Download citation
Download citation
link to html
The structures of two pseudopolymorphs of N-acetyl-L-phenylalanine methyl ester, L-AcFOMe, were determined at both 293 (2) and 150 (2) K. At room temperature, the orthorhombic phase C12H15NO3 (I), with space group P212121, converts into the tetragonal phase C12H15NO3·0.5H2O (II), with space group P41212, in the presence of water. In the structures of both pseudopolymorphs, alternating layers of hydrophilic and hydrophobic intermolecular interaction can be distinguished. In the hydrophilic layers the structures are stabilized by moderate hydrogen bonds of the type N—H...O for the anhydrous L-AcFOMe and of types N—H...O and O—H...O for the hemihydrate. Weak C—H...π interactions are observed within the hydrophobic layers: for (I) they are of type III [Malone et al. (1997). J. Chem. Soc. Faraday Trans. 93, 3429–3436], whereas typical type I edge-to-face interactions are present for (II). The differences between the hydrogen-bonding networks of (I) and (II) are discussed in terms of graph-set analysis.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S010876810800219X/bm5052sup1.cif
Contains datablocks global, Ia, Ib, IIa, IIb

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S010876810800219X/bm5052Iasup2.hkl
Contains datablock shelxl

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S010876810800219X/bm5052Ibsup3.hkl
Contains datablock shelxl

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S010876810800219X/bm5052IIasup4.hkl
Contains datablock shelxl

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S010876810800219X/bm5052IIbsup5.hkl
Contains datablock shelxl

CCDC references: 685155; 685156; 685157; 685158

Experimental top

(type here to add preparation details)

Refinement top

(type here to add refinement details)

Computing details top

For all compounds, data collection: COLLECT (Nonius, 1997); cell refinement: DENZO-SMN (Otwinowski & Minor, 1997); data reduction: HKL DENZO and SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 2003); ORTEP-3 for Windows (Farrugia, 1997); Mercury (Version 1.4; Macrae et al., 2006); software used to prepare material for publication: SHELXL97 (Sheldrick, 1997).

