947 (2) | 0.0624 (7) | |
H12 | 0.7245 | −0.0499 | 0.3587 | 0.075* | |
C13 | 0.7093 (4) | −0.0527 (3) | 0.1968 (3) | 0.0761 (8) | |
H13 | 0.7798 | −0.1408 | 0.1962 | 0.091* | |
C14 | 0.6399 (4) | 0.0223 (3) | 0.1029 (2) | 0.0736 (8) | |
H14 | 0.6629 | −0.0143 | 0.0382 | 0.088* | |
C15 | 0.5367 (4) | 0.1513 (3) | 0.1035 (2) | 0.0627 (7) | |
H15 | 0.4896 | 0.2027 | 0.0389 | 0.075* | |
C16 | 0.5015 (3) | 0.2057 (2) | 0.19881 (18) | 0.0506 (5) | |
H16 | 0.4305 | 0.2939 | 0.1980 | 0.061* | |
C17 | 0.0723 (3) | 0.8012 (2) | 0.42732 (18) | 0.0512 (5) | |
H17 | 0.0023 | 0.8104 | 0.4932 | 0.061* | |
C18 | 0.1335 (4) | 0.9182 (2) | 0.3656 (2) | 0.0627 (7) | |
H18 | 0.1054 | 1.0039 | 0.3899 | 0.075* | |
C19 | 0.2366 (3) | 0.9086 (2) | 0.2677 (2) | 0.0571 (6) | |
H19 | 0.2788 | 0.9869 | 0.2243 | 0.069* | |
C20 | 0.2748 (3) | 0.7800 (2) | 0.23638 (19) | 0.0538 (5) | |
H20 | 0.3449 | 0.7688 | 0.1709 | 0.065* | |
C21 | 0.2088 (3) | 0.6671 (2) | 0.30252 (17) | 0.0469 (5) | |
H21 | 0.2358 | 0.5803 | 0.2798 | 0.056* | |
Atomic displacement parameters (Å2) top | U11 | U22 | U33 | U12 | U13 | U23 |
Ni1 | 0.0415 (2) | 0.03634 (19) | 0.02703 (18) | −0.00144 (14) | −0.00781 (13) | −0.00795 (14) |
O1 | 0.0700 (11) | 0.0925 (13) | 0.0543 (9) | 0.0261 (10) | −0.0325 (8) | −0.0301 (10) |
O2 | 0.0427 (8) | 0.0420 (7) | 0.0321 (6) | 0.0011 (6) | −0.0106 (6) | −0.0107 (6) |
N1 | 0.0454 (9) | 0.0472 (9) | 0.0335 (8) | 0.0014 (7) | −0.0121 (7) | −0.0156 (8) |
N2 | 0.0445 (9) | 0.0400 (8) | 0.0309 (8) | −0.0036 (7) | −0.0080 (7) | −0.0097 (7) |
N3 | 0.0423 (9) | 0.0421 (8) | 0.0360 (8) | −0.0044 (7) | −0.0068 (7) | −0.0084 (7) |
C1 | 0.0503 (12) | 0.0528 (12) | 0.0378 (10) | −0.0072 (10) | −0.0098 (9) | −0.0131 (10) |
C2 | 0.0443 (11) | 0.0405 (10) | 0.0323 (9) | −0.0104 (8) | −0.0050 (8) | −0.0093 (8) |
C3 | 0.0606 (14) | 0.0500 (12) | 0.0428 (11) | 0.0005 (10) | −0.0120 (10) | −0.0163 (10) |
C4 | 0.0728 (16) | 0.0629 (14) | 0.0518 (13) | −0.0002 (12) | −0.0046 (12) | −0.0287 (12) |
C5 | 0.0718 (16) | 0.0779 (16) | 0.0384 (11) | −0.0186 (13) | −0.0023 (11) | −0.0283 (12) |
C6 | 0.0636 (15) | 0.0776 (16) | 0.0361 (11) | −0.0148 (13) | −0.0176 (10) | −0.0123 (12) |
C7 | 0.0442 (11) | 0.0327 (9) | 0.0292 (9) | −0.0091 (8) | −0.0059 (8) | −0.0048 (8) |
C8 | 0.0422 (11) | 0.0515 (11) | 0.0447 (11) | 0.0035 (9) | −0.0122 (9) | −0.0172 (10) |
