The two isomorphous title compounds, [1,5,9-tris(2-aminoethoxy)-3,7,11-trihydroxy-3,7,11-tribora-1,5,9-triborata-2,4,6,8,10,12-hexaoxa-13-oxoniatricyclo[7.3.1.0
5,13]tridecane]cobalt(II), [Co(C
6H
21B
6N
3O
13)] or Co{B
6O
7(OH)
3[O(CH
2)
2NH
2]
3}, and the Ni
II analogue, [Ni(C
6H
21B
6N
3O
13)], each consist of an
MII cation and an inorganic–organic hybrid {B
6O
7(OH)
3[O(CH
2)
2NH
2]
3}
2− anion. The
MII cation lies on a crystallographic threefold axis (as does one O atom) and is octahedrally coordinated by three N atoms from the organic component. Three O atoms covalently link the B–O cluster and the organic component. Molecules are connected to one another through N—H
O and O—H
O hydrogen bonds, forming a three-dimensional supramolecular network.
Supporting information
CCDC references: 855946; 855947
Compounds (I) and (II) were prepared under mild solvothermal conditions. For
the synthesis of (I), typically Co(CH3COO)2.4H2O (1 mmol, 248 mg),
H3BO3 (6 mmol, 368 mg) and H2O (0.6 ml) were placed in a Teflon-lined
autoclave and stirred at room temperature, then 2-aminoethanol (3 ml) was
added and thorough mixing was carried out. The mixture was heated to 453 K for
3 d, and then cooled to room temperature at a rate of 5 K h-1. Pale-pink
crystals of (I) were obtained. For the synthesis of (II), the same procedure
was used, but using Ni(CH3COO)2.4H2O (1 mmol, 248 mg) in place of
Co(CH3COO)2.4H2O to yield blue block-shaped crystals of (II).
All C- and N-bound H atoms were positioned geometrically and refined using a
riding model, with C—H = 0.97 Å and N—H = 0.90 Å and with
Uiso(H) = 1.2Ueq(C or N). H atoms attached to O atoms were
located in a difference Fourier map and refined using a riding model, with
Uiso(H) = 1.2Ueq(O)
For both compounds, data collection: RAPID-AUTO (Rigaku, 1998); cell refinement: RAPID-AUTO (Rigaku, 1998); data reduction: CrystalStructure (Rigaku/MSC, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).
(I) [1,5,9-tris(2-aminoethoxy)-3,7,11-trihydroxy-
3,7,11-tribora-1,5,9-triborata-2,4,6,8,10,12-hexaoxa-13-
oxoniatricyclo[7.3.1.0
5,13]tridecane]cobalt(II)
top
Crystal data top
[Co(C6H21B6N3O13)] | Dx = 1.739 Mg m−3 |
Mr = 467.05 | Mo Kα radiation, λ = 0.71073 Å |
Cubic, Pa3 | Cell parameters from 25748 reflections |
Hall symbol: -P 2ac 2ab 3 | θ = 3.3–25.0° |
a = 15.2796 (18) Å | µ = 1.04 mm−1 |
V = 3567.3 (7) Å3 | T = 293 K |
Z = 8 | Block, pale pink |
F(000) = 1912 | 0.34 × 0.32 × 0.27 mm |
Data collection top
Rigaku R-AXIS RAPID diffractometer | 1057 independent reflections |
Radiation source: fine-focus sealed tube | 1025 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.022 |
Detector resolution: 0 pixels mm-1 | θmax = 25.0°, θmin = 3.3° |
ω scans | h = −18→17 |
Absorption correction: empirical (using intensity measurements) (ABSCOR; Higashi, 1995) | k = −18→18 |