Figures top
[Figure 1]
[Figure 2]
[Figure 3]
[Figure 4]
[Figure 5]
[Figure 6]
(Ia) N-Acetyl-L-phenylalanine methyl ester top
Crystal data top
C12H15NO3Dx = 1.205 Mg m3
Mr = 221.25Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, P212121Cell parameters from 1546 reflections
a = 4.9910 (1) Åθ = 1.0–27.5°
b = 8.7145 (2) ŵ = 0.09 mm1
c = 28.0411 (7) ÅT = 293 K
V = 1219.62 (5) Å3Prism, colourless
Z = 40.32 × 0.20 × 0.16 mm
F(000) = 472
Data collection top
KappaCCD
diffractometer
1656 independent reflections
Radiation source: fine-focus sealed tube1126 reflections with I > 2σ(I)
Horizontally mounted graphite crystal monochromatorRint = 0.025
Detector resolution: 9 pixels mm-1θmax = 27.5°, θmin = 3.2°
ϕ scans and ω scans to fill asymmetric unith = 66
Absorption correction: multi-scan
HKL DENZO and SCALEPACK (Otwinowski & Minor, 1997)
k = 1111
Tmin = 0.973, Tmax = 0.986l = 3536
8443 measured reflections
Refinement top
Refinement on F2H atoms treated by a mixture of independent and constrained refinement
Least-squares matrix: full w = 1/[σ2(Fo2) + (0.0634P)2 + 0.0884P]
where P = (Fo2 + 2Fc2)/3
R[F2 > 2σ(F2)] = 0.042(Δ/σ)max < 0.001
wR(F2) = 0.116Δρmax = 0.14 e Å3
S = 0.98Δρmin = 0.17 e Å3
1656 reflectionsExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
151 parametersExtinction coefficient: 0.047 (8)
0 restraints
Crystal data top
C12H15NO3V = 1219.62 (5) Å3
Mr = 221.25Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 4.9910 (1) ŵ = 0.09 mm1
b = 8.7145 (2) ÅT = 293 K
c = 28.0411 (7) Å0.32 × 0.20 × 0.16 mm
Data collection top
KappaCCD
diffractometer
1656 independent reflections
Absorption correction: multi-scan
HKL DENZO and SCALEPACK (Otwinowski & Minor, 1997)
1126 reflections with I > 2σ(I)
Tmin = 0.973, Tmax = 0.986Rint = 0.025
8443 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0420 restraints
wR(F2) = 0.116H atoms treated by a mixture of independent and constrained refinement
S = 0.98Δρmax = 0.14 e Å3
1656 reflectionsΔρmin = 0.17 e Å3
151 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.9648 (4)0.1871 (2)0.14259 (7)0.0530 (5)
H11.146 (6)0.202 (3)0.1465 (8)0.054 (6)*
C10.8270 (5)0.0331 (3)0.19033 (9)0.0585 (6)
O10.9347 (5)0.0111 (2)0.22578 (7)0.0987 (8)
C20.8724 (5)0.0303 (2)0.14076 (8)0.0498 (5)
H20.69880.03050.12450.060*
O20.6520 (4)0.1475 (2)0.18916 (6)0.0760 (6)
C31.0621 (5)0.0715 (2)0.11151 (8)0.0571 (6)
H3A1.24450.05570.12240.069*
H3B1.01680.17840.11690.069*
C41.0461 (5)0.0373 (2)0.05895 (8)0.0504 (5)
C50.8514 (6)0.1080 (3)0.03140 (10)0.0622 (6)
H50.73610.17870.04540.075*
C61.2140 (5)0.0674 (3)0.03718 (9)0.0606 (6)
H61.34650.11600.05490.073*
C70.8262 (6)0.0749 (3)0.01654 (10)0.0699 (7)
H70.69590.12400.03470.084*
C81.1867 (6)0.1007 (3)0.01082 (10)0.0702 (7)
H81.30090.17140.02510.084*
C90.9932 (6)0.0303 (3)0.03738 (10)0.0681 (7)
H90.97470.05380.06960.082*
C100.7934 (5)0.3036 (3)0.14765 (8)0.0514 (6)
O100.5508 (3)0.28266 (19)0.14871 (7)0.0675 (5)
C110.9138 (7)0.4596 (3)0.15162 (10)0.0693 (7)
H11A0.79090.53420.13920.083*
H11B1.07770.46300.13370.083*
H11C0.95030.48190.18450.083*
C120.5831 (9)0.2164 (4)0.23451 (11)0.0963 (11)
H12A0.45500.29700.22950.116*
H12B0.50710.13980.25510.116*
H12C0.74140.25800.24900.116*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0353 (10)0.0541 (10)0.0695 (13)0.0007 (9)0.0004 (9)0.0018 (9)
C10.0505 (14)0.0616 (13)0.0633 (15)0.0024 (13)0.0022 (12)0.0026 (12)
O10.122 (2)0.1120 (15)0.0615 (12)0.0335 (17)0.0175 (12)0.0068 (10)
C20.0365 (11)0.0548 (11)0.0582 (13)0.0003 (11)0.0013 (10)0.0023 (10)
O20.0780 (12)0.0822 (11)0.0679 (11)0.0206 (11)0.0039 (10)0.0176 (9)
C30.0491 (13)0.0552 (12)0.0670 (15)0.0064 (12)0.0012 (12)0.0051 (11)
C40.0426 (11)0.0456 (10)0.0630 (14)0.0069 (11)0.0052 (11)0.0036 (10)
C50.0553 (14)0.0561 (13)0.0752 (16)0.0077 (13)0.0053 (14)0.0066 (12)
C60.0487 (14)0.0639 (14)0.0691 (16)0.0046 (12)0.0015 (12)0.0000 (12)
C70.0669 (16)0.0735 (16)0.0692 (16)0.0016 (16)0.0077 (14)0.0174 (13)
C80.0592 (15)0.0782 (16)0.0732 (17)0.0038 (15)0.0128 (15)0.0101 (13)
C90.0648 (17)0.0774 (16)0.0622 (15)0.0109 (15)0.0040 (14)0.0030 (13)
C100.0475 (13)0.0601 (13)0.0467 (12)0.0045 (12)0.0013 (11)0.0023 (10)
O100.0434 (9)0.0736 (11)0.0856 (13)0.0077 (10)0.0026 (9)0.0030 (9)