C9 | 0.0444 (11) | 0.0480 (11) | 0.0411 (11) | −0.0008 (9) | −0.0061 (9) | −0.0137 (9) |
C10 | 0.0456 (12) | 0.0632 (14) | 0.0524 (12) | 0.0061 (10) | −0.0134 (10) | −0.0226 (12) |
C11 | 0.0374 (11) | 0.0533 (12) | 0.0538 (12) | −0.0049 (9) | 0.0002 (9) | −0.0218 (11) |
C12 | 0.0513 (14) | 0.0619 (14) | 0.0730 (16) | 0.0073 (11) | −0.0064 (12) | −0.0256 (14) |
C13 | 0.0639 (17) | 0.0673 (16) | 0.102 (2) | 0.0033 (14) | 0.0084 (16) | −0.0486 (18) |
C14 | 0.0748 (18) | 0.088 (2) | 0.0684 (17) | −0.0220 (15) | 0.0178 (15) | −0.0456 (17) |
C15 | 0.0721 (16) | 0.0718 (16) | 0.0475 (13) | −0.0219 (13) | 0.0076 (12) | −0.0175 (13) |
C16 | 0.0565 (13) | 0.0476 (11) | 0.0481 (12) | −0.0123 (10) | 0.0061 (10) | −0.0133 (10) |
C17 | 0.0615 (14) | 0.0427 (11) | 0.0479 (12) | −0.0056 (10) | 0.0016 (10) | −0.0122 (10) |
C18 | 0.0795 (18) | 0.0413 (11) | 0.0657 (15) | −0.0089 (11) | −0.0006 (13) | −0.0112 (12) |
C19 | 0.0574 (14) | 0.0519 (12) | 0.0588 (14) | −0.0162 (11) | −0.0063 (11) | 0.0039 (11) |
C20 | 0.0522 (13) | 0.0605 (13) | 0.0447 (12) | −0.0090 (11) | 0.0008 (10) | −0.0045 (11) |
C21 | 0.0548 (13) | 0.0449 (11) | 0.0390 (10) | −0.0056 (9) | −0.0018 (9) | −0.0077 (9) |
Geometric parameters (Å, º) top
Ni1—O2 | 2.0182 (15) | C9—C10 | 1.327 (3) |
Ni1—N2 | 2.082 (2) | C9—H9 | 0.9300 |
Ni1—N3 | 2.1487 (19) | C10—C11 | 1.465 (3) |
O1—C1 | 1.342 (3) | C10—H10 | 0.9300 |
O1—H1 | 0.9748 | C11—C16 | 1.381 (3) |
O2—C7 | 1.268 (2) | C11—C12 | 1.382 (3) |
N1—C7 | 1.315 (2) | C12—C13 | 1.400 (3) |
N1—N2 | 1.398 (2) | C12—H12 | 0.9300 |
N2—C8 | 1.280 (2) | C13—C14 | 1.357 (4) |
N3—C17 | 1.329 (3) | C13—H13 | 0.9300 |
N3—C21 | 1.340 (2) | C14—C15 | 1.361 (4) |
C1—C2 | 1.388 (3) | C14—H14 | 0.9300 |
C1—C6 | 1.397 (3) | C15—C16 | 1.373 (3) |
C2—C3 | 1.375 (3) | C15—H15 | 0.9300 |
C2—C7 | 1.486 (2) | C16—H16 | 0.9300 |
C3—C4 | 1.380 (3) | C17—C18 | 1.369 (3) |
C3—H3 | 0.9300 | C17—H17 | 0.9300 |
C4—C5 | 1.367 (4) | C18—C19 | 1.373 (3) |
C4—H4 | 0.9300 | C18—H18 | 0.9300 |
C5—C6 | 1.350 (3) | C19—C20 | 1.365 (3) |
C5—H5 | 0.9300 | C19—H19 | 0.9300 |
C6—H6 | 0.9300 | C20—C21 | 1.375 (3) |
C8—C9 | 1.432 (3) | C20—H20 | 0.9300 |
C8—H8 | 0.9300 | C21—H21 | 0.9300 |
| | | |
O2—Ni1—N2 | 77.85 (6) | C8—C9—H9 | 119.0 |
O2—Ni1—N3 | 89.47 (7) | C9—C10—C11 | 126.6 (2) |
N2—Ni1—N3 | 91.13 (8) | C9—C10—H10 | 116.7 |
C1—O1—H1 | 108.4 | C11—C10—H10 | 116.7 |