Tmin = 0.710, Tmax = 0.756 | l = −18→18 |
25748 measured reflections | |
Refinement top
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.023 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.065 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.11 | w = 1/[σ2(Fo2) + (0.0363P)2 + 1.702P] where P = (Fo2 + 2Fc2)/3 |
1057 reflections | (Δ/σ)max < 0.001 |
91 parameters | Δρmax = 0.64 e Å−3 |
0 restraints | Δρmin = −0.20 e Å−3 |
Crystal data top
[Co(C6H21B6N3O13)] | Z = 8 |
Mr = 467.05 | Mo Kα radiation |
Cubic, Pa3 | µ = 1.04 mm−1 |
a = 15.2796 (18) Å | T = 293 K |
V = 3567.3 (7) Å3 | 0.34 × 0.32 × 0.27 mm |
Data collection top
Rigaku R-AXIS RAPID diffractometer | 1057 independent reflections |
Absorption correction: empirical (using intensity measurements) (ABSCOR; Higashi, 1995) | 1025 reflections with I > 2σ(I) |
Tmin = 0.710, Tmax = 0.756 | Rint = 0.022 |
25748 measured reflections | |
Refinement top
R[F2 > 2σ(F2)] = 0.023 | 0 restraints |
wR(F2) = 0.065 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.11 | Δρmax = 0.64 e Å−3 |
1057 reflections | Δρmin = −0.20 e Å−3 |
91 parameters | |
Special details top
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes)
are estimated using the full covariance matrix. The cell esds are taken
into account individually in the estimation of esds in distances, angles
and torsion angles; correlations between esds in cell parameters are only
used when they are defined by crystal symmetry. An approximate (isotropic)
treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and
goodness of fit S are based on F2, conventional R-factors R are based
on F, with F set to zero for negative F2. The threshold expression of
F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is
not relevant to the choice of reflections for refinement. R-factors based
on F2 are statistically about twice as large as those based on F, and R-
factors based on ALL data will be even larger. |
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top | x | y | z | Uiso*/Ueq | |
Co1 | 0.131061 (13) | 0.131061 (13) | 0.131061 (13) | 0.02009 (15) | |
O1 | 0.32642 (7) | 0.12440 (6) | 0.30563 (7) | 0.0201 (2) | |
O2 | 0.26659 (7) | 0.11257 (7) | 0.15998 (7) | 0.0213 (2) | |
O3 | 0.38769 (6) | 0.21073 (7) | 0.19145 (7) | 0.0217 (3) | |
O4 | 0.31865 (8) | 0.10226 (8) | 0.45622 (7) | 0.0269 (3) | |
O5 | 0.24263 (6) | 0.24263 (6) | 0.24263 (6) | 0.0153 (3) | |
B1 | 0.30894 (10) | 0.17090 (10) | 0.22458 (10) | 0.0172 (3) | |
B2 | 0.28342 (12) | 0.14069 (10) | 0.38326 (11) | 0.0191 (3) | |
N1 | 0.17831 (10) | 0.09872 (10) | 0.00375 (9) | 0.0318 (3) | |
C1 | 0.31151 (11) | 0.07367 (11) | 0.08804 (10) | 0.0290 (4) | |
C2 | 0.27420 (12) | 0.10950 (13) | 0.00365 (11) | 0.0342 (4) | |
H1C | 0.3044 | 0.0106 | 0.0897 | 0.035* | |