C110.0733 (17)0.0579 (13)0.0769 (16)0.0003 (15)0.0063 (15)0.0054 (11)
C120.109 (3)0.094 (2)0.086 (2)0.003 (2)0.0220 (19)0.0322 (16)
Geometric parameters (Å, º) top
N1—C101.336 (3)C6—C81.384 (4)
N1—C21.443 (3)C6—H60.9300
N1—H10.92 (3)C7—C91.370 (4)
C1—O11.194 (3)C7—H70.9300
C1—O21.326 (3)C8—C91.365 (4)
C1—C21.513 (3)C8—H80.9300
C2—C31.535 (3)C9—H90.9300
C2—H20.9800C10—O101.225 (3)
O2—C121.448 (3)C10—C111.490 (3)
C3—C41.506 (3)C11—H11A0.9600
C3—H3A0.9700C11—H11B0.9600
C3—H3B0.9700C11—H11C0.9600
C4—C61.382 (3)C12—H12A0.9600
C4—C51.386 (3)C12—H12B0.9600
C5—C71.380 (4)C12—H12C0.9600
C5—H50.9300
C10—N1—C2121.3 (2)C4—C6—H6119.7
C10—N1—H1121 (2)C8—C6—H6119.7
C2—N1—H1117 (2)C9—C7—C5120.0 (3)
O1—C1—O2124.0 (2)C9—C7—H7120.0
O1—C1—C2125.5 (2)C5—C7—H7120.0
O2—C1—C2110.5 (2)C9—C8—C6120.4 (3)
N1—C2—C1111.2 (2)C9—C8—H8119.8
N1—C2—C3111.7 (2)C6—C8—H8119.8
C1—C2—C3111.9 (2)C8—C9—C7119.9 (3)
N1—C2—H2107.3C8—C9—H9120.1
C1—C2—H2107.3C7—C9—H9120.1
C3—C2—H2107.3O10—C10—N1121.5 (2)
C1—O2—C12116.5 (2)O10—C10—C11122.2 (2)
C4—C3—C2112.1 (2)N1—C10—C11116.3 (2)
C4—C3—H3A109.2C10—C11—H11A109.5
C2—C3—H3A109.2C10—C11—H11B109.5
C4—C3—H3B109.2H11A—C11—H11B109.5
C2—C3—H3B109.2C10—C11—H11C109.5
H3A—C3—H3B107.9H11A—C11—H11C109.5
C6—C4—C5118.2 (2)H11B—C11—H11C109.5
C6—C4—C3122.1 (2)O2—C12—H12A109.5
C5—C4—C3119.7 (2)O2—C12—H12B109.5
C7—C5—C4120.9 (3)H12A—C12—H12B109.5
C7—C5—H5119.5O2—C12—H12C109.5
C4—C5—H5119.5H12A—C12—H12C109.5
C4—C6—C8120.6 (2)H12B—C12—H12C109.5
C10—N1—C2—C182.6 (3)C2—C3—C4—C585.4 (2)
C10—N1—C2—C3151.8 (2)C6—C4—C5—C70.2 (3)
O1—C1—C2—N125.1 (4)C3—C4—C5—C7177.8 (2)
O2—C1—C2—N1155.9 (2)C5—C4—C6—C80.2 (3)
O1—C1—C2—C3100.5 (3)C3—C4—C6—C8177.4 (2)
O2—C1—C2—C378.6 (2)C4—C5—C7—C90.7 (4)
O1—C1—O2—C122.7 (4)C4—C6—C8—C90.0 (4)
C2—C1—O2—C12178.2 (2)C6—C8—C9—C70.6 (4)
N1—C2—C3—C471.4 (3)C5—C7—C9—C80.9 (4)
C1—C2—C3—C4163.3 (2)C2—N1—C10—O103.4 (3)
C2—C3—C4—C692.1 (3)C2—N1—C10—C11176.9 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O10i0.92 (3)2.14 (3)3.046 (3)168 (2)
C12—H12C···O1ii0.962.683.560 (4)153
C11—H11C···O1iii0.962.593.548 (3)174
C12—H12B···O10iv0.962.803.342 (4)117
C9—H9···O10v0.932.663.533 (3)156
C8—H8···CG1v0.933.123.88 (4)141
Symmetry codes: (i) x+1, y, z; (ii) x+2, y1/2, z+1/2; (iii) x+2, y+1/2, z+1/2; (iv) x+1, y1/2, z+1/2; (v) x+1/2, y+1/2, z.
(Ib) N-Acetyl-L-phenylalanine methyl ester top
Crystal data top
C12H15NO3Dx = 1.243 Mg m3
Mr = 221.25Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, P212121Cell parameters from 2846 reflections
a = 4.9488 (2) Åθ = 1.0–30.0°
b = 8.6359 (6) ŵ = 0.09 mm1
c = 27.6622 (10) ÅT = 150 K
V = 1182.21 (10) Å3Prism, colourless
Z = 40.32 × 0.20 × 0.16 mm
F(000) = 472
Data collection top
KappaCCD
diffractometer
2019 independent reflections
Radiation source: fine-focus sealed tube1736 reflections with I > 2σ(I)
Horizontally mounted graphite crystal monochromatorRint = 0.028
Detector resolution: 9 pixels mm-1θmax = 30.1°, θmin = 3.2°
ω scans at χ = 55 degh = 66
Absorption correction: multi-scan
HKL DENZO and SCALEPACK (Otwinowski & Minor, 1997)
k = 1212
Tmin = 0.972, Tmax = 0.986l = 3838
8592 measured reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullPrimary atom site location: structure-invariant direct methods
R[F2 > 2σ(F2)] = 0.039H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.096 w = 1/[σ2(Fo2) + (0.0476P)2 + 0.1338P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max < 0.001
2019 reflectionsΔρmax = 0.20 e Å3
150 parametersΔρmin = 0.20 e Å3
Crystal data top
C12H15NO3V = 1182.21 (10) Å3
Mr = 221.25Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 4.9488 (2) ŵ = 0.09 mm1
b = 8.6359 (6) ÅT = 150 K
c = 27.6622 (10) Å0.32 × 0.20 × 0.16 mm
Data collection top
KappaCCD
diffractometer
2019 independent reflections
Absorption correction: multi-scan
HKL DENZO and SCALEPACK (Otwinowski & Minor, 1997)
1736 reflections with I > 2σ(I)
Tmin = 0.972, Tmax = 0.986Rint = 0.028
8592 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0390 restraints
wR(F2) = 0.096H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 0.20 e Å3
2019 reflectionsΔρmin = 0.20 e Å3
150 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.9756 (3)0.17369 (15)0.14176 (5)0.0230 (3)
H11.165 (5)0.189 (2)0.1458 (8)0.041 (6)*