C7—O2—Ni1 | 112.54 (10) | C16—C11—C12 | 118.32 (19) |
C7—N1—N2 | 111.90 (15) | C16—C11—C10 | 122.83 (19) |
C8—N2—N1 | 113.80 (16) | C12—C11—C10 | 118.8 (2) |
C8—N2—Ni1 | 134.16 (13) | C11—C12—C13 | 119.7 (2) |
N1—N2—Ni1 | 111.91 (11) | C11—C12—H12 | 120.1 |
C17—N3—C21 | 116.18 (19) | C13—C12—H12 | 120.1 |
C17—N3—Ni1 | 120.19 (14) | C14—C13—C12 | 120.5 (2) |
C21—N3—Ni1 | 123.61 (14) | C14—C13—H13 | 119.7 |
O1—C1—C2 | 122.20 (17) | C12—C13—H13 | 119.7 |
O1—C1—C6 | 117.74 (19) | C13—C14—C15 | 119.9 (2) |
C2—C1—C6 | 120.06 (19) | C13—C14—H14 | 120.0 |
C3—C2—C1 | 118.08 (17) | C15—C14—H14 | 120.0 |
C3—C2—C7 | 118.61 (17) | C14—C15—C16 | 120.3 (3) |
C1—C2—C7 | 123.26 (16) | C14—C15—H15 | 119.8 |
C2—C3—C4 | 121.2 (2) | C16—C15—H15 | 119.8 |
C2—C3—H3 | 119.4 | C15—C16—C11 | 121.2 (2) |
C4—C3—H3 | 119.4 | C15—C16—H16 | 119.4 |
C5—C4—C3 | 120.0 (2) | C11—C16—H16 | 119.4 |
C5—C4—H4 | 120.0 | N3—C17—C18 | 123.5 (2) |
C3—C4—H4 | 120.0 | N3—C17—H17 | 118.3 |
C6—C5—C4 | 120.14 (19) | C18—C17—H17 | 118.3 |
C6—C5—H5 | 119.9 | C17—C18—C19 | 119.8 (2) |
C4—C5—H5 | 119.9 | C17—C18—H18 | 120.1 |
C5—C6—C1 | 120.4 (2) | C19—C18—H18 | 120.1 |
C5—C6—H6 | 119.8 | C20—C19—C18 | 117.6 (2) |
C1—C6—H6 | 119.8 | C20—C19—H19 | 121.2 |
O2—C7—N1 | 125.00 (15) | C18—C19—H19 | 121.2 |
O2—C7—C2 | 119.15 (15) | C19—C20—C21 | 119.4 (2) |
N1—C7—C2 | 115.85 (16) | C19—C20—H20 | 120.3 |
N2—C8—C9 | 123.08 (19) | C21—C20—H20 | 120.3 |
N2—C8—H8 | 118.5 | N3—C21—C20 | 123.53 (19) |
C9—C8—H8 | 118.5 | N3—C21—H21 | 118.2 |
C10—C9—C8 | 121.9 (2) | C20—C21—H21 | 118.2 |
C10—C9—H9 | 119.0 | | |
| | | |
N2—Ni1—O2—C7 | −7.23 (13) | C2—C1—C6—C5 | −1.1 (4) |
N2i—Ni1—O2—C7 | 172.76 (13) | Ni1—O2—C7—N1 | 6.2 (2) |
N3i—Ni1—O2—C7 | 81.49 (14) | Ni1—O2—C7—C2 | −173.76 (13) |
N3—Ni1—O2—C7 | −98.51 (14) | N2—N1—C7—O2 | 0.7 (3) |
C7—N1—N2—C8 | 176.55 (18) | N2—N1—C7—C2 | −179.41 (15) |
C7—N1—N2—Ni1 | −6.9 (2) | C3—C2—C7—O2 | −7.3 (3) |
O2—Ni1—N2—C8 | −176.8 (2) | C1—C2—C7—O2 | 170.26 (19) |
O2i—Ni1—N2—C8 | 3.2 (2) | C3—C2—C7—N1 | 172.77 (18) |
N3i—Ni1—N2—C8 | 92.5 (2) | C1—C2—C7—N1 | −9.7 (3) |
N3—Ni1—N2—C8 | −87.5 (2) | N1—N2—C8—C9 | −179.14 (18) |
O2—Ni1—N2—N1 | 7.63 (12) | Ni1—N2—C8—C9 | 5.3 (3) |
O2i—Ni1—N2—N1 | −172.37 (12) | N2—C8—C9—C10 | −174.0 (2) |
N3i—Ni1—N2—N1 | −83.16 (13) | C8—C9—C10—C11 | −178.2 (2) |
N3—Ni1—N2—N1 | 96.84 (13) | C9—C10—C11—C16 | 23.3 (4) |