H1D | 0.3735 | 0.0869 | 0.0916 | 0.035* | |
H2A | 0.2889 | 0.1710 | −0.0019 | 0.041* | |
H2B | 0.2993 | 0.0785 | −0.0458 | 0.041* | |
H4 | 0.3038 (15) | 0.1223 (14) | 0.4991 (15) | 0.041* | |
H1A | 0.1642 | 0.0431 | −0.0095 | 0.038* | |
H1B | 0.1539 | 0.1342 | −0.0365 | 0.038* | |
Atomic displacement parameters (Å2) top | U11 | U22 | U33 | U12 | U13 | U23 |
Co1 | 0.02009 (15) | 0.02009 (15) | 0.02009 (15) | −0.00191 (7) | −0.00191 (7) | −0.00191 (7) |
O1 | 0.0227 (5) | 0.0206 (5) | 0.0169 (5) | 0.0053 (4) | −0.0001 (4) | 0.0018 (4) |
O2 | 0.0222 (5) | 0.0241 (5) | 0.0177 (5) | 0.0025 (4) | 0.0008 (4) | −0.0053 (4) |
O3 | 0.0161 (5) | 0.0232 (5) | 0.0258 (6) | 0.0024 (4) | 0.0022 (4) | 0.0040 (4) |
O4 | 0.0341 (6) | 0.0315 (6) | 0.0151 (5) | 0.0096 (5) | −0.0006 (5) | 0.0022 (5) |
O5 | 0.0153 (3) | 0.0153 (3) | 0.0153 (3) | 0.0012 (4) | 0.0012 (4) | 0.0012 (4) |
B1 | 0.0165 (8) | 0.0174 (8) | 0.0176 (8) | 0.0029 (6) | −0.0001 (6) | 0.0005 (6) |
B2 | 0.0226 (8) | 0.0169 (8) | 0.0177 (8) | −0.0019 (6) | −0.0008 (7) | −0.0004 (6) |
N1 | 0.0392 (8) | 0.0343 (8) | 0.0220 (7) | 0.0054 (6) | −0.0066 (6) | −0.0048 (6) |
C1 | 0.0302 (8) | 0.0319 (9) | 0.0250 (8) | 0.0087 (7) | 0.0017 (7) | −0.0099 (7) |
C2 | 0.0409 (10) | 0.0406 (10) | 0.0211 (8) | 0.0025 (8) | 0.0071 (7) | −0.0034 (7) |
Geometric parameters (Å, º) top
Co1—N1 | 2.1330 (14) | O4—H4 | 0.76 (2) |
Co1—O2 | 2.1363 (11) | N1—C2 | 1.474 (2) |
O1—B1 | 1.4525 (18) | N1—H1A | 0.9000 |
O1—B2 | 1.379 (2) | N1—H1B | 0.9000 |
O2—B1 | 1.4790 (19) | C1—C2 | 1.512 (2) |
O3—B1 | 1.4403 (18) | C1—H1C | 0.9700 |
O3—B2i | 1.356 (2) | C1—H1D | 0.9700 |
O4—B2 | 1.370 (2) | C2—H2A | 0.9700 |
O5—B1 | 1.5179 (15) | C2—H2B | 0.9700 |
O2—C1 | 1.4256 (18) | | |
| | | |
N1i—Co1—N1 | 100.13 (5) | O4—B2—O1 | 115.81 (14) |
N1—Co1—O2 | 80.20 (5) | C2—N1—Co1 | 108.15 (10) |
N1ii—Co1—O2 | 91.95 (5) | C2—N1—H1A | 110.1 |
N1ii—Co1—O2i | 167.63 (5) | Co1—N1—H1A | 110.1 |
O2ii—Co1—O2 | 87.43 (4) | C2—N1—H1B | 110.1 |
B1i—O5—B1 | 118.17 (4) | Co1—N1—H1B | 110.1 |
B2—O1—B1 | 123.89 (12) | H6—N1—H1B | 108.4 |
B2i—O3—B1 | 120.35 (12) | O2—C1—C2 | 108.97 (13) |
C1—O2—B1 | 123.72 (11) | O2—C1—H1C | 109.9 |
C1—O2—Co1 | 111.24 (9) | C2—C1—H1C | 109.9 |
B1—O2—Co1 | 118.85 (8) | O2—C1—H1D | 109.9 |
B2—O4—H4 | 114.3 (17) | C2—C1—H1D | 109.9 |
O1—B1—O2 | 110.78 (12) | H1—C1—H1D | 108.3 |
O1—B1—O5 | 108.72 (11) | N1—C2—C1 | 109.46 (14) |
O2—B1—O5 | 105.33 (12) | N1—C2—H2A | 109.8 |
O3—B1—O1 | 110.66 (12) | C1—C2—H2A | 109.8 |
O3—B1—O2 | 112.68 (12) | N1—C2—H2B | 109.8 |
O3—B1—O5 | 108.44 (11) | C1—C2—H2B | 109.8 |
O3ii—B2—O1 | 122.45 (14) | H3—C2—H2B | 108.2 |
O3ii—B2—O4 | 121.74 (14) | | |
Symmetry codes: (i) z, x, y; (ii) y, z, x. |
Hydrogen-bond geometry (Å, º) top
D—H···A | D—H | H···A | D···A | D—H···A |
O4—H4···O1iii | 0.76 (2) | 2.07 (2) | 2.7982 (15) | 162 (2) |