C10.8299 (3)0.05130 (18)0.18902 (6)0.0253 (3)
O10.9382 (3)0.00806 (16)0.22535 (5)0.0473 (4)
C20.8774 (3)0.01612 (17)0.13890 (5)0.0214 (3)
H20.69890.01890.12200.026*
O20.6494 (3)0.16546 (14)0.18699 (4)0.0339 (3)
C31.0673 (4)0.08635 (17)0.10878 (6)0.0243 (3)
H3A1.25520.07280.12030.029*
H3B1.01710.19640.11320.029*
C41.0517 (3)0.04506 (17)0.05556 (5)0.0219 (3)
C50.8513 (4)0.11234 (18)0.02703 (6)0.0266 (3)
H50.73210.18660.04070.032*
C61.2237 (3)0.06351 (19)0.03498 (6)0.0267 (3)
H61.36090.11010.05410.032*
C70.8253 (4)0.07116 (19)0.02125 (6)0.0285 (4)
H70.68920.11790.04060.034*
C81.1968 (4)0.1047 (2)0.01344 (6)0.0305 (4)
H81.31580.17890.02730.037*
C90.9970 (4)0.03776 (19)0.04141 (6)0.0298 (4)
H90.97750.06640.07440.036*
C100.8025 (3)0.29163 (18)0.14876 (6)0.0226 (3)
O100.5566 (2)0.27063 (13)0.15013 (5)0.0301 (3)
C110.9267 (4)0.44933 (18)0.15400 (6)0.0301 (4)
H11A0.81270.52610.13770.036*
H11B1.10690.44940.13930.036*
H11C0.94140.47550.18840.036*
C120.5786 (5)0.2361 (2)0.23292 (7)0.0435 (5)
H12A0.44530.31820.22750.052*
H12B0.50190.15730.25440.052*
H12C0.74090.28030.24780.052*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0180 (6)0.0219 (6)0.0289 (7)0.0006 (5)0.0001 (5)0.0009 (5)
C10.0242 (8)0.0274 (7)0.0243 (7)0.0023 (7)0.0007 (7)0.0005 (6)
O10.0644 (10)0.0519 (8)0.0255 (6)0.0168 (8)0.0088 (7)0.0017 (6)
C20.0180 (7)0.0235 (7)0.0226 (7)0.0006 (6)0.0017 (6)0.0009 (6)
O20.0366 (7)0.0369 (6)0.0281 (6)0.0095 (6)0.0014 (6)0.0081 (5)
C30.0251 (8)0.0230 (7)0.0248 (7)0.0030 (7)0.0015 (7)0.0012 (6)
C40.0209 (7)0.0205 (7)0.0243 (7)0.0037 (6)0.0026 (6)0.0014 (6)
C50.0270 (8)0.0246 (7)0.0281 (8)0.0018 (7)0.0031 (7)0.0003 (6)
C60.0219 (8)0.0276 (7)0.0305 (8)0.0007 (7)0.0009 (7)0.0005 (7)
C70.0299 (8)0.0291 (8)0.0266 (8)0.0004 (8)0.0028 (7)0.0048 (6)
C80.0266 (8)0.0327 (8)0.0321 (9)0.0012 (7)0.0065 (7)0.0066 (7)
C90.0312 (9)0.0344 (8)0.0238 (8)0.0072 (7)0.0031 (7)0.0027 (7)
C100.0239 (8)0.0273 (7)0.0165 (7)0.0024 (6)0.0007 (6)0.0020 (6)
O100.0206 (6)0.0331 (6)0.0366 (7)0.0029 (5)0.0017 (5)0.0005 (5)
C110.0311 (9)0.0267 (7)0.0325 (8)0.0002 (7)0.0041 (8)0.0028 (7)
C120.0504 (12)0.0443 (10)0.0360 (10)0.0032 (10)0.0110 (9)0.0160 (8)
Geometric parameters (Å, º) top
N1—C101.345 (2)C6—C81.392 (2)
N1—C21.447 (2)C6—H60.9500
N1—H10.95 (2)C7—C91.385 (2)
C1—O11.199 (2)C7—H70.9500
C1—O21.332 (2)C8—C91.382 (2)
C1—C21.522 (2)C8—H80.9500
C2—C31.536 (2)C9—H90.9500
C2—H21.0000C10—O101.231 (2)
O2—C121.452 (2)C10—C111.501 (2)
C3—C41.517 (2)C11—H11A0.9800
C3—H3A0.9900C11—H11B0.9800
C3—H3B0.9900C11—H11C0.9800
C4—C61.388 (2)C12—H12A0.9800
C4—C51.394 (2)C12—H12B0.9800
C5—C71.388 (2)C12—H12C0.9800
C5—H50.9500
C10—N1—C2120.4 (1)C4—C6—H6119.7
C10—N1—H1120 (1)C8—C6—H6119.7
C2—N1—H1118 (1)C9—C7—C5120.3 (2)
O1—C1—O2124.5 (2)C9—C7—H7119.8
O1—C1—C2125.1 (2)C5—C7—H7119.8
O2—C1—C2110.4 (1)C9—C8—C6120.0 (2)
N1—C2—C1111.2 (1)C9—C8—H8120.0
N1—C2—C3111.5 (1)C6—C8—H8120.0
C1—C2—C3111.6 (1)C8—C9—C7119.9 (2)
N1—C2—H2107.4C8—C9—H9120.1
C1—C2—H2107.4C7—C9—H9120.1
C3—C2—H2107.4O10—C10—N1121.5 (2)
C1—O2—C12115.8 (1)O10—C10—C11122.4 (2)
C4—C3—C2111.1 (1)N1—C10—C11116.1 (1)
C4—C3—H3A109.4C10—C11—H11A109.5
C2—C3—H3A109.4C10—C11—H11B109.5
C4—C3—H3B109.4H11A—C11—H11B109.5
C2—C3—H3B109.4C10—C11—H11C109.5
H3A—C3—H3B108.0H11A—C11—H11C109.5
C6—C4—C5119.0 (2)H11B—C11—H11C109.5
C6—C4—C3121.7 (2)O2—C12—H12A109.5
C5—C4—C3119.2 (1)O2—C12—H12B109.5
C7—C5—C4120.3 (2)H12A—C12—H12B109.5
C7—C5—H5119.9O2—C12—H12C109.5
C4—C5—H5119.9H12A—C12—H12C109.5
C4—C6—C8120.6 (2)H12B—C12—H12C109.5
C10—N1—C2—C181.2 (2)C2—C3—C4—C585.5 (2)
C10—N1—C2—C3153.6 (1)C6—C4—C5—C70.1 (2)
O1—C1—C2—N123.9 (2)C3—C4—C5—C7177.1 (2)
O2—C1—C2—N1155.9 (1)C5—C4—C6—C80.0 (2)
O1—C1—C2—C3101.3 (2)C3—C4—C6—C8176.9 (2)
O2—C1—C2—C379.0 (2)C4—C5—C7—C90.4 (3)
O1—C1—O2—C121.9 (3)C4—C6—C8—C90.2 (3)
C2—C1—O2—C12177.9 (2)C6—C8—C9—C70.5 (3)
N1—C2—C3—C471.0 (2)C5—C7—C9—C80.6 (2)
C1—C2—C3—C4164.0 (1)C2—N1—C10—O104.2 (2)
C2—C3—C4—C691.4 (2)C2—N1—C10—C11176.7 (1)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O10i0.95 (2)2.06 (2)3.003 (2)168 (2)
C12—H12C···O1ii0.982.633.545 (3)155
C11—H11C···O1iii0.982.463.424 (2)166
C12—H12B···O10iv0.982.733.304 (2)118
C9—H9···O10v0.952.553.445 (2)156
C8—H8···CG1v0.953.043.81 (4)139