O2—Ni1—N3—C17 | −25.85 (16) | C9—C10—C11—C12 | −157.3 (2) |
O2i—Ni1—N3—C17 | 154.15 (16) | C16—C11—C12—C13 | −0.8 (4) |
N2—Ni1—N3—C17 | −103.69 (16) | C10—C11—C12—C13 | 179.8 (2) |
N2i—Ni1—N3—C17 | 76.31 (16) | C11—C12—C13—C14 | 0.6 (4) |
O2—Ni1—N3—C21 | 155.48 (17) | C12—C13—C14—C15 | −0.1 (4) |
O2i—Ni1—N3—C21 | −24.52 (17) | C13—C14—C15—C16 | −0.3 (4) |
N2—Ni1—N3—C21 | 77.64 (17) | C14—C15—C16—C11 | 0.1 (4) |
N2i—Ni1—N3—C21 | −102.36 (17) | C12—C11—C16—C15 | 0.4 (3) |
O1—C1—C2—C3 | −178.1 (2) | C10—C11—C16—C15 | 179.8 (2) |
C6—C1—C2—C3 | 1.6 (3) | C21—N3—C17—C18 | 0.0 (3) |
O1—C1—C2—C7 | 4.3 (3) | Ni1—N3—C17—C18 | −178.8 (2) |
C6—C1—C2—C7 | −176.0 (2) | N3—C17—C18—C19 | 0.3 (4) |
C1—C2—C3—C4 | −0.4 (3) | C17—C18—C19—C20 | −0.5 (4) |
C7—C2—C3—C4 | 177.3 (2) | C18—C19—C20—C21 | 0.4 (4) |
C2—C3—C4—C5 | −1.3 (4) | C17—N3—C21—C20 | 0.0 (3) |
C3—C4—C5—C6 | 1.8 (4) | Ni1—N3—C21—C20 | 178.74 (17) |
C4—C5—C6—C1 | −0.6 (4) | C19—C20—C21—N3 | −0.2 (4) |
O1—C1—C6—C5 | 178.6 (2) | | |
Symmetry code: (i) −x, −y+1, −z+1. |
Hydrogen-bond geometry (Å, º) top
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H1···N1 | 0.97 | 1.71 | 2.573 (3) | 146 |
Experimental details
| (I) | (II) |
Crystal data |
Chemical formula | [Ni(C16H13N2O2)2(CH4O)2] | [Ni(C16H13N2O2)2(C5H5N)2] |
Mr | 653.36 | 747.48 |
Crystal system, space group | Orthorhombic, Pbca | Triclinic, P1 |
Temperature (K) | 293 | 293 |
a, b, c (Å) | 17.536 (5), 8.016 (2), 22.814 (8) | 7.699 (6), 9.814 (5), 12.412 (7) |
α, β, γ (°) | 90, 90, 90 | 78.02 (2), 82.59 (3), 79.00 (3) |
V (Å3) | 3207.2 (17) | 896.6 (10) |
Z | 4 | 1 |
Radiation type | Mo Kα | Mo Kα |
µ (mm−1) | 0.66 | 0.59 |
Crystal size (mm) | 0.31 × 0.25 × 0.20 | 0.20 × 0.20 × 0.11 |
|
Data collection |
Diffractometer | Rigaku R-AXIS RAPID Imaging Plate diffractometer | Rigaku R-AXIS RAPID Imaging Plate diffractometer |
Absorption correction | Multi-scan (TEXRAY; Molecular Structure Corporation, 1999) | – |
Tmin, Tmax | 0.721, 0.906 | – |
No. of measured, independent and observed [I > 2σ(I)] reflections | 27936, 3677, 2696 | 8839, 4060, 3177 |
Rint | 0.046 | 0.041 |
(sin θ/λ)max (Å−1) | 0.649 | 0.654 |
|
Refinement |
R[F2 > 2σ(F2)], wR(F2), S | 0.035, 0.102, 1.06 | 0.042, 0.100, 1.00 |
No. of reflections | 3677 | 4060 |
No. of parameters | 206 | 241 |