N1—H1B···O1iv | 0.90 | 2.33 | 3.1869 (17) | 159 |
N1—H1A···O4v | 0.90 | 2.30 | 3.1559 (19) | 160 |
Symmetry codes: (iii) z, −x+1/2, y+1/2; (iv) y, −z+1/2, x−1/2; (v) −x+1/2, −y, z−1/2. |
(II) [1,5,9-tris(2-aminoethoxy)-3,7,11-trihydroxy-
3,7,11-tribora-1,5,9-triborata-2,4,6,8,10,12-hexaoxa-13-
oxoniatricyclo[7.3.1.0
5,13]tridecane]nickel(II)
top
Crystal data top
[Ni(C6H21B6N3O13)] | Dx = 1.758 Mg m−3 |
Mr = 466.83 | Mo Kα radiation, λ = 0.71073 Å |
Cubic, Pa3 | Cell parameters from 25821 reflections |
Hall symbol: -P 2ac 2ab 3 | θ = 3.0–25.0° |
a = 15.2217 (18) Å | µ = 1.17 mm−1 |
V = 3526.9 (7) Å3 | T = 293 K |
Z = 8 | Block, blue |
F(000) = 1920 | 0.14 × 0.14 × 0.14 mm |
Data collection top
Rigaku R-AXIS RAPID diffractometer | 1042 independent reflections |
Radiation source: fine-focus sealed tube | 885 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.075 |
Detector resolution: 0 pixels mm-1 | θmax = 25.0°, θmin = 3.0° |
ω scans | h = −18→18 |
Absorption correction: empirical (using intensity measurements) (ABSCOR; Higashi, 1995) | k = −18→18 |
Tmin = 0.849, Tmax = 0.849 | l = −18→17 |
25821 measured reflections | |
Refinement top
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.044 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.107 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.14 | w = 1/[σ2(Fo2) + (0.0353P)2 + 9.9478P] where P = (Fo2 + 2Fc2)/3 |
1042 reflections | (Δ/σ)max < 0.001 |
91 parameters | Δρmax = 0.38 e Å−3 |
0 restraints | Δρmin = −0.50 e Å−3 |
Crystal data top
[Ni(C6H21B6N3O13)] | Z = 8 |
Mr = 466.83 | Mo Kα radiation |
Cubic, Pa3 | µ = 1.17 mm−1 |
a = 15.2217 (18) Å | T = 293 K |
V = 3526.9 (7) Å3 | 0.14 × 0.14 × 0.14 mm |
Data collection top
Rigaku R-AXIS RAPID diffractometer | 1042 independent reflections |
Absorption correction: empirical (using intensity measurements) (ABSCOR; Higashi, 1995) | 885 reflections with I > 2σ(I) |
Tmin = 0.849, Tmax = 0.849 | Rint = 0.075 |
25821 measured reflections | |
Refinement top
R[F2 > 2σ(F2)] = 0.044 | 0 restraints |
wR(F2) = 0.107 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.14 | Δρmax = 0.38 e Å−3 |
1042 reflections | Δρmin = −0.50 e Å−3 |
91 parameters | |
Special details top
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes)
are estimated using the full covariance matrix. The cell esds are taken
into account individually in the estimation of esds in distances, angles
and torsion angles; correlations between esds in cell parameters are only
used when they are defined by crystal symmetry. An approximate (isotropic)
treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and
goodness of fit S are based on F2, conventional R-factors R are based
on F, with F set to zero for negative F2. The threshold expression of
F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is