Symmetry codes: (i) x+1, y, z; (ii) x+2, y1/2, z+1/2; (iii) x+2, y+1/2, z+1/2; (iv) x+1, y1/2, z+1/2; (v) x+1/2, y+1/2, z.
(IIa) N-Acetyl-L-phenylalanine methyl ester hemihydrate top
Crystal data top
2(C12H15NO3)·H2ODx = 1.256 Mg m3
Mr = 460.52Mo Kα radiation, λ = 0.71073 Å
Tetragonal, P41212Cell parameters from 3565 reflections
a = 7.1582 (1) Åθ = 2.9–33.7°
c = 47.5286 (6) ŵ = 0.09 mm1
V = 2435.36 (6) Å3T = 293 K
Z = 4Prism, colourless
F(000) = 9840.32 × 0.12 × 0.12 mm
Data collection top
KappaCCD
diffractometer
1738 independent reflections
Radiation source: fine-focus sealed tube1270 reflections with I > 2σ(I)
Horizontally mounted graphite crystal monochromatorRint = 0.026
Detector resolution: 9 pixels mm-1θmax = 27.5°, θmin = 3.0°
ω scans at χ = 55 degh = 99
Absorption correction: multi-scan
HKL DENZO and SCALEPACK (Otwinowski & Minor, 1997)
k = 66
Tmin = 0.971, Tmax = 0.989l = 6161
11430 measured reflections
Refinement top
Refinement on F2H-atom parameters constrained
Least-squares matrix: full w = 1/[σ2(Fo2) + (0.0566P)2 + 0.2801P]
where P = (Fo2 + 2Fc2)/3
R[F2 > 2σ(F2)] = 0.045(Δ/σ)max < 0.001
wR(F2) = 0.119Δρmax = 0.17 e Å3
S = 1.06Δρmin = 0.17 e Å3
1738 reflectionsExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
152 parametersExtinction coefficient: 0.019 (3)
0 restraints
Crystal data top
2(C12H15NO3)·H2OZ = 4
Mr = 460.52Mo Kα radiation
Tetragonal, P41212µ = 0.09 mm1
a = 7.1582 (1) ÅT = 293 K
c = 47.5286 (6) Å0.32 × 0.12 × 0.12 mm
V = 2435.36 (6) Å3
Data collection top
KappaCCD
diffractometer
1738 independent reflections
Absorption correction: multi-scan
HKL DENZO and SCALEPACK (Otwinowski & Minor, 1997)
1270 reflections with I > 2σ(I)
Tmin = 0.971, Tmax = 0.989Rint = 0.026
11430 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0450 restraints
wR(F2) = 0.119H-atom parameters constrained
S = 1.06Δρmax = 0.17 e Å3
1738 reflectionsΔρmin = 0.17 e Å3
152 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.1621 (3)0.1351 (3)0.21800 (3)0.0401 (5)
H10.18070.02530.22560.048*
C10.1544 (4)0.1807 (4)0.19968 (5)0.0443 (6)
O10.2369 (3)0.1170 (4)0.21906 (4)0.0745 (7)
C20.0499 (3)0.1447 (3)0.19260 (4)0.0398 (6)
H20.09620.24680.18080.048*
O20.2328 (2)0.2886 (3)0.18015 (3)0.0531 (5)
C30.0631 (3)0.0394 (4)0.17608 (5)0.0446 (6)
H3A0.04020.14260.18880.054*
H3B0.03420.04120.16190.054*
C40.2496 (3)0.0680 (3)0.16196 (5)0.0401 (6)
C50.2855 (4)0.0142 (4)0.13604 (5)0.0487 (7)
H50.19340.08570.12740.058*
C60.3884 (4)0.1737 (4)0.17408 (5)0.0452 (6)
H60.36660.23160.19130.054*
C70.4556 (4)0.0087 (4)0.12293 (5)0.0560 (8)
H70.47740.04700.10560.067*
C80.5602 (4)0.1952 (4)0.16101 (5)0.0519 (7)
H80.65340.26530.16960.062*
C90.5931 (4)0.1137 (4)0.13546 (5)0.0558 (7)
H90.70790.12920.12660.067*
C100.2155 (3)0.2901 (4)0.23140 (5)0.0416 (6)
O100.1785 (3)0.4469 (3)0.22203 (4)0.0571 (5)
C110.3251 (4)0.2628 (4)0.25810 (5)0.0574 (8)
H11A0.45320.29670.25490.069*
H11B0.31850.13410.26370.069*
H11C0.27370.34010.27270.069*
C120.4319 (4)0.3171 (4)0.18295 (6)0.0593 (8)
H12A0.47540.39520.16790.071*
H12B0.45780.37630.20060.071*
H12C0.49470.19870.18220.071*
O50.2188 (2)0.2188 (2)0.25000.0471 (6)
H510.32840.19910.25650.057*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0437 (12)0.0337 (11)0.0428 (10)0.0011 (9)0.0066 (9)0.0036 (9)
C10.0439 (15)0.0470 (15)0.0421 (12)0.0025 (12)0.0001 (11)0.0038 (12)
O10.0538 (13)0.1087 (19)0.0611 (11)0.0080 (12)0.0146 (10)0.0282 (12)
C20.0386 (13)0.0415 (14)0.0392 (11)0.0022 (11)0.0007 (11)0.0025 (11)
O20.0395 (10)0.0621 (12)0.0577 (10)0.0069 (9)0.0024 (8)0.0097 (9)
C30.0400 (14)0.0464 (15)0.0474 (13)0.0018 (11)0.0020 (11)0.0083 (12)
C40.0438 (15)0.0384 (14)0.0381 (11)0.0017 (11)0.0010 (10)0.0103 (10)
C50.0549 (17)0.0468 (16)0.0446 (13)0.0059 (13)0.0026 (13)0.0027 (11)
C60.0481 (15)0.0491 (16)0.0383 (11)0.0003 (12)0.0021 (11)0.0008 (11)
C70.068 (2)0.0572 (18)0.0431 (13)0.0035 (15)0.0061 (14)0.0006 (13)
C80.0432 (15)0.0573 (18)0.0552 (14)0.0048 (13)0.0059 (12)0.0030 (14)
C90.0475 (17)0.065 (2)0.0550 (14)0.0032 (15)0.0093 (13)0.0114 (15)
C100.0380 (13)0.0429 (15)0.0439 (12)0.0014 (12)0.0028 (11)0.0077 (12)
O100.0740 (14)0.0366 (10)0.0606 (10)0.0006 (10)0.0076 (10)0.0084 (9)
C110.0646 (19)0.0596 (18)0.0479 (14)0.0038 (14)0.0093 (13)0.0077 (12)