H-atom treatment | H-atom parameters constrained | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.25, −0.42 | 0.55, −0.37 |
Hydrogen-bond geometry (Å, º) for (I) top
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H1···N1 | 0.95 | 1.61 | 2.496 (2) | 154 |
O3—H18···O1i | 0.95 | 1.73 | 2.657 (2) | 165 |
Symmetry code: (i) x, y−1, z. |
Hydrogen-bond geometry (Å, º) for (II) top
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H1···N1 | 0.97 | 1.71 | 2.573 (3) | 146 |
Comparative geometric parameters (Å) for Ni—N(hydrazine) in nickel complexes topComplex | Ni—N(hydrazine) |
(I) a | 2.0845 (15) |
(II) a | 2.082 (2) |
Ni(C12H14N3O3)(C2H3O2)(C5H5N)2 b | 1.988 (2) |
[Ni(C5H5N)3(C14H10N2O3)]·1.5(C5H5N) c | 1.995 (2) |
Ni(C14H12N3O2)2 d | 1.983 (2) |
References: (a) this work; (b) Gao et al. (2005); (c) Ding, Hu & Zhang (2006) or Ding, Zhang et al. (2006) ?; (d) Dang et al. (2006). |
Comparative geometric parameters (Å) for Ni—O(methanol) in nickel complexes topComplex | Ni—O(methanol) |
(I) a | 2.0970 (14) |
[Ni(C3H4NO3)2(CH3OH)2]·2CH3OH e | 2.0661 (7) |
Ni(C14H9N2O2)2(CH3OH)2 f | 2.112 (2) |
Ni(C24H18N4O3)(C10H8N2)(CH3OH) g | 2.148 (3) |
References: (a) this work; (e) Lampeka et al. (1994); (f) Angulo-Cornejo et al. (2000); (g) Hu et al. (2006). |
Comparative geometric parameters (Å) for Ni—N(pyridine) in nickel complexes topComplex | Ni—N(pyridine) |
(II) a | 2.1487 (19) |
Ni(C12H14N3O3)(C2H3O2)(C5H5N)2 b | 2.140 (2), 2.154 (2) |
Ni3(C11H11N2O3)2(C5H5N)4 h | 2.149 (3) |
Ni(C7H7N4O3)2(C5H5N)2 i | 2.1652 (18) |
References: (a) this work; (b) Gao et al. (2005); (h) Yang et al. (2003); (i) Hörner et al. (2002). |
The design and construction of the hydrazone complexes are of great interest, due to their intriguing structural topologies and potential applications (Sreekanth et al., 2004; Bai et al., 2006). To date, only a few structures of cinnamaldehyde hydrazone complexes have been reported (Son et al., 2002; Chumakov et al., 2006), although many hydrazone complexes have been synthesized and characterized. We present here the syntheses and structural characterization of the title nickel(II) complexes, [NiL2(CH3OH)2], (I), and [NiL2(C5H5N)2], (II), where L− is the monoanionic cinnamaldehyde salicyloylhydrazone. To the best of our knowledge, the title complexes represent the first examples of structurally characterized cinnamaldehyde salicyloylhydrazone complexes.