not relevant to the choice of reflections for refinement. R-factors based
on F2 are statistically about twice as large as those based on F, and R-
factors based on ALL data will be even larger. |
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top | x | y | z | Uiso*/Ueq | |
Ni1 | 0.13077 (3) | 0.13077 (3) | 0.13077 (3) | 0.0231 (3) | |
O1 | 0.32601 (16) | 0.12309 (15) | 0.30443 (15) | 0.0239 (6) | |
O2 | 0.26448 (16) | 0.11086 (16) | 0.15913 (15) | 0.0238 (6) | |
O3 | 0.38667 (15) | 0.20905 (16) | 0.18920 (16) | 0.0245 (6) | |
O4 | 0.31826 (18) | 0.10076 (18) | 0.45563 (17) | 0.0303 (6) | |
O5 | 0.24183 (14) | 0.24183 (14) | 0.24183 (14) | 0.0182 (9) | |
B1 | 0.3080 (3) | 0.1696 (3) | 0.2231 (3) | 0.0216 (9) | |
B2 | 0.2828 (3) | 0.1388 (3) | 0.3823 (3) | 0.0218 (8) | |
N1 | 0.1734 (2) | 0.1002 (2) | 0.0045 (2) | 0.0341 (8) | |
C1 | 0.3090 (3) | 0.0726 (3) | 0.0856 (2) | 0.0313 (9) | |
C2 | 0.2702 (3) | 0.1099 (3) | 0.0021 (3) | 0.0359 (10) | |
H1C | 0.3019 | 0.0093 | 0.0865 | 0.038* | |
H1D | 0.3712 | 0.0859 | 0.0885 | 0.038* | |
H2A | 0.2856 | 0.1715 | −0.0033 | 0.043* | |
H2B | 0.2937 | 0.0790 | −0.0484 | 0.043* | |
H4 | 0.302 (3) | 0.119 (3) | 0.502 (3) | 0.043* | |
H1A | 0.1582 | 0.0448 | −0.0091 | 0.041* | |
H1B | 0.1484 | 0.1367 | −0.0347 | 0.041* | |
Atomic displacement parameters (Å2) top | U11 | U22 | U33 | U12 | U13 | U23 |
Ni1 | 0.0231 (3) | 0.0231 (3) | 0.0231 (3) | −0.00170 (18) | −0.00170 (18) | −0.00170 (18) |
O1 | 0.0275 (13) | 0.0247 (13) | 0.0194 (12) | 0.0053 (10) | −0.0015 (10) | 0.0034 (10) |
O2 | 0.0256 (13) | 0.0267 (13) | 0.0189 (12) | 0.0017 (10) | −0.0004 (10) | −0.0048 (10) |
O3 | 0.0188 (12) | 0.0249 (13) | 0.0298 (14) | 0.0004 (10) | 0.0039 (10) | 0.0046 (11) |
O4 | 0.0355 (15) | 0.0372 (15) | 0.0181 (13) | 0.0094 (12) | −0.0013 (12) | 0.0031 (12) |
O5 | 0.0182 (9) | 0.0182 (9) | 0.0182 (9) | 0.0011 (10) | 0.0011 (10) | 0.0011 (10) |
B1 | 0.0188 (19) | 0.022 (2) | 0.024 (2) | 0.0030 (16) | −0.0022 (16) | −0.0028 (16) |
B2 | 0.0214 (19) | 0.025 (2) | 0.019 (2) | −0.0014 (16) | 0.0009 (16) | −0.0032 (16) |
N1 | 0.040 (2) | 0.0354 (19) | 0.0267 (17) | 0.0030 (15) | −0.0058 (15) | 0.0002 (14) |
C1 | 0.030 (2) | 0.036 (2) | 0.028 (2) | 0.0088 (17) | 0.0017 (16) | −0.0098 (17) |
C2 | 0.037 (2) | 0.040 (2) | 0.030 (2) | −0.0005 (19) | 0.0052 (18) | −0.0021 (18) |
Geometric parameters (Å, º) top
Ni1—N1 | 2.081 (3) | O4—H4 | 0.79 (5) |
Ni1—O2 | 2.102 (2) | N1—C2 | 1.481 (5) |
O1—B1 | 1.453 (4) | N1—H1A | 0.9000 |
O1—B2 | 1.377 (5) | N1—H1B | 0.9000 |
O2—B1 | 1.479 (4) | C1—C2 | 1.513 (6) |
O3—B1 | 1.435 (5) | C1—H1C | 0.9700 |
O3—B2i | 1.361 (5) | C1—H1D | 0.9700 |
O4—B2 | 1.369 (5) | C2—H2A | 0.9700 |
O5—B1 | 1.518 (4) | C2—H2B | 0.9700 |
O2—C1 | 1.432 (4) | | |
| | | |
N1—Ni1—N1i | 98.72 (12) | O4—B2—O1 | 116.1 (3) |