C120.0404 (16)0.0607 (19)0.0770 (18)0.0048 (14)0.0031 (14)0.0018 (16)
O50.0415 (9)0.0415 (9)0.0585 (13)0.0010 (11)0.0076 (8)0.0076 (8)
Geometric parameters (Å, º) top
N1—C101.335 (3)C6—C81.387 (4)
N1—C21.452 (3)C6—H60.9300
N1—H10.8752C7—C91.374 (4)
C1—O11.186 (3)C7—H70.9300
C1—O21.332 (3)C8—C91.368 (4)
C1—C21.523 (3)C8—H80.9300
C2—C31.537 (3)C9—H90.9300
C2—H20.9800C10—O101.236 (3)
O2—C121.445 (3)C10—C111.505 (3)
C3—C41.509 (3)C11—H11A0.9600
C3—H3A0.9700C11—H11B0.9600
C3—H3B0.9700C11—H11C0.9600
C4—C61.375 (3)C12—H12A0.9600
C4—C51.389 (3)C12—H12B0.9600
C5—C71.377 (4)C12—H12C0.9600
C5—H50.9300O5—H510.8547
C10—N1—C2121.0 (2)C4—C6—H6119.5
C10—N1—H1120.4C8—C6—H6119.5
C2—N1—H1118.0C9—C7—C5120.1 (3)
O1—C1—O2123.7 (2)C9—C7—H7119.9
O1—C1—C2125.8 (3)C5—C7—H7119.9
O2—C1—C2110.5 (2)C9—C8—C6120.2 (3)
N1—C2—C1110.85 (19)C9—C8—H8119.9
N1—C2—C3110.5 (2)C6—C8—H8119.9
C1—C2—C3108.5 (2)C8—C9—C7119.7 (3)
N1—C2—H2109.0C8—C9—H9120.2
C1—C2—H2109.0C7—C9—H9120.2
C3—C2—H2109.0O10—C10—N1121.4 (2)
C1—O2—C12115.7 (2)O10—C10—C11122.2 (2)
C4—C3—C2113.4 (2)N1—C10—C11116.3 (2)
C4—C3—H3A108.9C10—C11—H11A109.5
C2—C3—H3A108.9C10—C11—H11B109.5
C4—C3—H3B108.9H11A—C11—H11B109.5
C2—C3—H3B108.9C10—C11—H11C109.5
H3A—C3—H3B107.7H11A—C11—H11C109.5
C6—C4—C5118.1 (2)H11B—C11—H11C109.5
C6—C4—C3121.9 (2)O2—C12—H12A109.5
C5—C4—C3120.0 (2)O2—C12—H12B109.5
C7—C5—C4121.0 (2)H12A—C12—H12B109.5
C7—C5—H5119.5O2—C12—H12C109.5
C4—C5—H5119.5H12A—C12—H12C109.5
C4—C6—C8120.9 (2)H12B—C12—H12C109.5
C10—N1—C2—C178.8 (3)C2—C3—C4—C582.9 (3)
C10—N1—C2—C3160.8 (2)C6—C4—C5—C70.4 (4)
O1—C1—C2—N138.1 (4)C3—C4—C5—C7179.4 (2)
O2—C1—C2—N1144.9 (2)C5—C4—C6—C81.0 (4)
O1—C1—C2—C383.5 (3)C3—C4—C6—C8178.7 (2)
O2—C1—C2—C393.6 (2)C4—C5—C7—C90.1 (4)
O1—C1—O2—C123.3 (4)C4—C6—C8—C91.2 (4)
C2—C1—O2—C12173.9 (2)C6—C8—C9—C70.7 (4)
N1—C2—C3—C472.0 (3)C5—C7—C9—C80.0 (4)
C1—C2—C3—C4166.3 (2)C2—N1—C10—O103.3 (3)
C2—C3—C4—C696.8 (3)C2—N1—C10—C11177.7 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O50.882.112.983 (3)171
O5—H51···O10i0.851.912.753 (2)168
C11—H11B···O10i0.962.883.679 (4)142
C12—H12B···O10ii0.962.843.477 (3)125
C11—H11C···O1iii0.962.923.351 (4)109
C5—H5···CG1iv0.932.823.66 (4)151
C12—H12C···CG1ii0.962.623.44 (5)143
Symmetry codes: (i) y+1, x, z+1/2; (ii) x1, y, z; (iii) y, x, z+1/2; (iv) x+1/2, y+1/2, z+1/4.
(IIb) N-Acetyl-L-phenylalanine methyl ester hemihydrate top
Crystal data top
2(C12H15NO3)·H2ODx = 1.291 Mg m3
Mr = 460.52Mo Kα radiation, λ = 0.71073 Å
Tetragonal, P41212Cell parameters from 2051 reflections
a = 7.0900 (1) Åθ = 2.9–27.5°
c = 47.1426 (5) ŵ = 0.10 mm1
V = 2369.77 (5) Å3T = 150 K
Z = 4Prism, colourless
F(000) = 9840.36 × 0.35 × 0.20 mm
Data collection top
KappaCCD
diffractometer
1674 independent reflections
Radiation source: fine-focus sealed tube1570 reflections with I > 2σ(I)
Horizontally mounted graphite crystal monochromatorRint = 0.013
Detector resolution: 9 pixels mm-1θmax = 27.4°, θmin = 3.6°
ω scans at χ = 55 degh = 99
Absorption correction: multi-scan
HKL DENZO and SCALEPACK (Otwinowski & Minor, 1997)
k = 66
Tmin = 0.967, Tmax = 0.981l = 5960
6431 measured reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.035 w = 1/[σ2(Fo2) + (0.0431P)2 + 0.7149P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.093(Δ/σ)max < 0.001
S = 1.08Δρmax = 0.20 e Å3
1674 reflectionsΔρmin = 0.24 e Å3
151 parameters
Crystal data top
2(C12H15NO3)·H2OZ = 4
Mr = 460.52Mo Kα radiation
Tetragonal, P41212µ = 0.10 mm1
a = 7.0900 (1) ÅT = 150 K
c = 47.1426 (5) Å0.36 × 0.35 × 0.20 mm
V = 2369.77 (5) Å3
Data collection top
KappaCCD
diffractometer
1674 independent reflections
Absorption correction: multi-scan
HKL DENZO and SCALEPACK (Otwinowski & Minor, 1997)
1570 reflections with I > 2σ(I)
Tmin = 0.967, Tmax = 0.981Rint = 0.013
6431 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0350 restraints
wR(F2) = 0.093H-atom parameters constrained
S = 1.08Δρmax = 0.20 e Å3
1674 reflectionsΔρmin = 0.24 e Å3
151 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.1604 (2)0.1277 (2)0.21825 (3)0.0197 (3)
H10.17760.01120.22610.024*
C10.1600 (2)0.1749 (2)0.19980 (4)0.0207 (3)
O10.2433 (2)0.1105 (2)0.21969 (3)0.0345 (4)
C20.0465 (2)0.1374 (2)0.19275 (3)0.0187 (3)
H20.09470.24210.18050.022*
O20.23874 (17)0.28341 (19)0.17975 (3)0.0240 (3)