As shown in Fig. 1, compound (I) contains a distorted octahedrally coordinated NiII ion located on a crystallographic inversion centre, with two cinnamaldehyde salicyloylhydrazone L− ligands acting in a bidentate manner to form five-membered chelate rings. Two methanol molecules coordinate axially via their O atoms. The four atoms O2, O2i, N2 and N2i [symmetry code: (i) −x + 1, −y, −z + 1] of the two hydrazone ligands form the equatorial plane, while the two O atoms (O3 and O3i) from the methanol molecules occupy the two axial positions. The Ni1—N2(hydrazine) bond distance of 2.0845 (15) Å in (I) is longer than the corresponding Ni—N values of 1.988 (2), 1.995 (2) and 1.983 (2) Å in similar complexes (Table 1). The Ni1—O3(methanol) bond length of 2.0970 (14) Å in (I) falls within the range 2.0661 (7)–2.148 (3) Å found for octahedral nickel complexes containing CH3OH in axial positions (Table 2).
The NiII centre in complex (II) displays a slightly distorted octahedral coordination and lies on the inversion centre. The NiII centre is coordinated by two O (O2 and O2i) and two N atoms (N2 and N2i) of two cinnamaldehyde salicyloylhydrazone L− ligands [symmetry code: (i) −x, −y + 1, −z + 1], and two N atoms (N3 and N3i ) of two coordinated pyridine molecules (see Fig. 2). In the equatorial plane, the Ni1—N2(hydrazine) bond distances of 2.082 (2) Å and Ni1—O2(carboxyl) bond distances of 2.0182 (15) Å are similar to the corresponding values in (I). The Ni1—N3(pyridine) bond length of 2.1487 (19) Å lies within the range 2.140 (2)—2.165 (2) Å found for related nickel complexes (Table 3).
The dihedral angles between the two benzene rings (C1–C6 and C11–C16) of the hydrazone ligand in complexes (I) and (II) are 8.1 (1) and 18.8 (1)°, respectively. These values indicate slightly different degrees of coplanarity for the cinnamaldehyde salicyloylhydrazone ligands in the two complexes.
Adjacent complex molecules in (I) are linked by two intermolecular O—H(methanol)···Oii(phenol) hydrogen bonds [symmetry code: (ii) x, y − 1, z] to form an extended one-dimensional chain along the b axis (see Table 4 and Fig. 3). However, as there is no comparable intermolecular hydrogen bonding in (II), this complex exists as discrete molecules. There are intramolecular O—H(phenol)···N(hydrazine) hydrogen bonds in complexes (I) and (II), forming a six-membered ring (H1/O1/C1/C2/C7/N1) (Tables 4 and 5).
The structure of (I) also exhibits weak π–π stacking interactions between the C9═C10 double bond and the phenyl ring (C1–C6) in adjacent molecules (Fig. 3). The distance between their centroids is 3.467 (1) Å.
Important structural conclusions can be drawn from the synthetic reactions and structural characterization of known salicyloylhydrazone complexes and the salicyloylhydrazone complexes synthesized in our group. Firstly, the salicyloylhydrazone product of the condensation between salicylhydrazide and an aldehyde coordinates to a metal atom through its carboxyl O atom and hydrazine N atoms, not via its phenolate O atom. Therefore, the salicyloylhydrazone complexes formed between a metal and this type of hydrazone are usually mononuclear (Bonardi et al., 1991; Bermejo et al., 2000; Dang et al., 2006) (see top of second scheme). Secondly, when a salicyloylhydrazone is synthesized by condensation between salicylhydrazide and a ketone, the salicyloylhydrazone is coordinated through its carboxyl O atom, hydrazine N atom and phenolate O atom. Therefore, this type of hydrazone ligand is trianionic, and the salicyloylhydrazone complexes formed between a metal and this type of hydrazone are usually linear multinuclear or cyclic multinuclear complexes (Liu et al., 2001; John et al., 2005; Moon et al., 2006) (see bottom of second scheme).