N1ii—Ni1—O2 | 91.09 (11) | C2—N1—Ni1 | 108.2 (2) |
N1i—Ni1—O2i | 81.68 (11) | C2—N1—H1A | 110.1 |
N1ii—Ni1—O2i | 169.98 (12) | Ni1—N1—H1A | 110.1 |
O2ii—Ni1—O2 | 88.30 (9) | C2—N1—H1B | 110.1 |
B1—O1—B2 | 124.0 (3) | Ni1—N1—H1B | 110.1 |
B1i—O5—B1 | 117.98 (10) | H6—N1—H1B | 108.4 |
B2i—O3—B1 | 120.4 (3) | O2—C1—C2 | 108.7 (3) |
C1—O2—B1 | 123.3 (3) | O2—C1—H1C | 110.0 |
C1—O2—Ni1 | 110.9 (2) | C2—C1—H1C | 110.0 |
B1—O2—Ni1 | 118.8 (2) | O2—C1—H1D | 110.0 |
B2—O4—H4 | 117 (3) | C2—C1—H1D | 110.0 |
O1—B1—O2 | 110.5 (3) | H1—C1—H2D | 108.3 |
O1—B1—O5 | 108.5 (3) | N1—C2—C1 | 109.2 (3) |
O2—B1—O5 | 105.3 (3) | N1—C2—H2A | 109.8 |
O3—B1—O1 | 110.7 (3) | C1—C2—H2A | 109.8 |
O3—B1—O2 | 113.0 (3) | N1—C2—H2B | 109.8 |
O3—B1—O5 | 108.6 (3) | C1—C2—H2B | 109.8 |
O3ii—B2—O1 | 122.3 (3) | H3—C2—H2B | 108.3 |
O3ii—B2—O4 | 121.6 (3) | | |
Symmetry codes: (i) z, x, y; (ii) y, z, x. |
Hydrogen-bond geometry (Å, º) top
D—H···A | D—H | H···A | D···A | D—H···A |
O4—H4···O1iii | 0.79 (5) | 2.03 (5) | 2.790 (3) | 161 (5) |
N1—H1B···O1iv | 0.90 | 2.33 | 3.175 (4) | 156 |
N1—H1A···O4v | 0.90 | 2.31 | 3.151 (4) | 156 |
Symmetry codes: (iii) z, −x+1/2, y+1/2; (iv) y, −z+1/2, x−1/2; (v) −x+1/2, −y, z−1/2. |
Experimental details
| (I) | (II) |
Crystal data |
Chemical formula | [Co(C6H21B6N3O13)] | [Ni(C6H21B6N3O13)] |
Mr | 467.05 | 466.83 |
Crystal system, space group | Cubic, Pa3 | Cubic, Pa3 |
Temperature (K) | 293 | 293 |
a (Å) | 15.2796 (18) | 15.2217 (18) |
V (Å3) | 3567.3 (7) | 3526.9 (7) |
Z | 8 | 8 |
Radiation type | Mo Kα | Mo Kα |
µ (mm−1) | 1.04 | 1.17 |
Crystal size (mm) | 0.34 × 0.32 × 0.27 | 0.14 × 0.14 × 0.14 |
|
Data collection |
Diffractometer | Rigaku R-AXIS RAPID diffractometer | Rigaku R-AXIS RAPID diffractometer |
Absorption correction | Empirical (using intensity measurements) (ABSCOR; Higashi, 1995) | Empirical (using intensity measurements) (ABSCOR; Higashi, 1995) |
Tmin, Tmax | 0.710, 0.756 | 0.849, 0.849 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 25748, 1057, 1025 | 25821, 1042, 885 |
Rint | 0.022 | 0.075 |
(sin θ/λ)max (Å−1) | 0.594 | 0.595 |
|
Refinement |
R[F2 > 2σ(F2)], wR(F2), S | 0.023, 0.065, 1.11 | 0.044, 0.107, 1.14 |
No. of reflections | 1057 | 1042 |
No. of parameters | 91 | 91 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 0.64, −0.20 | 0.38, −0.50 |
Selected geometric parameters (Å, º) for (I) topO1—B1 | 1.4525 (18) | O3—B2i | 1.356 (2) |
O1—B2 | 1.379 (2) | O4—B2 | 1.370 (2) |
O2—B1 | 1.4790 (19) | O5—B1 | 1.5179 (15) |
O3—B1 | 1.4403 (18) | | |
| | | |
N1—Co1—O2 | 80.20 (5) | O3—B1—O1 | 110.66 (12) |
N1ii—Co1—O2 | 91.95 (5) | O3—B1—O2 | 112.68 (12) |
N1ii—Co1—O2i | 167.63 (5) | O3—B1—O5 | 108.44 (11) |
O2ii—Co1—O2 | 87.43 (4) | O3ii—B2—O1 | 122.45 (14) |
O1—B1—O2 | 110.78 (12) | O3ii—B2—O4 | 121.74 (14) |
O1—B1—O5 | 108.72 (11) | O4—B2—O1 | 115.81 (14) |