C30.0583 (2)0.0493 (3)0.17603 (4)0.0214 (4)
H3A0.03420.15570.18910.026*
H3B0.04180.05060.16140.026*
C40.2471 (2)0.0785 (2)0.16184 (3)0.0194 (3)
C50.2838 (3)0.0066 (2)0.13569 (4)0.0229 (4)
H50.18910.08120.12690.027*
C60.3876 (2)0.1871 (2)0.17435 (4)0.0218 (4)
H60.36420.24770.19200.026*
C70.4570 (3)0.0165 (3)0.12240 (4)0.0260 (4)
H70.47970.04110.10450.031*
C80.5621 (3)0.2076 (3)0.16123 (4)0.0247 (4)
H80.65810.27960.17020.030*
C90.5973 (3)0.1238 (3)0.13521 (4)0.0260 (4)
H90.71610.13960.12620.031*
C100.2145 (2)0.2860 (2)0.23166 (4)0.0202 (3)
O100.1758 (2)0.44422 (18)0.22200 (3)0.0271 (3)
C110.3291 (3)0.2605 (3)0.25812 (4)0.0267 (4)
H11A0.46340.27250.25360.032*
H11B0.30480.13510.26610.032*
H11C0.29380.35710.27200.032*
C120.4397 (3)0.3113 (3)0.18263 (4)0.0269 (4)
H12A0.48510.39180.16720.032*
H12B0.46650.37210.20090.032*
H12C0.50400.18910.18180.032*
O50.22252 (17)0.22252 (17)0.25000.0221 (4)
H510.34040.21200.25700.026*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0206 (7)0.0178 (7)0.0207 (7)0.0015 (5)0.0020 (6)0.0008 (6)
C10.0213 (8)0.0203 (8)0.0205 (8)0.0001 (6)0.0001 (7)0.0027 (7)
O10.0265 (7)0.0487 (9)0.0283 (7)0.0045 (6)0.0075 (6)0.0121 (7)
C20.0188 (8)0.0183 (8)0.0188 (7)0.0004 (6)0.0001 (6)0.0022 (6)
O20.0180 (6)0.0282 (7)0.0259 (6)0.0027 (5)0.0003 (5)0.0043 (5)
C30.0187 (8)0.0227 (9)0.0227 (8)0.0014 (6)0.0004 (7)0.0041 (7)
C40.0218 (8)0.0177 (8)0.0188 (7)0.0019 (6)0.0003 (6)0.0052 (6)
C50.0258 (9)0.0208 (9)0.0221 (8)0.0017 (7)0.0028 (7)0.0012 (7)
C60.0242 (9)0.0230 (9)0.0180 (7)0.0010 (7)0.0004 (7)0.0002 (6)
C70.0307 (10)0.0268 (10)0.0205 (8)0.0031 (7)0.0025 (7)0.0010 (7)
C80.0213 (9)0.0269 (9)0.0259 (8)0.0022 (7)0.0038 (7)0.0023 (7)
C90.0213 (9)0.0302 (10)0.0264 (9)0.0015 (8)0.0038 (7)0.0058 (7)
C100.0175 (8)0.0220 (8)0.0212 (8)0.0016 (7)0.0027 (6)0.0047 (7)
O100.0342 (7)0.0187 (6)0.0285 (6)0.0012 (5)0.0030 (6)0.0034 (5)
C110.0296 (9)0.0274 (9)0.0232 (8)0.0014 (7)0.0037 (7)0.0039 (7)
C120.0188 (8)0.0268 (9)0.0350 (10)0.0024 (7)0.0012 (7)0.0002 (8)
O50.0201 (5)0.0201 (5)0.0259 (8)0.0015 (7)0.0030 (5)0.0030 (5)
Geometric parameters (Å, º) top
N1—C101.344 (2)C6—C81.391 (2)
N1—C21.450 (2)C6—H60.9500
N1—H10.9131C7—C91.390 (3)
C1—O11.198 (2)C7—H70.9500
C1—O21.340 (2)C8—C91.385 (3)
C1—C21.525 (2)C8—H80.9500
C2—C31.543 (2)C9—H90.9500
C2—H21.0000C10—O101.241 (2)
O2—C121.445 (2)C10—C111.500 (2)
C3—C41.511 (2)C11—H11A0.9800
C3—H3A0.9900C11—H11B0.9800
C3—H3B0.9900C11—H11C0.9800
C4—C61.390 (2)C12—H12A0.9800
C4—C51.397 (2)C12—H12B0.9800
C5—C71.388 (3)C12—H12C0.9800
C5—H50.9500O5—H510.9024
C10—N1—C2120.6 (1)C4—C6—H6119.8
C10—N1—H1121.8C8—C6—H6119.8
C2—N1—H1117.0C5—C7—C9120.1 (2)
O1—C1—O2124.4 (2)C5—C7—H7120.0
O1—C1—C2125.2 (2)C9—C7—H7120.0
O2—C1—C2110.3 (1)C9—C8—C6120.6 (2)
N1—C2—C1111.2 (1)C9—C8—H8119.7
N1—C2—C3110.7 (1)C6—C8—H8119.7
C1—C2—C3108.2 (1)C8—C9—C7119.4 (2)
N1—C2—H2108.9C8—C9—H9120.3
C1—C2—H2108.9C7—C9—H9120.3
C3—C2—H2108.9O10—C10—N1121.3 (2)
C1—O2—C12115.0 (1)O10—C10—C11122.3 (2)
C4—C3—C2113.0 (1)N1—C10—C11116.4 (2)
C4—C3—H3A109.0C10—C11—H11A109.5
C2—C3—H3A109.0C10—C11—H11B109.5
C4—C3—H3B109.0H11A—C11—H11B109.5
C2—C3—H3B109.0C10—C11—H11C109.5
H3A—C3—H3B107.8H11A—C11—H11C109.5
C6—C4—C5118.7 (2)H11B—C11—H11C109.5
C6—C4—C3121.5 (2)O2—C12—H12A109.5
C5—C4—C3119.8 (2)O2—C12—H12B109.5
C7—C5—C4120.8 (2)H12A—C12—H12B109.5
C7—C5—H5119.6O2—C12—H12C109.5
C4—C5—H5119.6H12A—C12—H12C109.5
C4—C6—C8120.4 (2)H12B—C12—H12C109.5
C10—N1—C2—C178.6 (2)C2—C3—C4—C582.5 (2)
C10—N1—C2—C3161.0 (2)C6—C4—C5—C70.0 (3)
O1—C1—C2—N137.8 (2)C3—C4—C5—C7179.3 (2)
O2—C1—C2—N1145.3 (1)C5—C4—C6—C81.1 (3)
O1—C1—C2—C384.0 (2)C3—C4—C6—C8178.2 (2)
O2—C1—C2—C393.0 (2)C4—C5—C7—C90.6 (3)
O1—C1—O2—C123.4 (3)C4—C6—C8—C91.5 (3)
C2—C1—O2—C12173.6 (1)C6—C8—C9—C70.9 (3)
N1—C2—C3—C471.7 (2)C5—C7—C9—C80.2 (3)
C1—C2—C3—C4166.2 (1)C2—N1—C10—O103.1 (2)
C2—C3—C4—C696.8 (2)C2—N1—C10—C11179.0 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O50.912.032.932 (2)170
O5—H51···O10i0.901.842.727 (2)168
C11—H11B···O10i0.982.893.609 (2)131
C12—H12B···O10ii0.982.773.430 (2)125
C11—H11A···O1iii0.982.863.689 (2)143
C5—H5···CG1iv0.952.803.66 (4)152
C12—H12C···CG1ii0.982.533.35 (4)142
Symmetry codes: (i) y+1, x, z+1/2; (ii) x1, y, z; (iii) x+1, y, z; (iv) x+1/2, y+1/2, z+1/4.