O2—B1—O5 | 105.33 (12) | | |
Symmetry codes: (i) z, x, y; (ii) y, z, x. |
Hydrogen-bond geometry (Å, º) for (I) top
D—H···A | D—H | H···A | D···A | D—H···A |
O4—H4···O1iii | 0.76 (2) | 2.07 (2) | 2.7982 (15) | 162 (2) |
N1—H1B···O1iv | 0.90 | 2.33 | 3.1869 (17) | 158.6 |
N1—H1A···O4v | 0.90 | 2.30 | 3.1559 (19) | 159.6 |
Symmetry codes: (iii) z, −x+1/2, y+1/2; (iv) y, −z+1/2, x−1/2; (v) −x+1/2, −y, z−1/2. |
Selected geometric parameters (Å, º) for (II) topO1—B1 | 1.453 (4) | O3—B2i | 1.361 (5) |
O1—B2 | 1.377 (5) | O4—B2 | 1.369 (5) |
O2—B1 | 1.479 (4) | O5—B1 | 1.518 (4) |
O3—B1 | 1.435 (5) | | |
| | | |
N1ii—Ni1—O2 | 91.09 (11) | O3—B1—O1 | 110.7 (3) |
N1i—Ni1—O2i | 81.68 (11) | O3—B1—O2 | 113.0 (3) |
N1ii—Ni1—O2i | 169.98 (12) | O3—B1—O5 | 108.6 (3) |
O2ii—Ni1—O2 | 88.30 (9) | O3ii—B2—O1 | 122.3 (3) |
O1—B1—O2 | 110.5 (3) | O3ii—B2—O4 | 121.6 (3) |
O1—B1—O5 | 108.5 (3) | O4—B2—O1 | 116.1 (3) |
O2—B1—O5 | 105.3 (3) | | |
Symmetry codes: (i) z, x, y; (ii) y, z, x. |
Hydrogen-bond geometry (Å, º) for (II) top
D—H···A | D—H | H···A | D···A | D—H···A |
O4—H4···O1iii | 0.79 (5) | 2.03 (5) | 2.790 (3) | 161 (5) |
N1—H1B···O1iv | 0.90 | 2.33 | 3.175 (4) | 155.5 |
N1—H1A···O4v | 0.90 | 2.31 | 3.151 (4) | 156.2 |
Symmetry codes: (iii) z, −x+1/2, y+1/2; (iv) y, −z+1/2, x−1/2; (v) −x+1/2, −y, z−1/2. |
[AUTHOR: Extensive changes to text below - please check.] In recent decades, borate materials have been extensively studied because of their rich structural chemistry and potential applications, especially in mineralogy, nonlinear optics and photoluminescence (Christ & Clark, 1977; Heller, 1986; Becker, 1998; Burns, 1995; Grice et al., 1999; Chen et al., 1995; Sasaki et al., 2000; Lin et al., 2007). The synthesis of new inorganic–organic hybrid compounds is a relatively new research area, which has been growing rapidly in recent years. In the search for useful inorganic–organic borate materials, the synthesis and structure of the metallo-organically templated borates have been investigated: examples include [Cu(en)2][B7O13H3]n (en is ethylenediamine; Sung et al., 2000), [Mn(C10H18N6)][B5O6(OH)4]2 (Zhang et al., 2004), [Ni(C4H10N2)(C2H8N2)2][B5O6(OH)4]2 (Liu et al., 2006), [Zn(dien)2][B5O6(OH)4]2 and [B5O7(OH)3Zn(tren)] [dien is diethylenetriamine and tren is tris(2-aminoethyl)amine; Wang et al., 2005], [Ag(py)2]2[B10O14(OH)4] (py is pyridine; Wang et al., 2008), [Zn(C2H3O2)(C6H18N4)][B5O6(OH)4] (Wu et al., 2009) and [Cd(TETA)(C2H3O2)][B5O6(OH)4] (TETA is triethylenetetramine; Yang et al., 2011). These compounds usually contain isolated or layered boron polyanion hosts and interstitial transition metal complex cations. We describe herein the synthesis and crystal structures of two novel inorganic–organic hybrid borates, M{B6O7(OH)3[O(CH2)2NH2]3} [M = CoII, (I), or NiII, (II)].
Compounds (I) and (II) (see Scheme) were obtained under mild solvothermal conditions. Both compounds crystallize in the cubic system (space group Pa3) and they are isomorphous (Figs. 1a and 1b). Each compound consists of an inorganic–organic hybrid anion {B6O7(OH)3[O(CH2)2NH2]3}2- and an MII cation residing on a crystallographic threefold axis. The MII cation is octahedrally coordinated by three N atoms from the organic component, and three O atoms covalently linking the B—O cluster and organic component (Figs. 1a and 1b). The three M—N bond lengths [2.1309 (15) Å for (I) and 2.080 (3) Å for (II)] are equivalent by symmetry. The N—M—N angles are 100.11 (6)° for (I) and 98.7 (13)° for (II). The three M—O bond lengths are equivalent by symmetry, viz. 2.1359 (12) Å for (I) and 2.102 (3) Å for (II). These structural differences between (I) and (II) may be attributed to the different ionic radii of the CoII and NiII cations. [##AUTHOR: Please specify these ionic radii and provide a reference for them]
The hexaborate anion (see Scheme), B6O7(OH)62-, found in aksaite, mcallisterite and rivadavite (Hanic et al., 1971; Dal Negro et al., 1969, 1971;Dal Negro & Ungaretti, 1973), is a common fundamental building block in borates. The {B6O7(OH)3[O(CH2)2NH2]3}2- anion in (I) can be regarded as resulting from the dehydration reaction of three 2-aminoethanol molecules with the three hydroxy groups attached to the four-coordinate B atoms in B6O7(OH)62-, to form an isolated cage-like structure. The B—O cluster moiety in {B6O7(OH)3[O(CH2)2NH2]3}2- is composed of three trigonal BO3 units and three BO4 tetrahedra linked to each other. This B—O cluster is characterized by three [B3O3] rings linked by three shared BO4 tetrahedra and a central common O atom (O5) which lies on a crystallographic threefold axis. Each ring is produced by two shared BO4 tetrahedra and one trigonal BO3 unit. The trigonally coordinated B atoms have B—O distances in the range 1.355 (2)–1.379 (2) Å, similar to those observed in the hexaborate anion B6O7(OH)62- [B—O = 1.343 (6)–1.398 (1) Å; Genkina et al., 1976; Dal Negro et al., 1971]. The tetrahedral B atoms have longer B—O distances [1.436 (5)–1.5179 (16) Å], lengths that are also comparable with those reported for B6O7(OH)62- [B—O = 1.445 (5)–1.517 (2) Å; Genkina et al., 1976; Dal Negro et al., 1971]. The O—B—O angles of the trigonal BO3 units lie in the range 115.86 (15)–122.47 (15)° and those of the BO4 tetrahedra are in the range 105.35 (3)–113.0 (3)° (see Tables 1 and 3). The esterification of B6O7(OH)62- with 2-aminoethanol shows no substantial influence on the structure of the B—O cluster moiety. It is interesting to compare compound (I) with a 2-aminoethanol borate, i.e. [HOCH2CH2NH3][B5O6(OH)4].H2O, obtained from a 2-aminoethanol–boric acid solution containing a significant excess of boric acid (Schubert et al., 2008). In this example, 2-aminoethanol is protonated. However, under the present reaction conditions with a large excess of 2-aminoethanol, the free base 2-aminoethanol can react with the B—O cluster anion to form a borate ester analogue.
Molecules are connected via N—H···O and O—H···O hydrogen bonds in both (I) and (II) (Fig. 2), forming three-dimensional supramolecular networks. Hydrogen-bonding parameters for (I) and (II) are listed in Tables 2 and 4, respectively.