Experimental details

(Ia)(Ib)(IIa)(IIb)
Crystal data
Chemical formulaC12H15NO3C12H15NO32(C12H15NO3)·H2O2(C12H15NO3)·H2O
Mr221.25221.25460.52460.52
Crystal system, space groupOrthorhombic, P212121Orthorhombic, P212121Tetragonal, P41212Tetragonal, P41212
Temperature (K)293150293150
a, b, c (Å)4.9910 (1), 8.7145 (2), 28.0411 (7)4.9488 (2), 8.6359 (6), 27.6622 (10)7.1582 (1), 7.1582 (1), 47.5286 (6)7.0900 (1), 7.0900 (1), 47.1426 (5)
α, β, γ (°)90, 90, 9090, 90, 9090, 90, 9090, 90, 90
V3)1219.62 (5)1182.21 (10)2435.36 (6)2369.77 (5)
Z4444
Radiation typeMo KαMo KαMo KαMo Kα
µ (mm1)0.090.090.090.10
Crystal size (mm)0.32 × 0.20 × 0.160.32 × 0.20 × 0.160.32 × 0.12 × 0.120.36 × 0.35 × 0.20
Data collection
DiffractometerKappaCCD
diffractometer
KappaCCD
diffractometer
KappaCCD
diffractometer
KappaCCD
diffractometer
Absorption correctionMulti-scan
HKL DENZO and SCALEPACK (Otwinowski & Minor, 1997)
Multi-scan
HKL DENZO and SCALEPACK (Otwinowski & Minor, 1997)
Multi-scan
HKL DENZO and SCALEPACK (Otwinowski & Minor, 1997)
Multi-scan
HKL DENZO and SCALEPACK (Otwinowski & Minor, 1997)
Tmin, Tmax0.973, 0.9860.972, 0.9860.971, 0.9890.967, 0.981
No. of measured, independent and
observed [I > 2σ(I)] reflections
8443, 1656, 1126 8592, 2019, 1736 11430, 1738, 1270 6431, 1674, 1570
Rint0.0250.0280.0260.013
(sin θ/λ)max1)0.6490.7050.6500.648
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.116, 0.98 0.039, 0.096, 1.04 0.045, 0.119, 1.06 0.035, 0.093, 1.08
No. of reflections1656201917381674
No. of parameters151150152151
H-atom treatmentH atoms treated by a mixture of independent and constrained refinementH atoms treated by a mixture of independent and constrained refinementH-atom parameters constrainedH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.14, 0.170.20, 0.200.17, 0.170.20, 0.24

Computer programs: COLLECT (Nonius, 1997), DENZO-SMN (Otwinowski & Minor, 1997), HKL DENZO and SCALEPACK (Otwinowski & Minor, 1997), SIR92 (Altomare et al., 1994), SHELXL97 (Sheldrick, 1997), PLATON (Spek, 2003); ORTEP-3 for Windows (Farrugia, 1997); Mercury (Version 1.4; Macrae et al., 2006).

 

Follow Acta Cryst. B
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds